
1 Ionic and electronic polarizations, ambiguities

For our purposes, “polarization” is what we intuitively consider the electrical dipole moment
per unit volume of a sample, P . For any material, we further break this down into the
contribution from the nuclei (or ionic cores if we are only considering valence electrons) and
from the electrons. Hence,

P = Pion + Pe . (1)

If we treat the ions as point particles, which is often sufficient for most material problems,
we can write Pion in a crystalline environment as

Pion =
1

Ω

∑
j

Zjerj (2)

were Ω is the volume of our unit cell, j ranges over the ions in the unit cell each with charge
Zje and position vector rj. Here, the quantum of charge is e > 0.

Already at this point, ambiguities appear: depending on how we choose our unit cell and
basis, we get different answers for Pion. It turns out that all the different possible results
differ by “quanta” of polarization, eR/Ω where R is any lattice vector. The reason is that
moving the boundary of the unit cell will cause some some ions to exit and their periodic
copies to enter from the other size, causing a “jump” of the position by a lattice vector
R. Thus this ambiguity, though always present, is not any fundamental problem if we stick
with a given unit cell choice, slowly move our atoms and keep track of their motions across
boundaries to make sure P doesn’t have any discontinuous jumps.

The real problem is how to deal with the electronic contribution Pe. Electrons are not
localized in solids but are distributed in bonds (or itinerant in metals). We can describe
their density with continuous field n(r), the density of electrons per unit volume at position
r. A näıve forumla for Pe would read

Pe =?
−e
NΩ

∫
d3r n(r) r . (3)

Here N is the number of unit cells in the total system. This formula is well defined for a
molecular-type system: the electrons are confined to a particular region of space, N = 1 since
we have only a single unit cell, and the integral makes sense and is convergent. However, in
an ideal infinite crystal, n(r) is periodic, the integral is not sensibly defined since r is not
bounded, and N →∞. A more careful analysis shows that any answer is possible depending
on how the limit of an infinite crystal is approached.

Another way to state this is that the position operator r is not well-defined in an infinite
crystal, so we should not expect an expression of the type in Eq. (3) to give sensible results.
However, it is physically obvious that the electrons must have some well defined polarization
Pe: after all, one can impose an (AC) electric field on a sample and measure the induced
electronic polarization! So the question is really a theoretical one of how one is to define and
compute Pe sensibly.
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2 First solution: Wannier functions

The most direct approach to the problem is to note that the reason the ionic contribution
Pion was so easy to define was because the ions are well localized electric point charges. If
we can create a localized description of the electrons, we should be able to define Pe easily.
This is possible by using Wannier functions.

In solid state theory, we usually deal with Bloch functions ψnk(r) which are labeled by a
crystal momentum k and band index n,

ψnk(r) =
1√
N
eik·runk(r) . (4)

Here unk(r) is lattice-periodic, and the N−1/2 factor is a convenient choice of normalization in
a periodic crystal with N unit cells. Bloch states are eigenstates of the periodic crystalline
Hamiltonian. We can trade in Bloch functions for Wannier functions by performing the
following Fourier transform:

Wn(r −R) =
1√
N

∑
k

e−ik·R ψnk(r) . (5)

Here, there are N values of k being summed over in the first Brillouin zone (Born-von
Karman boundary conditions). Each band n has one Wannier function Wn(r) associated
with it which can be translated by a lattice vector R to produce identical copies centered
in different cells in the entire crystal. Wannier functions, just like the Bloch states, are
an orthonormal basis. They are not the eigenstates of the crsytal Hamiltonian. Wannier
functions have the chief advantage advantage of being well localized.1 In fact, one can prove
or argue that they are exponentially localized: |Wn(r)| ∼ exp(−γ|r|) for γ > 0.

Using Wannier functions we can define a sensible and well-defined electronic polarization:

Pe = − e
Ω

occ∑
n

∫
d3r |Wn(r)|2 r (6)

where we sum over the occupied bands. Note that we only use the Wannier functions for a
single unit cell (R = 0) since we want the dipole moment per unit cell.

