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Let’s model the LAO/STO system as two dielectrics films of infinite extent in the xy plane and
finite slabs in the z direction. The dielectric constant of LAO will be ε1 and that of STO will be
ε2. The thicknesses will be d1 and d2. The z axis runs orthogonal to these films: z = 0 will be
the LAO surface, z > 0 will be the vacuum above the LAO film, z = −d1 will be the LAO/STO
interface, and z = −d1− d2 will be the STO/vaccum interface. We will be doing classical dielectric
modeling of this system.

We are interested in the fields created by oxygen vacancies on the LAO surface at z = 0 and the
corresponding electrons that will end up at the LAO/STO interface at z = −d1. These will be our
free charges: at z = 0 we will have σ+(x, y) for the positive oxygen vacancy and at z = −d1 we
will have σ−(x, y) for the electron gas. The system is net neutral so the integral of σ+ is opposite
to that of σ−. We are assuming these free charges are very narrow in the z direction. Also, we
assume they have cylindrical symmetry about the z axis.

The electrostatic problem we want to solve is

∇ · (ε(z)∇φ) = −4πρfree

where

ε(z) =


1 for 0 < z
ε1 for −d1 < z < 0
ε2 for −d1 − d2 < z < −d1

1 for z < −d1 − d2

and
ρfree(x, y, z) = δ(z)σ+(x, y) + δ(z + d1)σ−(x, y) .

Away from the boundaries, we have usual Laplace equation. We will work in Fourier space in
the xy plane but keep the real space z description. Thus the potential will be in mixed variables
φ̃(kx, ky, z) and we will denote k = (kx, ky). In these variables, φ̃ is easy to find in regions where
ε(z) is constant:

φ̃ = αekz + βe−kz

for constants α and β. Thus we now have a boundary problem of matching the value and derivatives
of φ̃ at the three boundaries at hand. Also, we assume the potential goes to zero for z → ±∞.
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Thus, we will therefore be seeking a solution of the form

φ̃(k, z) =


Ae−kz for 0 < z

A1e
−kz +B1e

kz for −d1 < z < 0
A2e

−kz +B2e
kz for −d1 − d2 < z < −d1

Bekz for z < −d1 − d2

.

The continuity conditions are

A = A1 +B1 , A1 +B1e
−2kd1 = A2 +B2e

−2kd1 , A1 +B1e
−2k(d1+d2) = Be−2k(d1+d2)

while the derivative discontinuity conditions at some z come from the general relation

ε(z+)
dφ̃

dz

∣∣∣
z+
− ε(z−)

dφ̃

dz

∣∣∣
z−

= −4πσ̃(k, z)

so we have

A+ ε1(B1 −A1) = 4πσ̃+/k

ε1(A1 −B1e
−2kd1) + ε2(B2e

−2kd1 −A2) = 4πσ̃−e−kd1/k
ε2(A2 −B2e

−2k(d1+d2)) +Be−2k(d1+d2) = 0 .

Plugging all into Mathematica and solving for the quantity of interest, A, gives the wonderful mess

A =
4π
k
· ε2σ̃+(1− u)(1 + ε2 − (ε2 − 1)v) + ε1(σ̃+ + 2σ̃−

√
u+ σ̃+u)(1 + ε2 + (ε2 − 1)v)

ε2(1− u)(1 + ε2 − (ε2 − 1)v) + ε21(1− u)(1 + ε2 + (ε2 − 1)v) + ε1(1 + u)((1 + ε2)2 − (ε2 − 1)2v)

where we’ve shortened
u ≡ e−2kd1 , v ≡ e−2kd2 .

The long denominator of A goes to 8ε1ε2 for k = 0 and to (ε1 + 1)(ε2 + 1)(ε1 + ε2) for large k. The
derivative of the denominator versus k at k = 0 is 4(d2ε1(ε2 − 1)2 + d1ε2(ε1 − 1)2). For applicable
conditions 1 � ε1 ≈ 30 � ε2 ≈ 300, the value at k = 0 is 8ε1ε2 ≈ 7.2 × 104 and slope versus k is
≈ 4d2ε1ε

2
2 ≈ d2 × 1.08× 107 and its value at large k is ≈ ε1ε22 ≈ 2.7× 106.

