Generalized Lorentzian integrals for small widths

Sohrab Ismail-Beigi

October 7, 2013

A typical textbook expression is that

$$
\lim _{\eta \rightarrow 0} \frac{1}{x+i \eta}=\mathcal{P} \frac{1}{x}-i \pi \delta(x)
$$

or more precisely under an integral with smooth and analytic $f(x)$

$$
\lim _{\eta \rightarrow 0} \int d x \frac{f(x)}{x+i \eta}=\mathcal{P} \int d x \frac{f(x)}{x}-i \pi f(0)
$$

Here we want to both justify this type of thing and work out the more general case of the real integral

$$
\begin{equation*}
I(n, p ; A, B)=\lim _{\eta \rightarrow 0} \int_{-B}^{A} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}} \tag{1}
\end{equation*}
$$

where n is a non-negative integer and $p \geq 0$. Here $A, B \gg \eta>0$ are some "large" numbers that we may (or may not) send to infinity. Notice that by taking real and imaginary parts, $I(n, p)$ is a superset of what we have written above. This integral is a main focus, but a related integral that is half of it over positive x is also of interest

$$
\begin{equation*}
H(n, p ; A)=\lim _{\eta \rightarrow 0} \int_{0}^{A} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}} \tag{2}
\end{equation*}
$$

H is discussed after final forms for I are given.
An elementary way to proceed is to first split the integral into a region around the origin and outside of that. Specifically, let $\epsilon>0$ and then split the integral

$$
\begin{aligned}
I(n, p ; A, B) & =\lim _{\eta \rightarrow 0}\left(\int_{-B}^{-\epsilon}+\int_{-\epsilon}^{\epsilon}+\int_{\epsilon}^{A}\right) d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}} \\
& =I(n, p ;-\epsilon, B)+I(n, p ; \epsilon, \epsilon)+I(n, p ; A,-\epsilon) .
\end{aligned}
$$

We will be sending $\epsilon \rightarrow 0$ but in such a way so that $A, B \gg \epsilon \gg \eta$. The easiest thing is to set ϵ to a very small fixed number, which we will later (after sending $\eta \rightarrow 0$) consider sending to zero.

Let's first focus on the regions excluding the origin such as $I(n, p ; A,-\epsilon)$

$$
I(n, p ; A,-\epsilon)=\lim _{\eta \rightarrow 0} \int_{\epsilon}^{A} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}
$$

We can rewrite the term in the integrand multiplying $f(x)$ as

$$
\frac{x^{n}}{\left(x^{2}+\eta^{2}\right)^{p}}=\frac{x^{n-2 p}}{\left(1+(\eta / x)^{2}\right)^{p}}
$$

and since for this integral $0<\epsilon \leq x \leq A$, This factor will approach $x^{n-2 p}$ with no problems as $\eta \rightarrow 0$. Then we can conclude that

$$
\begin{equation*}
I(n, p ; A,-\epsilon)=\int_{\epsilon}^{A} d x f(x) x^{n-2 p} \tag{3}
\end{equation*}
$$

The logic for the other integral $I(n, p ;-\epsilon, B)$ is identical

$$
\begin{equation*}
I(n, p ;-\epsilon, B)=\int_{-B}^{-\epsilon} d x f(x) x^{n-2 p} . \tag{4}
\end{equation*}
$$

Both are well behaved if $n-2 p+1>0$ so the integral in the small x region is convergent. Let's be more explicit by series expanding $f(x)$:

$$
\begin{aligned}
I(n, p ; A,-\epsilon)+I(n, p ;-\epsilon, B)= & \left(\int_{\epsilon}^{A}+\int_{-B}^{-\epsilon}\right) d x f(x) x^{n-2 p} \\
= & \left(\int_{\epsilon}^{A}+\int_{-B}^{-\epsilon}\right) d x\left(f(0) x^{n-2 p}+f^{\prime}(0) x^{n-2 p+1}\right. \\
& \left.+f^{\prime \prime}(0) x^{n-2 p+2} / 2+\cdots\right)
\end{aligned}
$$