Eq. (6) is intuitively sensible, mathematically well-defined, gives the correct answer for the
molecular limit or any finite crystal, etc. It is the answer to our problem. The “Modern
Theory of Polarization” is concerned about computing this particular definition of Pe. From
a theoretical viewpoint, one can claim to have solved the problem: (1) find the Bloch eigen-
states ψnk of the cyrstalline Hamiltonian, (2) find the number of filled bands based on the
number of electrons present, (3) perform the Fourier transform of Eq. (5) to compute the
Wannier functions, and (4) use the Wannier functions in Eq. (6) to calculate Pe. In fact, each

1See, for example, the references in Ismail-Beigi and Arias, Phys. Rev. Lett. 82 2127 (1999).
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Wannier function contribution in (Eq. (6) is the “average” position of the electron in that
Wannier state: we have written the electronic polarization as a sum over average electronic
positions in the same spirit as the ionic polarization.

If the reader is satisfied with this explanation, he or she can stop here since the main physical
point has been conveyed. What follows is devoted to a more detailed study of how to calculate
Pe in Eq. (6) in the Bloch representation and how Pe turns out to be a “Berry phase”.

3 Pe in the Bloch representation

The only problem with the above program is that Wannier functions are not uniquely defined.
This is because we can start with any valid set of eigenstates ψnk and multiply them by an
arbitrary phase and still obtain valid eigenstates:

ψnk(r)→ eiθn(k)ψnk(r) . (7)

(Actually, one can mix different band indices as well using a unitary transform at each k.)
The phase θn(k) can be any smooth or discontinuous function of k. If we look back at the
definition of the Wannier function in Eq. (5), we see that these choices change the Wannier
function. This may be bad news because the meaningless and arbitrary choices of phases
(called “choice of gauge” in this jargon) should not affect the physical answer for Pe, but it
is not at all clear that our definition is unaffected by the phase changes.2 Therefore, we may
have to end up in the Bloch representation after all.

From a practical standpoint, even without such problems, it would be nice to be able to
write Pe in terms of the Bloch functions ψnk directly so that one could compute Pe without
having to create the intermediate Wannier functions. For these two reasons, we would like
to write Pe in terms of the Bloch states.

Plugging in the definition of Wannier functions in terms of Bloch ones into Equation (6)
yields

Pe = − e
Ω

occ∑
n

1

N

∑
k,k′

〈ψnk|r̂|ψnk′〉 where 〈ψnk|r̂|ψnk′〉 =

∫
d3r ψnk(r)

∗ψnk′(r) r . (8)

This expression is not well defined since the expectation 〈ψnk|r̂|ψnk′〉 is not well defined: the
integral ranges over the whole crystal and r is unbounded. Again, this shows the unsuitable
nature of the the position operator r in an infinite crystal.

There are two ways to solve this problem and they turn out to be equivalent.

2It turns out, in the end, that Pe in terms of Wannier functions can be made “gauge invariant” and
well-defined, but the point is not obvious.
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3.1 Quick-and-dirty method

The quick-and-dirty method uses a math trick to get rid of r by replacing it with a derivative
versus k. In this approach, we note that

−i∇kψnk(r) = −i∇k

[
eik·runk(r)/

√
N
]

= rψnk(r)− ieik·r∇kunk(r)/
√
N . (9)

Here unk(r) is the lattice periodic part of the Bloch function. So we have the relation defining
r acting on a Bloch state in terms of k derivatives:

rψnk(r) = ieik·r∇kunk(r)/
√
N − i∇kψnk(r) (10)

Plugging this into Eq. (8), two things happen. First, the second term on the right in
Eq. (10) vanishes when we integrate over k′ because it is the derivative of ψnk′ integrated
over a Brillouin zone and ψnk′ like all physical functions is periodic in the Brillouin zone.
Second, k = k′ is enforced in the the r integral because of the eik·r phases. We end up with

Pe = − e
Ω

occ∑
n

1

N

∑
k

∫
Ω

d3r unk(r)
∗i∇kunk(r) = − e

Ω

occ∑
n

1

N

∑
k

〈unk|i∇k|unk〉 . (11)

Physically, comparing this to our Wannier function based expression in Eq. (6), we see that
we can match all the terms if we identify the following integral as the expectation of r for
the states in band n:

〈r〉n =
1

N

∑
k

〈unk|i∇k|unk〉 . (12)

The above expression is simple looking and well-defined but not very illuminating. We can
justify it by saying that position and momentum are conjugate variables so that having a
derivative versus k makes sense since we are trying to compute the expectation of r. But it
is still unclear what is going on. This brings us to the second method.

