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A typical textbook expression is that

or more precisely under an integral with smooth and analytic f(x)

D~ [l —ixso)

Here we want to both justify this type of thing and work out the more general case of the
real integral
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(1)
where 7 is a non-negative integer and p > 0. Here A, B > n > 0 are some “large” numbers
that we may (or may not) send to infinity. Notice that by taking real and imaginary parts,
I(n,p) is a superset of what we have written above. This integral is a main focus, but a
related integral that is half of it over positive x is also of interest
A n
" f(x
H(n,p; A) = lim dach—(Q)
n—=0Jo (@47

(2)
H is discussed after final forms for I are given.

An elementary way to proceed is to first split the integral into a region around the origin
and outside of that. Specifically, let ¢ > 0 and then split the integral

I(n,p; A, B) = ,171_{%(/ / /) x2+77)

= I(n,p;—€,B)+ I(n,p;e,e) + I(n,p; A, —¢) .

We will be sending ¢ — 0 but in such a way so that A, B > ¢ > n. The easiest thing is
to set € to a very small fixed number, which we will later (after sending n — 0) consider
sending to zero.



Let’s first focus on the regions excluding the origin such as I(n,p; A, —¢)

A
. " f(x)

We can rewrite the term in the integrand multiplying f(z) as

n n—2p

@+ (1+ (nfa)?)

and since for this integral 0 < € < o < A, This factor will approach 2"~ % with no problems
as 1 — 0. Then we can conclude that

I(n,p: A, —) = / d f ()22 (3)

The logic for the other integral I(n,p; —e, B) is identical

I(n,p;—e¢,B) = /_B6 dx f(x)x" 2P . (4)

Both are well behaved if n — 2p + 1 > 0 so the integral in the small x region is convergent.
Let’s be more explicit by series expanding f(x):

( / g / _6) dae f ()"
= (/ > da (£(0)z" % 4 f/(0)a" 2!

‘f’f” i 2p+2/2 +. )
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The main focus is on the possibly divergent parts coming from z close to €, so we do the
integrals from =+e to some places and only keep track of the ¢ dependence:

I(n,p; A,—€)+ I(n,p;—e,B) = f(0) [—6”72’3“ + (—6)"72”1] /(n—2p+1)
+11(0) [P+ (—e)" ] /(n— 2p+ 2)
+1(0) [T 4 (—e)" 7] J(2(n — 2p + 3))
+constants + O ("2 1*)

Now (—1)% =1 so we can simplify to
I(n,p; A, =€) + I(n,p;—€,B) = —f(0)" 1+ (=1)"] /(n—2p+1)
=)L = (=1)"]/(n—2p+2)
—f"(0)e" 1 = (=1)"] /(2(n — 2p + 3))
+constants + O(e"2*4)

If an exponent or denominator n — 2p 4+ ¢ = 0 in any term , that term should be replaced

by zero: this is because 2" %T4"! = 7! was the integrand which gives a logarithm In x
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when integrated, and the contributions from +e¢ and —e cancel because we get —Ine from
the positive x integral and In € from the negative x integral.

We are now ready to write a final form for the sum of these two integrals over the region
|z| > € in terms of their leading contribution as a function of €. As long asn —2p+1 > 0,
all of € dependent terms will go to zero and there are no worries: the region about the origin
is well behaved. So

A
I(n,p; A, —€) + I(n,p; —€, B) = 73/ drf(z)z™™? ifn>2p—1

If n — 2p + 1=0, as explained above there is no divergent contributions from the logarithms
as they cancel. So we included that case in this formula as well.

Now for the more involved n — 2p + 1 < 0 cases. The leading contribution we care about
has the lowest power of e: when n is even, this is just n — 2p + 1, but if n is odd we have
to move to the next term of power n — 2p + 2 and this power could be negative, zero, or
positive, so we have to worry about all these possibilities. Here is the master table where €
is sent to zero if possible:

(P [y duf(a)an ifn > 2 - 1
—2f(0)e 2t /(n —2p+1) ifn<2p—1& n even

](n7pa Aa _€> + I(nvpa _E>B) =
—2f(0)e" 22 /(n —2p+2) ifn <2p—2& nodd

| P [y duf(z)an ifn>2 —2 & n odd

Now we turn to the integral around the origin I(n, p;e€, €)
I(n,p;e e) = lim dxa;f—(a?
=0 ) o (@ PP

Here the integrand at x = 0 becomes potentially divergent as the denominator denominator
is n*? which goes to zero. The first thing we can do is to note that since e — 0 we can safely
series expand f(x) about the origin since we assume it is analytic:

