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The figure below shows the overall geometry. From ∇ ·D = 4πρfree, which is only nonzero
at the STO-LAO interfaces and is given by the sheet charges +σ and −σ (see Figure). In
one dimension we have

DL −DS = 4πσ .

Also, DV = DS so we’ll just DS for both. The net potential drop across the supercell is zero
due to the periodic boundary conditions, and using Ei = Di/εi in each region, we must have

0 = 2sES + lEL + vEV =
2sDS

εS
+
lDL

εL
+
vDV

εV
.

Using the two relations together, we can solve for DL and DS,

DS = −4πσ · l/εL
2s/εS + l/εL + v/εV

DL = 4πσ · 2s/εS + v/εV
2s/εS + l/εL + v/εV

.

Figure 1: Geometry and key parameters for STO-LAO-STO-vacuum cell. The “free charges”
are the interface charges at the STO-LAO interfaces, here the +σ and −σ sheet charge as
indicated. Each region has the length indicated (s, l, or v) and corresponding dielectric
constant (εS/L/V ) and dielectric displacement (DS/L/V ).
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These are exact relations. To get a sense of what they mean, we have roughly

εS ≈ 300� εL ≈ 25� εV = 1 .

As for the lengths, in any of our calculations, most of them are a few bulk unit cells in length,
so within a factor of two or so, we have that l ∼ s ∼ v. Hence the relations simplify to

DV = DS ≈ −4πσ · l
v
· εV
εL

and DL ≈ 4πσ ·
(

1− l

vεL

)
.

So, although one might have intuitively guessed that DL and DS might be equal and opposite
and equal to 2πσ by symmetry, this is not the typical case because of the very disparate
screening constants. (Of course, for some unusual choices of s, l, and v we could make them
equal.) As far as controlled convergence is concerned, DV = DS go to zero as 1/v.

Since D, P , and E are all proportional, the displacement/polarization/electric field in the
STO is εL ≈ 25 times smaller than in the LAO. Thus the polarization of the STO region,
while nonzero, is actually quite small on the scale of things.

The electric fields are approximately

EL ≈ 4πσ · 1

εL

ES ≈ −4πσ · l
v
· εV
εLεS

≈ −EL ·
l

v
· εV
εS

EV ≈ −4πσ · l
v
· 1

εL
≈ −EL ·

l

v

so as expected most of the LAO voltage drop lEL is across the vacuum vEV and the remaining
fraction ∼ 1/εS is across the STO regions.

At any rate, the point is that the fields in the STO are reduced quite a bit in this continuum
model compared to assuming the displacement fields are equal in LAO and STO. As an added
note on the microscopic side, in order to best simulate the STO being bulk-like as we move
away from the interface (as per the experiments we are trying to model), we freeze the outer
two layers of the STO at the vacuum interfaces to have their bulk-like geometries (inter-
layer distances and pure planar arrangement of atoms in each layer with no anion/cation
rumplings).

This does two things: first, we avoid any unusual electronic behavior at the STO surfaces
from competing with the interface ones (and there are some), and second, this clamping
choice forces the ionic polarization to become zero as we move away from the interface and
into the bulk-like STO. While this will not be useful for very long STO cells (s very large), we
found it to make a practical difference for the unit cell sizes we can afford in our calculations.
Of course, if for some reason one is actually interested in modeling a system where the STO
is a few layers thick and actually (physically) facing the vacuum with exposed surface, then
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one should not clamp anything and just let the atoms move and relax freely, and one needs
to worry more about the fields at the surface and in the vacuum.

In the experimental situation we are trying to model, the electric fields going away from
the interface drop sharply to zero as we go through the charge densities associated with the
interface states; so we expect that after a few layers going into the STO, the polarization
and electric field need to go to zero. All our gymnastics with vacuum and surface clamping
are trying to achieve this boundary condition in an affordable computational cell.
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