We can also find the total charge density Σ̃(k, z) on the various planes z = 0,−d1,−d2 by just
computing the discontinuity in the electric field −dφ̃/dz. We have

Σ̃0(k) = Σ̃(k, z = 0) =
k

4π
· (A+B1 −A1)

Σ̃1(k) = Σ̃(k, z = −d1) =
k

4π
· (A1e

kd1 −B1e
−kd1 +B2e

−kd1 −A2e
kd1)

Σ̃2(k) = Σ̃(k, z = −d1 − d2) =
k

4π
· (A2e

k(d1+d2) −B−k(d1+d2)
e +Be−k(d1+d2))

A is of interest as it gives the potential of the system on the z = 0 plane. So we will have

φ(x, y, z = 0) =
∫
dkxdky
(2π)2

eikxx+ikyyA(k) =
∫ ∞

0
dk

k

2π
A(k)J0(kρ)

where ρ =
√
x2 + y2 and we’ve assumed cylindrical symmetry. Here are some integrals for reference:

A(k) =
2π
k
→ φ(ρ, z = 0) =

1
ρ

(Bare Coulomb)
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and

A(k) =
2πe−ka

k
→ φ(ρ, z = 0) =

1√
ρ2 + a2

(Bare Coulomb from a away)

so that A(k) = (2π/k)(e−ka−e−kb) represents a dipole with positive charge at z = −a and negative
charge at z = −b which will create a dipolar field: the signature in k space at small k is linear
behavior and the dipole strength shows up as the coefficient of k (after eliminating 2π/k).

For surface charge distributions with cylindrical symmetry, we are talking about integrals like

Σ(x, y, z) =
∫

d2k

(2π)2
Σ̃(k, z)eikxx+ikyy =

∫ ∞
0

dk
k

2π
σ̃(k, z)J0(kρ)

so that the most elementary integral is

Σ̃(k, z) = e−kd → Σ(ρ, z) =
d

(d2 + ρ2)3/2
.

To understand the above complex expression for A, let’s proceed by simple cases.

� The first example is to consider a point charge right on the surface of an infinite half space of
dielectric. So we set σ̃+ = 1, σ̃− = 0, and send d1 →∞ or u→ 0. This gives

A =
2π
k
· 2
ε1 + 1

→ φ(ρ, z = 0) =
1

ρ(ε1 + 1)/2
.

The potential is screened by the average dielectric constant of the two half spaces: unity and ε1.
This answer can actually be gotten by symmetry without any Fourier transforms.

� Next, consider a point charge above an infinite half-space of dielectric. So we set σ̃+ = 1, σ̃− = 0,
and easiest to achieve what we want is to set ε1 = 1 and d2 →∞ so v → 0. We get

A =
2π
k
·
[
1−

(
ε2 − 1
ε2 + 1

)
e−2kd1

]
→ φ(ρ, z = 0) =

1
ρ
−

ε2−1
ε2+1√

ρ2 + (2d1)2
.

So we get original point charge plus an image charge d1 below the surface of the dielectric where
the magnitude of the image charge is negative and given by the ratio (ε2 − 1)/(ε2 + 1). Obviously
for ρ � d1 it reduces to the previous case since d1 becomes irrelevant: from far away, we “can’t
see” if the charge is right above or on the dielectric.