¢ " n+1 g1 n+2 £n 24 ...
I(n,p;e,€) = lim gy B0 + 2™ f(0) + 2™ f7(0)/2 +
n—0 J_. (ZEQ _|_772)p

and the higher order terms are truly subdominant in a controlled manner. We can now
rescale the integration coordinate to y = x/n to get

oy Ly 2042 1(0) /2 4 - -
Hnpiere) = i {nnzpﬂ / gy VIO 4y f((;?i%py £7(0)/2 + }
" —e/n



For the moment, let’s focus on a single term in the Taylor series and so we let m > n be
some integer and let’s focus on

€/n m—n, m €/n m
n— Ui Yy m—2p+1 Yy
Jm =1 2p+1/ dy ————=n"" / dy ———
—e/n (y2 + 1)1) —e/n (y2 + 1)1)

which means that

e (m)
s L/ 710 <0>} = lim {1, (0) + e f/(0) + Jua f(0)/2+ )

[(n,p;gﬁ):}?ii%{ m!

m=n

Note that m must be even or otherwise the integral is zero, so we assume m is even below,

whence
2p+1 “/m d Y
Iy =20 —_—
! /0 Yy

The integrant is finite for y — 0, so any problems will come from the large y region. For

large y, the integrand is approximately y™ 2P so doing the integral for large y, we can write
that for large €/ and m # 2p — 1

m

(efmyn-2rt

I = 2" PEL (constant + m—2p 11

+O((e/n )
while for m = 2p — 1 it is logarithmic
Jin = 2 - (constant + In(e/n) + O((n/€)?))

This means that for some bounded constants C', D, the leading contributions are

g Cym=2t1 4 Dem=2Pt1 if m —2p+1#0
™1 2In(e/n) ifm—2p+1=0

This goes to zero for m > 2p — 1 and is divergent for m < 2p — 1 as n — 0. In either case,
however, we have a clear subdominant behavior for larger m: J,,12/J,, scales either as € or
n? for small 7 and € and goes to zero.

We have learned that when m < 2p — 1 the answer is formally infinite in the limit n — 0 so
if we want something to work with we had best keep 7 finite but small. But then the higher
order terms are truly negligible in comparison.

To make progress, notice that the above inequalities show that the integral
T o y"

m—2p1 / dy

n P —e/n (y + ]_)p

is finite for m < 2p — 1 as €/n — oo. The bad case is when m = 2p — 1 exactly so that the
integral is divergent like In(e/n) due to the contributions at large y. Since m > 0 is even,
this can only happen for (m = 0,p = 1/2), (m = 2,p = 3/2) and so forth.
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So for n tending to zero and e very small but fixed,

Dem—2ptt ifm>2p—1
Jm = nm72p+1 f_oooo dy # ifm< 2p -1
21In(e/n) ifm=2p—1

Before writing down our final conclusions, we note that since m > n, J,, will be the dominant
term anyways in the series without any trouble assuming n is even. If n is odd, then J, =0
and .J, 1 is dominant. So we have that for small ¢ and 7 going to zero,

( O(en2H) ifn>2p—1

2£(0)In(e/n) ifn=2p—1& n even

O(e) ifn=2p—1&nodd

/6 dxw =< f(0O)"=2T1Q(n, p) if n<2p—1& n even
—e (@) ’

F (0" =2P2Q(n +1,p) ifn<2p—2& nodd

2f'(0)In(e/n) ifn=2p—2&nodd

O(en212) if n>2p—2& n odd

\

Here
n

Q(n7p)52/0 dy (yQyTl)p‘

Here is the final collected result. The table lists the leading term only for small  and small
€. To get these results, we assume that 7 is much smaller than e since we will be sending n
to zero first and then e.

(P2, duf(x)an ifn>2p—1

2£(0) In(e/n) ifn=2p—1& n even

P [y duf(a)a if n=2p—1 & n odd

/_Z dx% = FO)n"=2PT1Q(n, p) if n<2p—1& n even

F (0" 2P2Q(n+1,p) ifn<2p—2& nodd

2f(0) In(e/n) ifn=2p—2&nodd

P f_AB da f(x)z" 2P if n>2p—2& n odd
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We now turn to H(n,p, A) which is

[ A f(x)
H(n,p,A):}zl_r% . dl‘m

As before, we split it into two parts:
A €
_ . ) — 2" f(x) " f(x)
H(n,p,A) =1(n,p; A, —€) + I(n,p;€,0) = /6 dx @7+ ) + /0 dm<x2 )

We have already derived the various expansions for these separate integrals: for the = > €
part we can send 7 to zero with no troubles

/EA dxw = /EA da f(z)z" "%

(@2 +n?)

