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The discussion below starts with macroscopic electrostatics (Maxwell equations). Later there
is some discussion of a microscopic picture.

Imagine we have a ferroelectric slab periodic in the xy plane and of thickness L extending
from z = 0 to z = L. It has a continuous and differentiable but arbitrary polarization
profile P (z) and we will assume P (z) goes to zero at the interfaces so P (0) = P (L) = 0.
This ferroelectric is sandwiched on both sides by metal electrodes that are grounded (or
connected to each other). Any screening charges in the metals will be modeled as being a
uniform sheet charge λ away from the interfaces (at z = −λ and z = L + λ.) Thus the
charges in the system are the two screening sheets with sheet densities σleft and σright as
well as the bound charge density ρb

ρb(z) = −dP/dz .

We are going to ask about what the electrostatic potential looks like in this system. We will
set φ(z < −λ) = 0 and so by the grounding assumption φ(z > L+ λ) = 0 as well. Poisson’s
equation

d2φ/dz2 = −4πρ(z)

can be integrated to give

dφ/dz =


0 for z < −λ
−4πσleft for − λ < z < 0
−4πσleft + 4πP (z) for 0 < z < L
−4πσleft for L < z < L+ λ
−4π(σleft + σright) for L < z

.

The potential is flat for z > L + λ so the field must be zero. So we can immediately
conclude (as would have been obvious intuitively) that the screening charges must be equal
and opposite −σleft = σright ≡ σ to enforce neutrality of net charge since the ferroelectric
only has bound charge from polarization gradients which never give actual net charge (just
motion of charge which is dipole formation). Also, the field inside the ferroelectric does not
have to be uniform but instead follows P (z).
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Integrating again to get the potential, we have

φ(z) =


0 for z < −λ
4πσ(z + λ) for − λ < z < 0
4πσ(z + λ) + 4π

∫ z

0
dz′P (z′) for 0 < z < L

4πσ(z + λ) + 4π
∫ L

0
dz′P (z′) for L < z < L+ λ

4πσ(L+ 2λ) + 4π
∫ L

0
dz′P (z′) for L < z

.

Again, insisting that φ(z > L+ λ) = 0 means

σ = −
∫ L

0
dz′P (z′)

L+ 2λ
.

This is easier to digest if we define the average polarization of the film

P̄ =
1

L

∫ L

0

dz′P (z′)

so we have

σ = − P̄

1 + 2λ/L
.

The screening charge is what one can measure in an experiment: when the polarization
changes, the screening charge accommodates accordingly and changes in it require currents
to flow in the metal (or between the metals if under closed circuit with connection) and we can
measure currents. This is thus a good operational definition of surface polarization
charge. The above relation shows that for a film with uniform polarization so P (z) = P̄
that is very thick L � λ, the surface polarization charge is indeed P̄ as we learn in class.
So the definition is also giving the right answer in the appropriate case (a good check).

What about thin films and non-uniform polarizations? Even with uniform polarization in a
thin film, the denominator that has λ/L which suppresses σ compared to P̄ . However, for a
thin film, there is no reason for P (z) = P̄ for z close to 0 or L due to interface effects. The
above relation shows that the average polarization matters, so if the interface regions have
depressed P (z) for some reason, this lowers the average. Of course, for a very thick film, the
interior region — making up the majority of the film — will have the bulk polarization at
zero field and thus the interface contribution to the average will be a correction of order d/L
where d is the thickness of the interface region. Thus, thin film effects should change the
surface polarization charge as defined via the screening charge, but as the film thickens the
value of σ should approach the bulk polarization with corrections scaling like constant/L.

One thing that might seem worrisome is that we’ve assumed the entire system has no struc-
ture in the xy direction and is thus one-dimensional. Perhaps the fact that actual materials
have atoms and thus modulations in charge density in xy makes this more complex and
different? The answer is that of course inside the materials, these microscopic fluctuations
matter for the actual value of the potential and fields, but once one is “far away” they do
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not. Showing this relies on what the potential is from a periodic 2D array of charges. The
key result is that for a 2D sheet density σ(x, y) with periodicity in the xy plane and which
is located at z = 0, the potential is

φ(x, y, z) = −2πσ̄|z|+
∑

gxy 6=0

2πσ̂(gxy)

|gxy|
eigxy ·rxye−|z||gxy |

where σ̄ is the average sheet charge in a 2D unit cell, σ̂(gxy) are the Fourier components of
σ(x, y), and gxy are the 2D reciprocal lattice vectors. (Thus σ̄ = σ̂(0).)

For an arbitrary charge distribution ρ(x, y, z) that is in the form of a slab extending from z1

to z2 and periodic in xy, we can slice it up into thin sheets and use the above result. The
potential is then

φ(x, y, z) =

∫ z2

z1

dz′

−2πρ̄(z)|z − z′|+
∑

gxy 6=0

2πρ̂(gxy, z)

|gxy|
eigxy ·rxye−|z−z′||gxy |


where

ρ̄(z) = ρ̂(0, z) and ρ̂(gxy, z) =
1

A

∫
u.c.

dx dy ρ(x, y, z)e−igxy ·rxy .

What this shows is that as z gets far from the slab boundaries, the fluctuating parts of the
potential die off exponentially with a typical length scale of the lattice constant(s) in the xy
plane (i.e. ∼ 1/|gxy|). Thus, once one is a few unit cell distances away from the slab, the
potential is just what one would have gotten from averaging the charges in the xy planes
to give the simple model above. So, if one asks that the potential be zero and flat inside
the metallic regions, then this means that the charges entering consideration are just the
average sheet charges and bound charges we looked at in the simple model. Namely, given
the actual charge distribution ρ(x, y, z) of the system that is periodic in xy, the long-range
electrostatics is governed only by the averaged ρ̄(z) charge distribution: we’re back to one
dimension.
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