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The main idea here is to figure out what the total ground state energy E;, of a system is
as a function of where the atoms are located. Specifically, we want to know the total energy
E,; as function of the polarization P of a possibly ferroelectric film with electrodes and/or
semiconductors on both sides, etc.

Starting from basic principles, we will consider a system of interaction electrons and nuclei.
We will also use the standard Born-Oppenheimer approximation and also take the nuclei
to be massive and thus classical objects (i.e. no quantum effects for the nuclear degrees of
freedom). We label the electron positions r; and the nuclear positions R; (these are both
3-vectors). The electron charge is —e and the nuclear charge of ion I is Z;e. The standard
non-relativistic Hamiltonian (the standard model of solid state physics) is
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where each term has been given a short-hand name in the second line.

In the Born-Oppenheimer picture, we have the electrons in the ground state |U°(R)) for
any given nuclear configuration which has the shorthand R (a collection of 3-vectors). The
energy eigenvalue of T'+ V. + V., is the electronic ground-state energy E°(R)

(T + Vee + Ven)|¥°(R)) = E°(R)[9°(R)) .
The total electronic ground-state energy for a given nuclear configuration is then
Eiu(R) = (P(R)|H[T°(R)) = E°(R) + Van(R).

Consider moving nucleus R; and asking for the change in E},; or more precisely the derivative
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is the expectation of the derivative of the Hamiltonian (i.e. just first order perturbation
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The only term in the derivative of the operators that actually depends on R; is the electron-
nuclear attraction V,,. The derivative of V,,, is also easy to compute. Doing some algebra
and noting that V., only involves one electron coordinate at a time so the expectation returns
the electron density n(r) in the ground-state, we get
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where the electric field £ at position of nucleus R; is
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Equation (2) is just the sum of the electric fields from the electrons and from the nuclei at
position R;, a purely electrostatic calculation. Equation (1) then just says that the derivative
of the energy when moving nucleus I (which is the force up to a sign) is just given by the
charge of the nucleus times the electric field it feels. This is a purely electrostatic force and
the fact that it is so is sometimes called the Feynman electrostatic theorem: the forces from
all the complicated quantum many-body effects and whatnot are all piled into the average
electrostatic force on a nucleus.

Using the standard definition of the force on nucleus I
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along with Equation (1), we arrive at the useful formula for the variation of the total energy

0B =—» F;-0R;. (3)
I

This already us a good deal of useful information: if a nucleus doesn’t move at all, then it
doesn’t contribute to the energy change no matter how much the electrons in its vicinity
polarize, shift about, etc. All we need to worry about is the force on the moving atoms and
how much they move: integrating this over the net motion will give us the change in total
energy.

The main problem is now to translate this first principles, microscopic result to something
useful for Landau theory which is more macroscopic in style. The connection is made in the
following way: we look to simplify Eq. (3) in the limit that the atomic motions in adjoining
unit cells are the same, any imposed fields on the system are uniform, and any long-range
fields developing are quite smooth as well (i.e. the long-wavelength limit). This is the
limit of the applicability of traditional Landau theory; gradient corrections incorporating
the slow variations in the fields, displacements, polarizations, and so forth are a higher order
correction.

For simplicity, assume that each nucleus I labels a unit cell of the material (having multiple
ones just makes for more baroque notation but ends in the same place). The macroscopic
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averaged electric field in that cell is denoted as £(R;): this is the average of the electric field
over the unit cell (or a few unit cells in that region). The long-wavelength limit means &(R;)
varies very slowly with R; as we go from unit cell to unit cell. In what follows, I’'ll omit the
I index as all quantities will refer to a particular unit cell. Later, we can sum over all cells.

The first thing to ask is what we can say about the force F. The standard approach is to
do a series
F=F4 Z%€ +0(&%.