3.2 More formal method

All our problems stem from the unboundedness of the r operator in a infinite crystal. A
mathematical solution to the problem is to trade in r for a bounded but periodic operator.
This is best illustrated in one dimension with periodic length L. We trade in x for the
operator η

η = exp(−2πix/L) .

So the η operator is just the position operator modulo L. That is, each position x modulo L
is identified with a unique phase (or angle). In the infinite crystal limit, we send L→∞ and
can label all x uniquely. For finite L, we are just working with periodic Born-von Karman
boundary conditions, i.e. with a crystal made up of L = Na unit cells (a is the unit cell
length). Clearly, physical results are obtained for large L. The operator η is also bounded
since it is just a unit phase with length 1.
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Using η we now define the expectation of x or its matrix elements to be given by

〈x〉 ≡ iL

2π
ln〈η〉 . (13)

This is a good definition because: (1) formally, for large L it matches the Taylor expansion
of η in x; (2) 〈η〉 is always well-defined since η is bounded; (3) for an electronic state
that is localized about some point x0 (e.g. a narrow Gaussian around x0), 〈x〉 ≈ x0 and
〈η〉 ≈ exp(−2πix0/L) so again the definition works.

We can compute the expectation of η between a pair of Bloch states:

〈ψnk|η̂|ψnk′〉 =
1

N

∫ Na

0

dx u∗nk(x)e−ikxe−2πix/Leik
′xunk′(x)

=
1

N

∫ Na

0

dx unk(x)∗unk′(x)ei(k
′−2π/L−k)x

= δk′,k+2π/L

∫ a

0

dx unk(x)∗un,k+2π/L(x)

= δk′,k+2π/L〈unk|un,k+2π/L〉 .

The appearance of the delta function enforcing k′ = k+ 2π/L is not a surprise since η is just
a plane wave with wave vector −2π/L so we get a selection rule relating k and k′. For large
L, we can perform a Taylor expansion of the inner product 〈unk|un,k+2π/L〉,

〈ψnk|η̂|ψnk+2π/L〉 = 1 +
2π

L
〈unk|∇kunk〉+O(L−2) .

Plugging into Eq. (13), we find after a little algebra that

〈ψnk|x̂|ψn,k+2π/L〉 = i〈unk|∇kunk〉+O(L−1) .

To leading order, we can ignore the difference between k and k + 2π/L and just write

〈ψnk|x̂|ψnk〉 = i〈unk|∇kunk〉+O(L−1) . (14)

Looking back at Eq. (11), we see that we have just derived and justified the key definition
of Eq. (12) in one dimension (for L→∞).

The generalization to three dimensions is very easy. We define

η = exp(−iε · r) . (15)

The vector ε is supposed to be very small (infinitessimal in the limit of an infinite crystal).
We have made our system periodic in all three directions α with εα = 2π/Lα. We define
matrix elements of r via

ε · 〈r〉 ≡ i ln〈η〉 . (16)

All the derivations follow through, and we end with the final result that

ε · 〈ψnk|r̂|ψnk〉 = iε · 〈unk|∇kunk〉 . (17)

Since ε is small but arbitrary, we have again justified the key definition Eq. (12) and thus
the definition of Pe in Eq. (11).
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3.3 Alternate interpretation: phase changes

The previous section may have helped clarify where the derivative in k is coming from.
However, there is a nice physical interpretation of what is going on without the derivatives.
Looking back, we see that the key relation we used was that