We can then do the various cases where the main difference is we must keep the logarithmic
case on hand for n = 2p — 1:

P f duf(z)a=2 ifn>2p—1
I(n,p; A, —€) = ¢ —f(0)In(e) — f/(0)e + O(€?) ifn=2p—1
—f(0)e 2Pt/ (n —2p+ 1) — f(0)e" P2 /(n—2p+2) + -+ ifn<2p—1

Similarly, we have for the 0 < x < € integral

{nn—2p+1 /6/77 dy ynf(o) ‘l‘ 77yn+1f/(0) + 772yn+2f//(0)/2 + . }
0

I(n,p;¢e,0) = lim

n=0 (y? + 1)

which gives

0 ifn>2—1
I(n,p;e,0) = f(0)[In(e/n) +O((n/e))] + f'(0)e+--- ifn=2p—1
FO)n" =2+ Q(n, p) /2 4 - - - ifn<2p—1

Combining and only keeping leading terms

A () P [Ldef(z)z®  ifn>2p—1
lii% d:p( 2 4 2)p = _f(o) ln(n) ifn=2p—1
n 0 z n f(o)nn—2p+1Q(n’p)/2 ifn<2p—1

Examples:

1. The standard case of

lim ! dx f(:v) = lim ! dxw = lim ! dx /(@) — ilimn/A dx /(@)

=0 ) g x+in n-0)_p z? + n? n—0 ) g x2+4+n: =0 g x2+n?




whose real part is (n = 1,p = 1) with n = 2p — 1 = 1 and n even, and imaginary part is 7
times the integral for (n = 0,p = 1) with n < 2p — 1 and n even:

A
lim dx /(@) = P/A dx J@) i lirr(l]77 - f(0)n'Q(0,1)
"74)

=0 ) p x+iin -B x

Since Q(0,1) = m we have just derived the usual result

A T A x
lim d:cL,)n:P/_dey—mf(O)

n—0 J_p x4+

4 fw)
/—B dxe +n?

Here (n = 0,p = 1) with n even. The leading divergence is from 1 but we can also keep the
e divergence to be complete:

2. A real Lorentzian integral

)
[ e — form =250/

However, if f(0) = 0 then we are in good shape! Let g(z) = f(x)/z and we are assuming
g(x) is smooth around the origin so that ¢(0) is finite. Then f(z) = xg(z) and we are in the
(n=1,p=1),n=2p— 1 and with n odd case so the integral is fine and well-behaved so

[y e Ly

2 2 2
_B X+ _B z _B x

3. The half integral

4 f@)
/0 dxxz g

where (n =0,p=1) son < 2p — 1= 1. Looking up the H table, we get the divergent form

/ﬁnf@>_f@w

22402 2

However, if f(0) = 0, the divergence is greatly reduced. Working with g(z) = f(x)/z which
is assume smooth and non-zero around = = 0, we now have an integral with (n = 1,p = 1)
involving g where n =2p—1=1

[ e g0 m = o)) when 50 =0
0 x2+7]2

4. The half integral (square of above integrand)
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where (n =0,p =2) son < 2p — 1 = 3. Looking up the H table, we get the divergent form

/A L@ [0°Q(0.2)
o T 2

However, if f(0) = 0, the divergence is greatly reduced. Working with g(z) = f(x)/z which
is assume smooth and non-zero around xz = 0, we now have an integral with ¢g(z) now with
(n =2,p =2) involving g wheren =2 <2p—1=3

/AdxM_ 9(02Q(2,2)  F0Q(2,2)
0o

12 +1?)? 21 2n when  £(0)

5. An related integral of the form

[ (o)
o =P+l = b+ ]

where 0 < a < b < A. This is not of the form that we have described above, but it is the
regions around x = a and x = b that generically give the really large contributions for n — 0.
Around x = a, the Lorentzian centered around x = b is smooth and has a nice Taylor series,
and vice versa. So at the most divergent order, we have

/A N f(x)? ORI Ok
0 [(z —a)

g ey e

If we have a zero at a or b by luck, e.g. if f(a) =0, then

4 f(@)? — ()2 n f(0)?*m
/odx[(x—a)2+n2][(fc—b)2+n2]_ flayinn+ =)

If both are zeros by extreme luck

! f()? e P
/0 dx[(x—a)2+n2][(x—b)2+n2]_ [f'(a)”+ f'(b)*]Inn



