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Computing work functions or absolute DFT eigenvalues (e.g. ionization potentials) requires some
care. Obviously, we as discussing systems with surfaces in contact with vacuum — computing the
absolute eigenvalue for the interior of an infinite crystal is not possible since the alignment with
vacuum depends on the dipoles on the surface which are not being modeled. Therefore, what we
really have in mind are 2D (slabs, sheets), 1D (polymers, nanotubes, nanowires) and 0D (molecules,
atoms) where there are some periodic directions and some directions going into the vacuum. Let
the lattice vector along the periodic direction be a and the lattice vector along the vacuum direction
be L. We will be investigating the L→∞ limit below.

In general, the DFT Kohn-Sham Hamiltonian can be written as

H = −∇
2

2m
+ φ(r) + Vxc(r)

where φ is the total electrostatic potential from all charges, ions and electrons,

φ(r) =
∫
d3r′

ρ(r′)
|r − r′|

=
∫

d3q

(2π)3

4πρ̃(q)eiq·r

q2
.

Here, ρ(r) is the total (ion+electron) charge density and ρ̃(q) is its Fourier transform. Most of
the problems with determining absolute energies and the vacuum level are because the Coulomb
interaction is long ranged and so computing the potential in a periodic system of charges can be
ill-defined. In could say it is about handling the q = 0 divergence in periodic systems.

Before continuing forward, there are two types of problems in determining absolute eigenvalues and
potentials in a DFT calculation, and they are of different origin.

• First, some DFT codes will set the average potential to zero over the unit cell. This not
only includes the electrostatic potential but also the exchange-correlation potential Vxc. This
means that the average value of Vxc over the volume of the unit cell Ω,

1
Ω

∫
Ω
d3r Vxc(r) ,

is being added or subtracted from the output potential. As the volume of the unit cell is
changed by increasing or decreasing the vacuum, this average changes as well. Whether a
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given code does this or not can only be determined by looking inside. If one is using a local or
semi-local functional (e.g. LDA or GGA) and has enough vacuum for the electron density to
be localized on the system, then the integral is just some number and the average will scale
like 1/Ω. What this means is that the value of the potential in the vacuum region could have
such a contribution that depends on Ω and must be corrected for or extrapolated away.

• Second, all DFT codes run on periodic systems will have to do something with the divergence
at q = 0 and thus adjust the average potential in some way. This is what we are discussing
below.

Before we begin, we will need some general orientation and one mathematical result. It has to do
with the fact that for a function of compact support with well-defined Fourier transform, integrating
over the Fourier space or summing over the discrete reciprocal (Fourier) lattice give exactly the same
thing. We will do this in one dimension to keep the math simple. Consider two functions F (x) and
G(x) whose product F (g)G(x) is of compact support: it is non-zero only for 0 < x < a. We want
the integral of their product (inner product) which can be done in real or reciprocal space

I =
∫ ∞
−∞

dxF (x)∗G(x) =
∫ ∞
−∞

dq

2π
F̃ (q)∗G̃(q)

where the Fourier convention is
F (x) =

∫ ∞
−∞

dq

2π
F̃ (q)eiqx .

Instead of integrating over all x, let’s take a unit cell of length L > a. Then the integral of F (x)G(x)
over the finite range 0 < x < L is also I. Once we are working on a finite interval of length L, we
can make F (x) and G(x) periodic without changing I:

Fp(x) =
∞∑

n=−∞
F (x− nL) =

1
L

∑
g

F̃ (g)eigx

and similarly for Gp(x). Here the reciprocal lattice vectors are g = 2πn/L for integers n. I is
unchanged if we use the periodic functions

I =
∫ L

0
dxFp(x)∗Gp(x) =

1
L

∑
g

F̃ (g)∗G̃(g) .

What we found is that
I =

∫ ∞
−∞

dq

2π
F̃ (q)∗G̃(q) =

1
L

∑
g

F̃ (g)∗G̃(g) .

The discrete sum and the continuous integral are exactly the same: for a function of compact
support, one can sample discrete or continuously and no information is lost (Nyquist theorem).

We can write this in a slightly different way which is more useful below. We can choose to write
q = k + g where −π/L < k < π/L is in the first Brillouin zone (BZ) and g a reciprocal lattice
vector. Therefore

I =
∑
g

∫ π/L

−π/L

dk

2π
F̃ (k + g)∗G̃(k + g) .
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Since the BZ has length 2π/L we change replace the integral by the average over the BZ and write

I =
1
L

∑
g

〈
F̃ (k + g)∗G̃(k + g)

〉
BZ

where

〈h〉BZ ≡
∫ π/L

−π/L

dk

2π/L
h(k) .