〈ψnk|η|ψn,k+ε〉 = 〈ψnk| exp(−iε · r)|ψn,k+ε〉 = 〈unk|un,k+ε〉 . (18)

That is, we are computing the overlap of unk with the same state but displaced by a small
amount ε in k-space. Since both vectors are normalized and must become identical for ε = 0,
the overlap is just measuring the relative phase between the two states. More precisely,

〈unk|un,k+ε〉 ∼= e−iδφnk (19)

where δφnk is a small phase proportional to ε. The expectation of r in state ψnk is thus just
this very phase change:

ε · 〈ψnk|r̂|ψnk〉 = δφnk . (20)

Using this expression, we see that the expectation of r in band n of Eq. (12) is given by the
average over all the phase changes:

ε · 〈r〉n =
1

N

∑
k

δφnk . (21)

Thus we can say that the expectation of r (or the polarization) in a given direction is given
by adding up the relative phase changes of the periodic functions in that direction across
the Brillouin zone.

4 Berry phases

The statement ending the previous section is equivalent to saying the the polarization is
given by a Berry phase. As a quick reminder, I give a simple sketch of how Berry phases
come around.3

4.1 Review of Berry phases

Berry phases are best motivated by considering what happens to a quantum system when
we change an external parameter adiabatically. To be concrete, imagine we have a spin-
1/2 system in an external magnetic field. The ground state for a static field has the spin

3The following section is lifted pretty much verbatim from one of Sakurai’s appendices: J. J. Sakurai,
Modern Quantum Mechanics (Addison Wesley).
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aligned with the field. If we then adiabatically change the direction of the field, we intuitively
expect the spin to stay in the eigenstate polarized along the field at all times: it adiabatically
“follows” the magnetic field. The math shows this to be true but with an extra phase factor.

The Hamiltonian depends on the field B parameterically, so we will write H(B) for the
Hamiltonian. For a given B, write the eigenstates of H(B) as |φn(B)〉 with energies En(B),

Ĥ(B)|φn(B)〉 = En(B)|φn(B)〉 . (22)

What we want to do is to solve the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ(B(t))|ψ(t)〉 . (23)

We have written B(t) since the magnetic field will slowly change in time. Let’s write our
state |ψ(t)〉 in terms of the instantaneous eigenstates |φn(B(t))〉 in the following way:

|ψ(t)〉 =
∑
n

an(t)|φn(B(t))〉e−
i
~

R t
0 dt

′En(B(t′)) . (24)

We start the system at time t = 0 in the ground state n = 0: an(0) = δn,0. If the adiabatic
hypothesis is true, then as a function of time, we expect only a0(t) to be sizable and for the
rest of the an(t) to be small. And the expansion is designed so that in such a case, our state
|ψ(t)〉 is just in the eigenstate for the current value of B(t) (so it will “follow” the field).
The extra phase factor is needed to make things work nicely.

Using the Schrödinger equation and the orthonormality of the φn, it is easy to derive the
equation of motion for the an(t):

dan(t)

dt
= −an(t)〈φn(B(t))| d

dt
φn(B(t))〉

−
∑
m6=n

am(t)〈φn(B(t))| d
dt
φm(B(t))〉e−

i
~

R t
0 dt

′[Em(B(t′))−En(B(t′))] . (25)

So far everything has been exact. Now we note that in the above equation, the terms with
m 6= n are oscillatory in time because of the phase factor, so their contribution to an(t) will
be quite small: this is especially true since B(t) is varying slowly so we are averaging over
very many oscillations. Thus we can drop the second term. What this means is that if we
start in state n at t = 0, the “leakage” to the other states is very small and oscillatory and
vanishes in the adiabatic limit.