� Now for the problem of a point charge above a finite dielectric slab. Here σ̃+ = 1, σ̃− = 0 and
ε1 = 1. We can write this in a few ways

A =
2π
k
· (1 + u)(1− v) + 2ε2(1 + v) + ε22(1− u)(1− v)

(ε2 + 1)2 − (ε2 − 1)2v

=
2π
k
· (ε2 + 1)2 − (ε22 − 1)u− (ε2 − 1)2v + (ε22 − 1)uv

(ε2 + 1 + (ε2 − 1)
√
v)(ε2 + 1− (ε2 − 1)

√
v)

=
2π
k
· (1 + u)(1− v) + 2ε2(1 + v) + ε22(1− u)(1− v)

(1− v) + 2ε2(1 + v) + ε22(1− v)

=
2π
k
·
[
1− (ε22 − 1)(1− v)u

(ε2 + 1)2 − (ε2 − 1)2v

]
.
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This is of the form of the original charge with a negative image charges that have extension in
space due to the k dependence. The image charges must be dipolar in form due to the (1− v) form
which goes to zero linearly in k as k → 0, and it points the opposite way from the positive point
charge due to the negative overall factor in front. In terms of images, the numerator has negative
thing at z = −2d1 and an equal positive thing at z = −2(d1 + d2) which create the induced dipole.

For ε2 →∞ or a metallic slab, we get

lim
ε2→∞

A =
2π
k
· (1− u) =

2π
k
· (1− e−2kd1) → φ(ρ, z = 0) =

1
ρ
− 1√

ρ2 + (2d1)2

which is the classic result of an exactly opposite image charge symmetrically located below the
to plane (2d1 below the positive charge). Notice how the thickness of the slab d2 is completely
irrelevant here: this means the positive polarization charge in the metal is smoothed out over the
bottom surface as an infinitessimal density over the whole z = −d1 − d2 plane.

In the opposite limit of a very weak dielectric ε2 → 1, Taylor series gives

A =
2π
k
·
[
1− 1

2
(u− uv)(ε2 − 1) +O((ε2 − 1)2)

]
which corresponds to the bare initial charge as well as a polarization (image) charge consisting
of a dipole of charges of strength 1/2 with -1/2 charge on the z = −d1 plane and +1/2 on the
z = −d1 − d2 planes scaled by the polarizability ε2 − 1. The dipole points away from the positive
charge as it should; the 1/2 strength is because only 1/2 of the electric field lines from the positive
point charge point downwards to the dielectric and cause polarization; 1/2 of the field lines pass
any z =constant plane.

The more generic case of intermediate ε2 is much more complicated: the numerator of A is easily
interpreted as charges placed at various z since we have polynomials in u and v with constant
coefficients, but the variables v-dependent denominator makes the screening coefficient k dependent
so the interpretation is harder. But we can proceed slowly. For very very large ρ, only the region
in k satisfying kρ ∼ 1 matters in the integral so the relevant k are very small and kd2 � 1. Thus
setting v → 1, we get

lim
kd2→0

A =
2π
k
· 1

so we have just the unscreened bare charge: whatever polarizations take place in the dielectric can
only give dipolar contributions (net neutral shifting of dielectric charges) which are subleading. A
series expansion in (v − 1) gives

A =
2π
k
·
[
1 +

(ε22 − 1)u(v − 1)
4ε2

+O((v − 1)2)
]
.

What is interesting is that the series as actually converging not just when v − 1 is small because
kd2 � 1 but in addition for large ε2 the correct quantity that must be small is ε2(v − 1) or
equivalently ε2kd2 � 1 (u is between 0 and 1 always so that part is under control). This is the
true condition of “small” k or large ρ where the asymptotic limit of seeing the bare point charge
is applicable. Translated into ρ via ρk ∼ 1, it must be that ρ� ε2d2 for this limit: only for ρ this
large is the dielectric polarization giving a dipole contribution that is negligible (and thus truly
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dipolar). The mathematical reason for ε2 entering here is that the denominator of A changes very
rapidly as a function of v close to v = 1 for large ε2: it goes from 4ε2 at v = 1 to (ε2 + 1)2 for v = 0
with a slope −(ε2 − 1)2 at v = 1.

A more direct approach is to rewrite the last exact form of A as

A =
2π
k
·
[
1− u+ u · 2(1− v) + 2ε2(1 + v)

(1− v) + 2ε2(1 + v) + ε22(1− v)
.