The main focus is on the possibly divergent parts coming from x close to ϵ, so we do the integrals from $\pm \epsilon$ to some places and only keep track of the ϵ dependence:

$$
\begin{aligned}
I(n, p ; A,-\epsilon)+I(n, p ;-\epsilon, B)= & f(0)\left[-\epsilon^{n-2 p+1}+(-\epsilon)^{n-2 p+1}\right] /(n-2 p+1) \\
& +f^{\prime}(0)\left[-\epsilon^{n-2 p+2}+(-\epsilon)^{n-2 p+2}\right] /(n-2 p+2) \\
& +f^{\prime \prime}(0)\left[-\epsilon^{n-2 p+3}+(-\epsilon)^{n-2 p+3}\right] /(2(n-2 p+3)) \\
& + \text { constants }+O\left(\epsilon^{n-2 p+4}\right)
\end{aligned}
$$

Now $(-1)^{2 p}=1$ so we can simplify to

$$
\begin{aligned}
I(n, p ; A,-\epsilon)+I(n, p ;-\epsilon, B)= & -f(0) \epsilon^{n-2 p+1}\left[1+(-1)^{n}\right] /(n-2 p+1) \\
& -f^{\prime}(0) \epsilon^{n-2 p+2}\left[1-(-1)^{n}\right] /(n-2 p+2) \\
& -f^{\prime \prime}(0) \epsilon^{n-2 p+3}\left[1-(-1)^{n}\right] /(2(n-2 p+3)) \\
& + \text { constants }+O\left(\epsilon^{n-2 p+4}\right)
\end{aligned}
$$

If an exponent or denominator $n-2 p+q=0$ in any term, that term should be replaced by zero: this is because $x^{n-2 p+q-1}=x^{-1}$ was the integrand which gives a logarithm $\ln x$
when integrated, and the contributions from $+\epsilon$ and $-\epsilon$ cancel because we get $-\ln \epsilon$ from the positive x integral and $\ln \epsilon$ from the negative x integral.

We are now ready to write a final form for the sum of these two integrals over the region $|x| \geq \epsilon$ in terms of their leading contribution as a function of ϵ. As long as $n-2 p+1>0$, all of ϵ dependent terms will go to zero and there are no worries: the region about the origin is well behaved. So

$$
I(n, p ; A,-\epsilon)+I(n, p ;-\epsilon, B)=\mathcal{P} \int_{\epsilon}^{A} d x f(x) x^{n-2 p} \quad \text { if } n \geq 2 p-1
$$

If $n-2 p+1=0$, as explained above there is no divergent contributions from the logarithms as they cancel. So we included that case in this formula as well.

Now for the more involved $n-2 p+1<0$ cases. The leading contribution we care about has the lowest power of ϵ : when n is even, this is just $n-2 p+1$, but if n is odd we have to move to the next term of power $n-2 p+2$ and this power could be negative, zero, or positive, so we have to worry about all these possibilities. Here is the master table where ϵ is sent to zero if possible:

$$
I(n, p ; A,-\epsilon)+I(n, p ;-\epsilon, B)=\left\{\begin{array}{lr}
\mathcal{P} \int_{-B}^{A} d x f(x) x^{n-2 p} & \text { if } n \geq 2 p-1 \\
-2 f(0) \epsilon^{n-2 p+1} /(n-2 p+1) & \text { if } n<2 p-1 \& n \text { even } \\
-2 f^{\prime}(0) \epsilon^{n-2 p+2} /(n-2 p+2) & \text { if } n<2 p-2 \& n \text { odd } \\
\mathcal{P} \int_{-B}^{A} d x f(x) x^{n-2 p} & \text { if } n \geq 2 p-2 \& n \text { odd }
\end{array}\right.
$$

Now we turn to the integral around the origin $I(n, p ; \epsilon, \epsilon)$

$$
I(n, p ; \epsilon, \epsilon)=\lim _{\eta \rightarrow 0} \int_{-\epsilon}^{\epsilon} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}
$$