Thus another way to write out main finding is

I =
1
L

∑
g

F̃ (g)∗G̃(g) =
1
L

∑
g

〈
F̃ (k + g)∗G̃(k + g)

〉
BZ

.

Now we begin by focusing on the slab case. We have to periodic directions in the xy plane and one
direction going into the vacuum. So if we let Gxy denote the reciprocal lattice vectors in the xy
lattice, all functions of interest have periodicity in the xy plane and have a Fourier series in the xy
plane: for example, the charge density ρ(r) has Fourier representation

ρ(x, y, z) =
∑
Gxy

∫ ∞
−∞

dqz
2π

ρ̃(Gxy, qz)
A

eiGxy ·rxy+iqzz .

The vector rxy = (x, y) is the position in the plane. A is the area of the periodic cell in xy.

Instead of looking at the potential φ(r) itself, consider the eigenvalue En for some bound stae ψn(r):

En =
∫
d3r ψn(r)∗

[
−∇

2

2m
+ φ(r) + Vxc(r)

]
ψn(r) .

The part of interest is the electrostatic contribution

Φn =
∫
d3r φ(r)|ψn(r)|2 .

To see this, let’s define the Fourier transform of |ψn(r)|2 to be p̃n(q). Then working in Fourier
space

Φn =
∑
Gxy

∫
dqz
2π

4πρ̃(Gxy, qz)p̃n(Gxy, qz)
A(G2

xy + q2
z)

.

Now, in an actual plane wave calculation, we have a periodic cell along z of length L. Both the
bound state ψn and the charge density ρ will decay exponentially into the vacuum outside the
slab. Thus for practical purposes, they have compact support. So by choosing a L large enough,
the periodic images of these densities will not have any significant overlap so that the kinetic and
exchange-correlation contributions to En will be very well converged for any reasonable L. It is
again the electrostatic part that gives us trouble.

What the plane wave code actually calculates for Φn uses the discrete reciprocal lattice vectors Gz
along z instead of a continuous qz. The computed result from the periodic calculation is Φp

n and is

Φp
n =

∑
Gxy

∑
Gz

4πρ̃(Gxy, Gz)p̃n(Gxy, Gz)
AL(G2

xy +G2
z)

where Gxy = 0, Gz = 0 is excluded from the sum .
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(Most plane wave codes will write Ω = AL the cell volume instead of AL in the denominator.)
We have to exclude the 0 wave vector contribution since the summand is very ill defined: the
denominator goes to zero; while the numerator ρ̃(q) also goes to zero for q → 0 for a neutral
system, it may only go to zero linearly for a system with a dipole moment so the result is poorly
defined. This missing term and what to do with it is the basic problem.

Using our mathematical result, for any Gxy 6= 0, all the integrands or summands are quite smooth
so we can use the equivalence of the continuous integral and discrete sum along z to find∫ ∞

−∞

dqz
2π

4πρ̃(Gxy, qz)p̃n(Gxy, qz)
A(G2

xy + q2
z)

=
∑
Gz

4πρ̃(Gxy, Gz)p̃n(Gxy, Gz)
AL(G2

xy +G2
z)

.

However, for Gxy = 0, we can’t just blindly apply the mathematical equivalence since the integrand
is actually divergent for Gz = 0 while the integral is generally well defined for physical systems (see
below).

Thus far, we have shown that all Gxy 6= 0 terms are identical between Φn and Φp
n so that

Φn = Φp
n +

∫ ∞
−∞

dqz
2π

4πρ̃(qz)p̃n(qz)
Aq2

z

−
∑
Gz 6=0

4πρ̃(Gz)p̃n(Gz)
ALG2

z

.

To clarify the difference further, we can write an arbitrary qz as the sum of the closest Gz plus
some kz that is in the first BZ qz = kz +Gz as we did in our mathematical result above. We then
have the equivalent expression

Φn = Φp
n +

4π
AL

〈 ρ̃(kz)p̃n(kz)
k2
z

〉
BZ

+
4π
AL

∑
Gz 6=0

[〈 ρ̃(kz +Gz)p̃n(kz +Gz)
(kz +Gz)2

〉
BZ
− ρ̃(Gz)p̃n(Gz)

G2
z

]
.

To proceed, we need to look at some of the physical characteristics of ρ̃ and p̃n. We expand both
in series

ρ̃(k) = αk + βk2 +O(k3) , p̃n(k) = 1 + αnk + βnk
2 +O(k3) .