]
We see the positive and exact negative image as for a metallic system. What is added is a positive
image that is weak for ε2 � 1. The function multiplying u goes from unity at k = 0 or v = 1 to a
very small number of order ∼ 1/ε2 when v departs significantly from 1 (due to the rapid variation
of the denominator). This function drops most of its value for k going from zero to something
on the order of 1/(d2ε2) meaning that in real space this positive image charge must be of extent
∼ d2ε2 in real space. Thus for large ε2 we have the following picture: the positive charges almost
an exact negative image surface charge on the top surface at z = −d1 (mathematically behaving as
a negative point image charge at z = −d2) and the positive part of the induced polarization charge
on the bottom surface at z = −(d1 + d2) is quite wide in ρ of extent ε2d2 and obviously of total
magnitude equal to the top surface charge density. So we get a very localized top negative surface
charge of extent ∼ d1 but the bottom one instead is positive and of size ∼ ε2d2.

� Now we get rid of the STO slab, most easily done by setting ε2 = 1. Also let’s assume the two
charges are exactly equal and opposite distributions in shape so σ̃− = −σ̃+; a particular example
are point charges σ̃± = ±1. Then we get

A =
4π
k
· σ̃+(k)(1− e−kd1)
ε1 + 1 + (ε1 − 1)e−kd1

In the ρ → 0 limit, we concentrate on k → ∞ and we have A ≈ (2π/k)(1/(ε1 + 1)/2) which is
just the screened potential of the positive point charge as if on an infinitely thick dielectric. For
ρ→∞, we concentrate on k → 0 where A ≈ (2π/k)(1− e−kd1)/ε1: this is just a dipole of strength
d1 (positive-negative separation) screened by the dielectric; from far away we just see a screened
dipole of the free charges.

� Here we still set ε2 = 1 but allow for the two charges to be different. We get the more complicated

A =
4π
k
· σ̃+[ε1 + 1 + (ε1 − 1)e−2kd1 ] + σ̃−[2ε1e−kd1 ])

(ε1 + 1)2 − (ε1 − 1)2e−2kd1
.

By linearity, we get the two separate solutions for the positive and negative charge. The denomi-
nator, in the limit k → 0 goes to 4ε1. So for large ρ and small k we have approximately (after some
slight rearrangement)

A ≈ 2π
k
·
{
σ̃+[1− (

1
2
− 1

2ε1
) + (

1
2
− 1

2ε1
)e−2kd1 ] + σ̃−e

−kd1 .

}
So there is the bare (unscreened) field of the two free charges as well as an induced opposite dipole
created by charges of (1 − 1/ε1)/2 at z = 0 and z = −2d1. At long range, this is just gives the
screened dipole from the free charges.
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� We make the STO dielectric constant be very large and go to infinity (a metal). Then we get

A =
4π
k
· σ̃+[1− e−2kd1 ]
ε1 + 1 + (ε1 − 1)e−2kd1

.

Notice that the negative charge σ̃− drops out completely: when we put the negative charge on top
of the metal, an opposite charge collects right under it and screens it completely. What we have
here instead (for large ρ and thus small k) is a screened dipole:

A ≈ 2π
k
· σ̃+[1− e−2kd1 ]

ε1
.

but while the positive charge is at z = 0, the negative charge is exactly opposite and at z = −2d1

as per the classic image problem (case 2 above). So again we get a screened dipole but of twice the
physical length 2d1. The total dipole is thus 2d1/ε1.

Before concluding this particular example, there is one thing to note. In this metallic case, for a
unit positive charge, exactly one unit of negative charge has distributed itself on the upper STO
(metal) surface to act as an image charge at −d1 — the polarization charge in the LAO film is net
neutral as it is just dipole polarization. However, in the metal, there must be a positive unit of
charge somewhere, and for a true metal with infinite dielectric constant it is spread evenly over the
entire bottom surface as a infinitessimal surface charge density. When the STO has a finite but large
dielectric constant, as in the case above where we studied dielectric STO slab alone more carefully,
this approximately one unit of positive charge will be spread over a finite but large distance of
∼ d2ε2 on the bottom surface. What this means is that the field can’t be a dipolar one as described
above but that when ρ � ε2d2, this unit of charge will also make a contribution that simply goes
as ≈ 1/ρ. More on this further below.