Here the integrand at $x=0$ becomes potentially divergent as the denominator denominator is $\eta^{2 p}$ which goes to zero. The first thing we can do is to note that since $\epsilon \rightarrow 0$ we can safely series expand $f(x)$ about the origin since we assume it is analytic:

$$
I(n, p ; \epsilon, \epsilon)=\lim _{\eta \rightarrow 0} \int_{-\epsilon}^{\epsilon} d x \frac{x^{n} f(0)+x^{n+1} f^{\prime}(0)+x^{n+2} f^{\prime \prime}(0) / 2+\cdots}{\left(x^{2}+\eta^{2}\right)^{p}}
$$

and the higher order terms are truly subdominant in a controlled manner. We can now rescale the integration coordinate to $y=x / \eta$ to get

$$
I(n, p ; \epsilon, \epsilon)=\lim _{\eta \rightarrow 0}\left\{\eta^{n-2 p+1} \int_{-\epsilon / \eta}^{\epsilon / \eta} d y \frac{y^{n} f(0)+\eta y^{n+1} f^{\prime}(0)+\eta^{2} y^{n+2} f^{\prime \prime}(0) / 2+\cdots}{\left(y^{2}+1\right)^{p}}\right\}
$$

For the moment, let's focus on a single term in the Taylor series and so we let $m \geq n$ be some integer and let's focus on

$$
J_{m}=\eta^{n-2 p+1} \int_{-\epsilon / \eta}^{\epsilon / \eta} d y \frac{\eta^{m-n} y^{m}}{\left(y^{2}+1\right)^{p}}=\eta^{m-2 p+1} \int_{-\epsilon / \eta}^{\epsilon / \eta} d y \frac{y^{m}}{\left(y^{2}+1\right)^{p}}
$$

which means that

$$
I(n, p ; \epsilon, \epsilon)=\lim _{\eta \rightarrow 0}\left\{\sum_{m=n}^{\infty} \frac{J_{m} f^{(m)}(0)}{m!}\right\}=\lim _{\eta \rightarrow 0}\left\{J_{n} f(0)+J_{n+1} f^{\prime}(0)+J_{n+2} f^{\prime \prime}(0) / 2+\cdots\right\}
$$

Note that m must be even or otherwise the integral is zero, so we assume m is even below, whence

$$
J_{m}=2 \eta^{m-2 p+1} \int_{0}^{\epsilon / \eta} d y \frac{y^{m}}{\left(y^{2}+1\right)^{p}}
$$

The integrant is finite for $y \rightarrow 0$, so any problems will come from the large y region. For large y, the integrand is approximately $y^{m-2 p}$ so doing the integral for large y, we can write that for large ϵ / η and $m \neq 2 p-1$

$$
J_{m}=2 \eta^{m-2 p+1} \cdot\left(\text { constant }+\frac{(\epsilon / \eta)^{m-2 p+1}}{m-2 p+1}+O\left((\epsilon / \eta)^{m-2 p-1}\right)\right)
$$

while for $m=2 p-1$ it is logarithmic

$$
J_{m}=2 \cdot\left(\text { constant }+\ln (\epsilon / \eta)+O\left((\eta / \epsilon)^{2}\right)\right)
$$

This means that for some bounded constants C, D, the leading contributions are

$$
J_{m}= \begin{cases}C \eta^{m-2 p+1}+D \epsilon^{m-2 p+1} & \text { if } m-2 p+1 \neq 0 \\ 2 \ln (\epsilon / \eta) & \text { if } m-2 p+1=0\end{cases}
$$

This goes to zero for $m>2 p-1$ and is divergent for $m \leq 2 p-1$ as $\eta \rightarrow 0$. In either case, however, we have a clear subdominant behavior for larger m : J_{m+2} / J_{m} scales either as ϵ^{2} or η^{2} for small η and ϵ and goes to zero.

We have learned that when $m \leq 2 p-1$ the answer is formally infinite in the limit $\eta \rightarrow 0$ so if we want something to work with we had best keep η finite but small. But then the higher order terms are truly negligible in comparison.