Here FO is the force for zero net electric field in the material, namely when the potential on
average is periodic. This is the “intrinsic” force coming from the materials properties, and
for ferroelectric materials it is the standard Landau free energy function at zero field with a
double minimum in the polarization, etc. This is the type of force extracted directly from
most ab initio calculations. The next term tells us how the presence of the macroscopic field
creates a force on the nuclei. The Z* is the Born effective or dynamical charge (symmetric
tensor): it is defined by this relation as the coefficient that multiplies the field to give us
the force. In general Z # Z* since Z* includes the effects of the polarization of the electron
clouds as well (a renormalization if you like) — the bare nuclear charge Ze and whatever is
the force created by the electron distortion in response to £ all get lumped into Z*e. We
will ignore the higher order terms so we assume weak macroscopic fields — physically this
means weak enough so the materials properties like F° and Z* are not modified.

The next stop is to work in the macroscopic polarization P into this theory. What is the
change in polarization in a unit cell § P, due to the motion of the nuclei as well as the presence
of the field £7 For long wavelengths, it is

Z*e

P= 3
6P = “-0R + xoobE

V' is the volume of a unit cell. This is not some ansatz but can be derived from basic relations.
The outline of the logic is that for a uniform periodic system, the derivatives of the total
free energy G per cell give us the force FF = —9G/OR and the polarization P = —3G/OE.
The equality of mixed partials 9*°G/OROE = §°G/OEDR gives us the coefficient of § R since
OP/OR = —0*G/OROE = —0*°G/OEOR = OF /OE = Zje. The second terms comes from the
definition of the optical (clamped-ion) susceptibility 9P/0€ = —0*G/0E? = Y.

Physically, the picture from the above equation for § P is simple: if we move the nuclei that
have some effective charge, we create polarization since we move charge around. In addition,

even if we don’t move the nuclei at all — i.e. we clamp them — the system can still polarize
because the electrons will polarize in response to changes in the macroscopic field, if any.

Using the two above equation, we can do the following manipulations
_ [V _
F-0R=F"-0R+Z"€ 0R=F"-0R+ 2" |- —(0P — xx0¢)
e

so the Z*e factors cancel to give

F-6R=F"-SR+VE- (0P — xo0E).
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The quantity in the parenthesis is the “nuclear-only” change in polarization (Z*e¢/V)JR: we
subtract out the part coming from the electronic polarization in response to the average field
and only want the part due to the nuclear motion itself. This is also the degree of freedom
we are interested in as well: it maps linearly onto the motion of the nuclei.

Putting back in the sum over all the nuclei, the total energy variation is

0B =—Y Fr-0R; =0Ef, — VY (6P — X0 (Ry)) - E(Ry)
I I

where the energy E?, is that “intrinsic” to the material system when & = 0, i.e. JE2, =
— >, F? - 0R;. This formula says that the energy change is due to the zero field “intrinsic”
part E{, that is a known quantity plus a term coming from the field times a change in
polarization. The change in polarization, however, is only the part coming from the nuclear
motion as the part coming from electronic polarization is subtracted out explicitly: this is
more clear if we write

0By = 0Ep, — Y _ZjedR; - E(Ry).
I

So we need to figure out the macroscopic electric field in the system for a given configuration
and then figure out how much each atom is moving. This already shows that a standard
semiconductor like Si makes no direct contribution to the sum: Z* = 0 for Si atoms (they
are net neutral since the material is homopolar). In addition, to lowest order, imposing an
electric field on Si just polarizes the electrons and doesn’t move the nuclei themselves. In
a standard semiconductor-ferroelectric-ideal metal sandwich, the only part contributing to
the sum is the ferroelectric.

Therefore, the prescription for computing the energy change can be written as

0By = 0Ep, =V > 6P - E(Ry)
1

where P; is the part of the polarization coming from the nuclear motions alone
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This result already shows that (a) we need only integrate over the ferroelectric region and
not the semiconductor or the ideal metal, (b) the correct formula is of the EdP form where £
depends on the state of the system and thus on the polarization P, and (c) to get the energy
itself one must do the integral of £dP. I think this settles the question of whether £P
or integral of £dP is the right energy term.