Using the chain rule we get

dan(t)

dt
∼= −an(t)〈φn(B(t))|∇Bφn(B(t))〉 · Ḃ(t) . (26)

This equation is easy to integrate. We get

an(t) ∼= an(0) exp

(
−
∫ t

0

dt′〈φn(B(t′))|∇Bφn(B(t′))〉 · Ḃ(t′)

)
. (27)
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We now introduce a few factors of i and also change the integral to be over the magnetic
field (dB = dt′Ḃ(t′)):

an(t) ∼= an(0) exp

(
i

∫ B(t)

B(0)

dB · 〈φn(B)|i∇B|φn(B)〉

)
. (28)

What does this mean? If we start in a particular state n at time t = 0, i.e. |ψn(t = 0)〉 =
|φn(B(0)〉, then we stay in the same n-state adiabatically. This is what we expected. The
new thing is the extra phase factor in Eq. (28), the Berry phase. It is a dynamic phase
accumulated by the system as it evolves adiabatically. The phase depends only on the path
we have taken in the parameter space (here B(t)). The phase is not an artifact and has
physical consequences. For example, in our spin-1/2 problem we can take the magnetic field
and slowly rotate it through 360o which brings us back where we started. Calculation of the
integral shows that the quantum state of the spin-1/2, however, picks up a phase of exactly
-1. But this is as it should be: spin-1/2 objects must be rotated 720o degrees to become
themselves again.

4.2 Polarization as a Berry phase

Looking at Eq. (28), we see that the Berry phase is given by the integral of i times the
derivative of the overlap of the state versus the parameter being changed. Comparing this
to our equation for Pe in terms of Bloch states Eq. (11), we see that we have exactly the
same structure. Here the parameter begin “changed” is the crystal momentum k.

To be more precise, we choose some particular axial direction, say x, and write the expression
for Pe along this direction after changing the sums over k into integrals:

(Pe)x ∝ −
e

Ω

occ∑
n

∫
dky

∫
dkz

(∫
dkx〈unk|i

∂

∂kx
|unk〉

)
. (29)

The object in the parenthesis is a Berry phase for adiabatically changing our periodic Bloch
state along the kx direction across the Brillouin zone. Staring at this formula for a few
moments and comparing it to the other things we have derived shows that we can phrase it
in the following way: the polarization along x is given by the average in the (ky, kz) plane
of the Berry phase for adiabatic transport of the Bloch states along kx.

While this result regarding the relation of the Berry phase and polarization is interesting
from a theoretical point of view and helps make connections to other theoretical realms, it
is not clear to me that it is very useful practically or it really helps advance things forward
in doing research in the pragmatic sense.
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4.3 Using the formalism

Clearly, being able to calculate the polarization will allow one to see ferroelectric transitions
and the ferroelectric dipole. One can also compute other quantities depending on the de-
velopment of dipoles. For example, when we move an ion in an insulator in its electronic
ground state, we cause charge to be transfered about and dipoles to be formed (or changed).
To be quantitative, we can write the linear response of P to the motion of the ions as

δP =
e

Ω

∑
j

[Z∗j ] · δrj . (30)

The quantity [Z∗j ] is called the Born effective or dynamical charge. It is the charge that the
ion acts like it has when moved by a small amount (generally a tensorial quantity). It differs
from the bare scalar charge Zj because when we move the ion, the electrons redistribute
as well. It is the total charge motion that is the effective charge. In many materials, Z∗

and Z have the same sign but different magnitudes and the differences can be large. In
addition, the Z∗ also can be quite different than formal ionic charges one assumes from basic
chemistry. Z∗ is useful for many reasons one is which is because it tells us how the ions
respond to external fields: the force on ion j due to an electric field E is [Z∗j ]e · E .

Once we can define P , we can include a uniform external electric field into a total-energy
density functional type formalism directly. The total energy as a function of the electron
wave functions, ionic positions, and external field is

Etot({ψnk}, {rj}, E) = EKS({ψnk}, {rj})− Ω E · P ({ψnk}) (31)

where EKS is the standard expression for the Kohn-Sham total energy of an electron system
(kinetic+ionic+Hartree+exchange correlation energies) per unit cell and the additional term
is the term due to the external field coupling to the polarization in a unit cell. At the self-
consistent minimum, Etot is variationally optimized versus ψnk so that the change in Etot
versus electric field and ionic motions is