� Say we let the STO become infinitely thick so d2 →∞ and v → 0 for any k. A becomes

A =
4π
k
· ε2σ̃+(1− e−2kd1) + ε1(σ̃+ + 2σ̃−e−kd1 + σ̃+e

−2kd1)
(ε1 + 1)(ε2 + ε1) + (ε1 − 1)(ε2 − ε1)e−2kd1

.

For small k, the denominator is ≈ 2ε1(1 + ε2). This leads to

A ≈ 2π
k
·
[
σ̃+(1− e−2kd1)
ε1(1 + 1/ε2)

+
σ̃+ + 2σ̃−e−kd1 + σ̃+e

−2kd1

1 + ε2

]
.

In that limit of large ρ, the potential is given by the superposition of two distributions: (i) a dipole
formed by +σ+ at z = 0 and −σ+ at z = −2d1 reduced in strength by a factor ε1(1 + 1/ε2), and
(ii) a quadropolar arrangement of σ+ at z = 0 and z = −2d1 and 2σ− at z = −d1 and all three
reduced by a factor (1 + ε2). The dipolar term is dominant for large ρ: we have a screened dipole
where screening is due to ε1. The strength of the screened dipole is 2d1/(ε1(1 + 1/ε2)) which tunes
nicely between the no STO ε2 = 1 limit and the metallic STO ε2 = ∞ limits. So whatever dipole
it is is screened by ε1, and the value being screened depends on ε2 which changes its length from
d1 to 2d1 as ε2 goes from unity to very large.

� Take the full blown expression for A and let the positive and negative charge have identical
spatial profile: σ̃+ = −σ̃−. Then for k → 0, we have using the approximate denominator 8ε1ε2 at
k = 0

A ≈ 2π
k
· σ̃+ ·

[
(1− e−kd1)2(1 + ε2 + (ε2 − 1)e−2kd2)

4ε2
+

(1− e−2kd1)(1 + ε2 − (ε2 − 1)e−2kd2)
4ε1

]
.
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Here we have taken k so small so that we are really in the true far field limit. The first term is
quadropolar (either by Taylor expanding in k or by expanding the first square and seeing it term
by term) so for the far field we can ignore it. The second term for small k is dipolar with two point
charges at z = 0 and z = −2d1 of strength 1/(2ε1) which in the end generates a dipole d1/ε1: just
the screened free dipole by only ε1. Again, the effect of ε2 here is weak and even weaker than the
case above of infinitely thick STO as it does nothing to the long range dipolar field. The difference
is due to the finite thickness of d2 and that we are in the ρ� d2 limit or kd2 � 1.

� Doing the general case of possibly different σ+ and σ−, Taylor expanding everything in sight still
gives a monopole of strength σ̃+ + σ̃− and a dipole of strength

p = −
(
d1 + d2 −

d2

ε2

)
· (σ̃+ + σ̃−) +

d1

ε1
σ̃+ .

If we set σ̃+ + σ̃− = 0 as k → 0 then we just recover the previous result of a screened dipole of
total strength d1/ε1. Again, these are extremely large ρ far field limits.

� The above two cases have dealt with finite slabs and finite dielectric constants and the truly large
ρ limit. What that means is ρ� d2ε2 where all the polarization charges are truly “exhausted” as
dipoles. We should keep in mind that for large but smaller ρ, the contribution from the surface
charge density on the bottom STO surface z = −d1 − d2 will not be in its asymptotic limit as on
still “inside” the distribution. See below for implications.

For completeness, the potential on the z = −d1 plane where the negative charge is located is given
by A1/

√
u+B1

√
u that equals

4π
k
· [2ε1σ̃+

√
u+ σ̃−(1 + ε1 + (ε1 − 1)u)][1 + ε2 + (ε2 − 1)v)]

ε2(1− u)(ε2(1− v) + v + 1) + ε21(1− u)(1 + ε2 + (ε2 − 1)v) + ε1(1 + u)((1 + ε2)2 − (ε2 − 1)2v)
.