To make progress, notice that the above inequalities show that the integral

$$
\frac{J_{m}}{\eta^{m-2 p+1}}=\int_{-\epsilon / \eta}^{\epsilon / \eta} d y \frac{y^{m}}{\left(y^{2}+1\right)^{p}}
$$

is finite for $m<2 p-1$ as $\epsilon / \eta \rightarrow \infty$. The bad case is when $m=2 p-1$ exactly so that the integral is divergent like $\ln (\epsilon / \eta)$ due to the contributions at large y. Since $m \geq 0$ is even, this can only happen for $(m=0, p=1 / 2),(m=2, p=3 / 2)$ and so forth.

So for η tending to zero and ϵ very small but fixed,

$$
J_{m}= \begin{cases}D \epsilon^{m-2 p+1} & \text { if } m>2 p-1 \\ \eta^{m-2 p+1} \int_{-\infty}^{\infty} d y \frac{y^{m}}{\left(y^{2}+1\right)^{p}} & \text { if } m<2 p-1 \\ 2 \ln (\epsilon / \eta) & \text { if } m=2 p-1\end{cases}
$$

Before writing down our final conclusions, we note that since $m \geq n, J_{n}$ will be the dominant term anyways in the series without any trouble assuming n is even. If n is odd, then $J_{n}=0$ and J_{n+1} is dominant. So we have that for small ϵ and η going to zero,

$$
\int_{-\epsilon}^{\epsilon} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}=\left\{\begin{array}{lr}
O\left(\epsilon^{n-2 p+1}\right) & \text { if } n>2 p-1 \\
2 f(0) \ln (\epsilon / \eta) & \text { if } n=2 p-1 \& n \text { odd } \\
O(\epsilon) & \text { if } n<2 p-1 \& n \text { even } \\
f(0) \eta^{n-2 p+1} Q(n, p) & \text { if } n=2 p-2 \& n \text { odd } \\
f^{\prime}(0) \eta^{n-2 p+2} Q(n+1, p) & \text { if } n<2 p-2 \& n \text { odd } \\
2 f^{\prime}(0) \ln (\epsilon / \eta) & \text { if } n>2 p-2 \& n \text { odd } \\
O\left(\epsilon^{n-2 p+2}\right) &
\end{array}\right.
$$

Here

$$
Q(n, p) \equiv 2 \int_{0}^{\infty} d y \frac{y^{n}}{\left(y^{2}+1\right)^{p}}
$$

Here is the final collected result. The table lists the leading term only for small η and small ϵ. To get these results, we assume that η is much smaller than ϵ since we will be sending η to zero first and then ϵ.

$$
\int_{-B}^{A} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}=\left\{\begin{array}{lr}
\mathcal{P} \int_{-B}^{A} d x f(x) x^{n-2 p} & \text { if } n>2 p-1 \\
2 f(0) \ln (\epsilon / \eta) & \text { if } n=2 p-1 \& n \text { even } \\
\mathcal{P} \int_{-B}^{A} d x f(x) x^{n-2 p} & \text { if } n=2 p-1 \& n \text { odd } \\
f(0) \eta^{n-2 p+1} Q(n, p) & \text { if } n<2 p-1 \& n \text { even } \\
f^{\prime}(0) \eta^{n-2 p+2} Q(n+1, p) & \text { if } n<2 p-2 \& n \text { odd } \\
2 f^{\prime}(0) \ln (\epsilon / \eta) & \text { if } n=2 p-2 \& n \text { odd } \\
\mathcal{P} \int_{-B}^{A} d x f(x) x^{n-2 p} & \text { if } n>2 p-2 \& n \text { odd }
\end{array}\right.
$$

We now turn to $H(n, p, A)$ which is

$$
H(n, p, A)=\lim _{\eta \rightarrow 0} \int_{0}^{A} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}
$$

As before, we split it into two parts:

$$
H(n, p, A)=I(n, p ; A,-\epsilon)+I(n, p ; \epsilon, 0)=\int_{\epsilon}^{A} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}+\int_{0}^{\epsilon} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}
$$

We have already derived the various expansions for these separate integrals: for the $x \geq \epsilon$ part we can send η to zero with no troubles

$$
\int_{\epsilon}^{A} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}=\int_{\epsilon}^{A} d x f(x) x^{n-2 p}
$$