The expansion for ρ̃ starts at dipolar order because our system is net neutral. The pn expansion
starts at 1 since |ψn(r)|2 is normalized. The product will behave like

ρ̃(k)p̃n(k) = αk +Qk2 +O(k3) +O(k4) + · · ·

This product divided by k2 is then

ρ̃(k)p̃n(k)
k2

=
α

k
+Q+O(k) +O(k2) + · · ·

This looks badly divergent, but the reciprocal lattice vectors and the BZ have inversion symmetry:
for any valid Gz, −Gz is also valid and for any kz in the BZ, so is −kz. Thus the BZ average as
well as the sum over Gz in the expression for Φn are both sampling the divergent α/k term equally
along positive and negative values so its contribution actually vanishes around the origin. Thus the
effective summands are actually quite smooth here.

What this means is that the sum over Gz 6= 0 terms above is very small since we are subtracting
the average of a smooth function over the BZ from the value at the center of the BZ; anyways, the
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difference converges to zero as L gets larger and the averaging is over a narrower region. Therefore,
any type of discrepancy between Φn and Φp is really coming from the very first term:

Φn = Φp
n +

4π
AL

〈 ρ̃(kz)p̃n(kz)
k2
z

〉
BZ

+ terms converging very rapidly in L .

Using the Taylor series in k from above, the desired average is

4π
AL

〈 ρ̃(kz)p̃n(kz)
k2
z

〉
BZ

=
4π
AL

〈α
k

+Q+Rk + Sk2 + · · ·
〉
BZ

.

Only the even terms survive, and the average of k2 is proportional to (π/L)2. So we get

4π
AL

〈 ρ̃(kz)p̃n(kz)
k2
z

〉
BZ

=
C

L
+
D

L3
+
E

L5
+ · · ·

for some constants in the numerators. Therefore, we expect for the eigenvalue

En(L) = En(∞) + CL−1 +DL−3 + · · ·

By performing a set of computations at various L, we can fit En(L) to the above form and extrap-
olate to L = ∞ to get En(∞). (This is an example of Richardson extrapolation.) This concludes
the slab geometry.

Considering the other geometries (1D wire and 0D molecule) is mainly taking the above derivation
and changing some discrete sums to continuous ones. For example, for a wire geometry with periodic
axis along z, the x and y directions are those going into the vacuum. Thus we will have a discrete
sum over Gz and integrals over qx and qy; when we put in a periodic box we get a discretized sum
over Gx and Gy instead; the volume factor AL is replaced by aL2 where a is the periodic lattice
length along z; the Gz 6= 0 contributions will be well behaved while Gz = 0 will be problematic; for
Gz = 0, the contributions for (Gx, Gy) 6= 0 and those from averaging over a BZ centered around
(Gx, Gy) will be very close; so the difference between Φn and Φp

n will again be due to the averaging
in the BZ around q = 0. The main difference is that now we have vector k so

ρ̃(k)p̃n(k) = αTk + kTQk +O(k3)

where α is a vector, Q is a matrix, etc., and

ρ̃(k)p̃n(k)
k2

=
αT k̂

k
+ k̂TQk̂ +O(k̂k̂k) +O(k̂k̂kk) + · · ·

where k̂ = k/|k| is the unit vector. The averaging proceeds as before noting that the odd power
cancel by symmetry and the even terms give for the average of k2 something of order (π/L)2. The
overall volume prefactor is now 1/(aL2) so our expansion will look like

En(L) = En(∞) + CL−2 +DL−4 + · · ·

The 0D point geometry has vacuum in all directions so the q integrals are continuous along all
three directions; the discretization is to replace q by a three vector G; the volume factor is Ω = L3;
and we proceed as before. So the series starts with L−3 and goes in powers of two from there.
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Our final summary is thus that

En(L)− En(∞) =
constant

Ω
+ subleading terms =


CL−1 +DL−3 + · · · 2D slab case
EL−2 + FL−4 + · · · 1D wire case
GL−3 +HL−5 + · · · 0D point case

.

for constants C,D, . . . Therefore, we expect the eigenvalue to converge to the L→∞ limit as

En(L) = En(∞) +
C

Lm
+

D

Lm+2
+ · · ·

where m = 1 for 2D, m = 2 for 1D, and m = 3 for 0D. By performing a set of computations at
various L, we can fit En(L) to the above form and extrapolate to L = ∞ to get En(∞). (This is
an example of Richardson extrapolation.)
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