As expected, this expression goes to zero for ε2 → ∞ since we’re asking for the potential on the
metal surface which must be zero.

Some numerical results are in order. To do this, set ε2 = 300, ε1 = 30, and assume for simplicity
that d = d1 = d2 or u = v. This yields

A =
4π
k
· 2σ̃−e−kd(301 + 299e−2kd) + σ̃+(3311− 5400e−2kd + 3289e−4kd)

102641− 4860e−2kd − 95381e−4kd
.

and
A1√
u

+B1

√
u =

4π
k
· [301 + 299e−2kd][2σ̃+e

−kd + σ̃−(1.033 + 0.9667e−2kd)]
102641− 4860e−2kd − 95381e−4kd

.

More practical expressions are

A =
2π
k
· σ̃+(0.0694268− 0.11323e−2kd + 0.0689655e−4kd) + σ̃−e

−kd(0.0126231 + 0.0125392e−2kd)
(1.0122− e−2kd)(1.06315 + e−2kd)
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and

A1√
u

+B1

√
u =

2π
k
· σ̃+e

−kd(0.0126231 + 0.0125392e−2kd) + 0.00606061σ̃−(1.00669 + e−2kd)(1.06897 + e−2kd)
(1.0122− e−2kd)(1.06315 + e−2kd)

Numerical integration of A to give φ(ρ, z = 0) for the positive point charge case σ̃+ = 1 and σ̃− = 0
in units of d1 = d2 = d = 1 (i.e. what is tabulated is dφ(ρ, z = 0)) gives

Actual Integral with Integral with

ρ Integral [ρ(ε1 + 1)/2]−1 ε2 =∞ d2 =∞
[
ρ2 + 1002

]− 1
2 1/ρ

0.01 6.44 6.45 6.41 6.41 1.00×10−2 100
0.1 0.632 0.645 0.601 0.607 1.00×10−2 10
1.0 5.57×10−2 6.45×10−2 2.63×10−2 3.15×10−2 1.00×10−2 1
10 1.80×10−2 6.45×10−3 2.39×10−6 6.74×10−4 9.95×10−3 0.1
50 9.43×10−3 1.78× 10−8 1.33×10−4 8.94×10−3 2.00×10−2

100 6.39×10−3 2.22×10−9 6.65×10−5 7.07×10−3 1.00×10−2

300 2.89×10−3 3.16×10−3 3.33×10−3

500 1.86×10−3 1.96×10−3 2.00×10−3

1000 9.77×10−4 9.95×10−4 1.00×10−3

5000 2.00×10−4 2.00×10−4 2.00×10−4

The logic for the column
[
ρ2 + 1002

]− 1
2 is that in the limit of almost metallic screening of large ε2

for STO, we expect about -1 unit of image charge acting as in the ε2 =∞ case that forms a dipolar
field but in addition a positive unit charge is spread out on the bottom STO surface over a length
scale of ∼ dε2. The actual number 100 is a bit arbitrary but just has the right order of magnitude.
Any large such number gives the correct asymptotic result of 1/ρ for ρ large enough; the point is
that that limit gets approached as ρ ∼ dε2. The table shows that actually the sum of the metallic
ε2 = ∞ plus this additional bottom charge gives a total good and reasonable result compared to
the actual integral.

Similar numerical integration of A1/
√
u+B1

√
u for φ(ρ, z = −d1) with σ̃+ = 1 and σ̃− = 0 gives

ρ/d Integral
0 0.0349

0.1 0.0348
0.5 0.0336
1.0 0.0312
2.0 0.0274
3.0 0.0250
5.0 0.0220
10 0.0180
20 0.0141
30 0.0120
40 0.0105
50 0.00944
100 0.00639
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Again, the field has two parts: for ρ large, it is again due to the bottom STO charge. For small ρ,
we get the almost dipolar contribution of (zero) at the plane plus something scaling as 1/ε2 due to
imperfect metallicity.
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