We can then do the various cases where the main difference is we must keep the logarithmic case on hand for $n=2 p-1$:

$$
I(n, p ; A,-\epsilon)= \begin{cases}\mathcal{P} \int_{0}^{A} d x f(x) x^{n-2 p} & \text { if } n>2 p-1 \\ -f(0) \ln (\epsilon)-f^{\prime}(0) \epsilon+O\left(\epsilon^{2}\right) & \text { if } n=2 p-1 \\ -f(0) \epsilon^{n-2 p+1} /(n-2 p+1)-f^{\prime}(0) \epsilon^{n-2 p+2} /(n-2 p+2)+\cdots & \text { if } n<2 p-1\end{cases}
$$

Similarly, we have for the $0 \leq x \leq \epsilon$ integral

$$
I(n, p ; \epsilon, 0)=\lim _{\eta \rightarrow 0}\left\{\eta^{n-2 p+1} \int_{0}^{\epsilon / \eta} d y \frac{y^{n} f(0)+\eta y^{n+1} f^{\prime}(0)+\eta^{2} y^{n+2} f^{\prime \prime}(0) / 2+\cdots}{\left(y^{2}+1\right)^{p}}\right\}
$$

which gives

$$
I(n, p ; \epsilon, 0)= \begin{cases}0 & \text { if } n>2 p-1 \\ f(0)\left[\ln (\epsilon / \eta)+O\left((\eta / \epsilon)^{2}\right)\right]+f^{\prime}(0) \epsilon+\cdots & \text { if } n=2 p-1 \\ f(0) \eta^{n-2 p+1} Q(n, p) / 2+\cdots & \text { if } n<2 p-1\end{cases}
$$

Combining and only keeping leading terms

$$
\lim _{\eta \rightarrow 0} \int_{0}^{A} d x \frac{x^{n} f(x)}{\left(x^{2}+\eta^{2}\right)^{p}}= \begin{cases}\mathcal{P} \int_{0}^{A} d x f(x) x^{n-2 p} & \text { if } n>2 p-1 \\ -f(0) \ln (\eta) & \text { if } n=2 p-1 \\ f(0) \eta^{n-2 p+1} Q(n, p) / 2 & \text { if } n<2 p-1\end{cases}
$$

Examples:

1. The standard case of

$$
\lim _{\eta \rightarrow 0} \int_{-B}^{A} d x \frac{f(x)}{x+i \eta}=\lim _{\eta \rightarrow 0} \int_{-B}^{A} d x \frac{(x-i \eta) f(x)}{x^{2}+\eta^{2}}=\lim _{\eta \rightarrow 0} \int_{-B}^{A} d x \frac{x f(x)}{x^{2}+\eta^{2}}-i \lim _{\eta \rightarrow 0} \eta \int_{-B}^{A} d x \frac{f(x)}{x^{2}+\eta^{2}}
$$

whose real part is ($n=1, p=1$) with $n=2 p-1=1$ and n even, and imaginary part is η times the integral for ($n=0, p=1$) with $n<2 p-1$ and n even:

$$
\lim _{\eta \rightarrow 0} \int_{-B}^{A} d x \frac{f(x)}{x+i \eta}=\mathcal{P} \int_{-B}^{A} d x \frac{f(x)}{x}-i \lim _{\eta \rightarrow 0} \eta \cdot f(0) \eta^{-1} Q(0,1)
$$

Since $Q(0,1)=\pi$ we have just derived the usual result

$$
\lim _{\eta \rightarrow 0} \int_{-B}^{A} d x \frac{f(x)}{x+i \eta}=\mathcal{P} \int_{-B}^{A} d x \frac{f(x)}{x}-i \pi f(0)
$$

2. A real Lorentzian integral

$$
\int_{-B}^{A} d x \frac{f(x)}{x^{2}+\eta^{2}}
$$

Here ($n=0, p=1$) with n even. The leading divergence is from η but we can also keep the ϵ divergence to be complete:

$$
\int_{-B}^{A} d x \frac{f(x)}{x^{2}+\eta^{2}}=f(0) \pi / \eta-2 f(0) / \epsilon
$$