δEtot =
∑
j

(
∂EKS
∂rj

− ZjeE
)
· δrj − ΩP · δE = −

∑
j

Fj · δrj − ΩP · δE . (32)

(Note that for non-zero E , the electronic states ψnk and density n(r) are perturbed so that
the term ∂EKS/∂rj implicitly includes terms of linear and higher order in E .) The term
multiplying δrj is just the force Fj on ion j. The first observation is that

∂Etot
∂E

= −ΩP

as it should since E and P are conjugate variables. Second, when E = 0, the equilibrium
condition of zero forces is the usual one. As another example, when we look for variations
of P versus rj at E = 0, we get

e[Z∗j ]

Ω
=
∂P

∂rj

∣∣∣
E=0

= − 1

Ω

∂2Etot
∂rj∂E

= − 1

Ω

∂2Etot
∂E∂rj

=
1

Ω

∂Fj
∂E
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so that in fact, as asserted above, the Born effective charge gives the linear response force
that develops on atom j when a weak field is applied.

At any rate, having a computational framework that can solve the density functional problem
at finite E means we can compute arbitrary responses to electric fields E by simply increasing
its strength or changing its direction and computing various observables like total energies,
ionic forces, polarization, etc.

One important quantity is the linear dielectric response tensor. If we allow only the electrons
to respond and fix the ions at the E = 0 equilibrium position, we are considering electric
fields that have high enough frequency so that phonon vibrations can not follow them but
the electrons follow the fields adiabatically (obviously, we are talking about an insulator).
This defines the tensor ε∞

ε∞ = I + 4πχ∞ = I + 4π
∂Pe
∂E

∣∣∣
E=0

. (33)

For a system of high symmetry, this is a scalar and is also called the “optical” dielectric con-
stant. If we have a low enough frequency electric field, the ions will also follow adiabatically,
and we find the static dielectric tensor ε0

ε0 = I + 4πχ0 = I + 4π
∂P

∂E

∣∣∣
E=0

. (34)

From a computational viewpoint, for ε∞ we simply turn on a weak E , achieve self-consistency,
and look at the change in Pe. For ε0, we must also relax the ionic positions to their new
equilibrium as well and then look at the total change in P .

The alternative method to compute the dielectric response is to use linear response theory.
This is more general, more complicated, and also more limited in that it can only compute
linear response (where as the above scheme can work at any finite E and thus gives non-linear
responses as well). After one has computed ε∞ via linear response, the formula for ε0 is

ε0αβ = ε∞αβ +
∑
m

4πe2Z̃∗mαZ̃
∗
mβ

Ωω2
m

, Z̃∗mα =
∑
jγ

Z∗j,αβξm(jγ)
√
M j

where m labels phonons at zero wave vector with frequencies ωm and atomic displacement
vectors ξm(jγ) (α, β, γ label axis directions). One needs to compute the Born charges as well
as phonon properties. The formula is sensible as it says the ionic response depends on the
Born charges (since the ions are pushed by the field and also the ions and electrons respond)
as well as the frequencies since the softness or hardness of the phonon modes mean that the
system responds well or poorly to the external field.

There is one remaining technical point: one can not make the field strength E arbitrary. In
fact, in an infinite system, a constant field E will cause an infinite potential drop which will
force all electrons out of the crystal and into the infinite well. Since we are using periodic
boundary conditions, however, the potential drop is not infinite but given by the supercell
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size L times E . Thus L · |E| should be smaller than the band gap of the system. As we
increase the density of k-point sampling, L gets larger which means the maximum allowable
field drops! Thus there is a tradeoff in a practical calculation.

In greater detail, the actual calculation corresponds to a spatially varying cosine field with
wave vector 2π/L. Namely, our position operator is really exp(−2πix/L) and a potential
oscillating with that wave vector and corresponding to field strength E is given by φ ∼
EL/(2π) cos(2πx/L). We are just insisting that the maximum and minimum points of the
sinusoid at 0 and L/2 give a potential difference that is less than the band gap so the electrons
are only weakly perturbed by the external field.
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