However, if $f(0)=0$ then we are in good shape! Let $g(x)=f(x) / x$ and we are assuming $g(x)$ is smooth around the origin so that $g(0)$ is finite. Then $f(x)=x g(x)$ and we are in the ($n=1, p=1$), $n=2 p-1$ and with n odd case so the integral is fine and well-behaved so

$$
\int_{-B}^{A} d x \frac{x g(x)}{x^{2}+\eta^{2}}=\mathcal{P} \int_{-B}^{A} d x \frac{g(x)}{x}=\mathcal{P} \int_{-B}^{A} d x \frac{f(x)}{x^{2}}
$$

3. The half integral

$$
\int_{0}^{A} d x \frac{f(x)}{x^{2}+\eta^{2}}
$$

where $(n=0, p=1)$ so $n<2 p-1=1$. Looking up the H table, we get the divergent form

$$
\int_{0}^{A} d x \frac{f(x)}{x^{2}+\eta^{2}}=\frac{f(0) \pi}{2 \eta}
$$

However, if $f(0)=0$, the divergence is greatly reduced. Working with $g(x)=f(x) / x$ which is assume smooth and non-zero around $x=0$, we now have an integral with ($n=1, p=1$) involving g where $n=2 p-1=1$

$$
\int_{0}^{A} d x \frac{f(x)}{x^{2}+\eta^{2}}=-g(0) \ln (\eta)=-f^{\prime}(0) \ln (\eta) \quad \text { when } \quad f(0)=0
$$

4. The half integral (square of above integrand)

$$
\int_{0}^{A} d x \frac{f(x)^{2}}{\left(x^{2}+\eta^{2}\right)^{2}}
$$

where ($n=0, p=2$) so $n<2 p-1=3$. Looking up the H table, we get the divergent form

$$
\int_{0}^{A} d x \frac{f(x)^{2}}{\left(x^{2}+\eta^{2}\right)^{2}}=\frac{f(0)^{2} Q(0,2)}{2 \eta^{3}}
$$

However, if $f(0)=0$, the divergence is greatly reduced. Working with $g(x)=f(x) / x$ which is assume smooth and non-zero around $x=0$, we now have an integral with $g(x)$ now with ($n=2, p=2$) involving g where $n=2<2 p-1=3$

$$
\int_{0}^{A} d x \frac{f(x)^{2}}{\left(x^{2}+\eta^{2}\right)^{2}}=-\frac{g(0)^{2} Q(2,2)}{2 \eta}=\frac{f^{\prime}(0)^{2} Q(2,2)}{2 \eta} \quad \text { when } \quad f(0)=0
$$

5. An related integral of the form

$$
\int_{0}^{A} d x \frac{f(x)^{2}}{\left[(x-a)^{2}+\eta^{2}\right]\left[(x-b)^{2}+\eta^{2}\right]}
$$

where $0<a<b<A$. This is not of the form that we have described above, but it is the regions around $x=a$ and $x=b$ that generically give the really large contributions for $\eta \rightarrow 0$. Around $x=a$, the Lorentzian centered around $x=b$ is smooth and has a nice Taylor series, and vice versa. So at the most divergent order, we have

$$
\int_{0}^{A} d x \frac{f(x)^{2}}{\left[(x-a)^{2}+\eta^{2}\right]\left[(x-b)^{2}+\eta^{2}\right]}=\frac{f(a)^{2} \pi}{\eta}+\frac{f(b)^{2} \pi}{\eta}
$$

If we have a zero at a or b by luck, e.g. if $f(a)=0$, then

$$
\int_{0}^{A} d x \frac{f(x)^{2}}{\left[(x-a)^{2}+\eta^{2}\right]\left[(x-b)^{2}+\eta^{2}\right]}=-f^{\prime}(a)^{2} \ln \eta+\frac{f(b)^{2} \pi}{\eta}
$$

If both are zeros by extreme luck

$$
\int_{0}^{A} d x \frac{f(x)^{2}}{\left[(x-a)^{2}+\eta^{2}\right]\left[(x-b)^{2}+\eta^{2}\right]}=-\left[f^{\prime}(a)^{2}+f^{\prime}(b)^{2}\right] \ln \eta
$$

