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The idea is to start with a microscopic Hamiltonian describing the “actual” system and to
find a reduced description on as subspace. For example, starting with a set of sites with
various energies and hopping elements, we might want an effective description between a
subset of them — which will make sense if they different energies — and to find the effective
on-site and hopping elements for this subsystem. An example of the use would be for a metal
oxide where one is interested in the bands and hoppings between the transition metal sites
when they are mediated via the oxygen atoms in between (the direct hoppings between metal
sites being negligible). This type of modeling is important for understanding superexchange
and double-exchange (see below).

The main tool will be the non-interacting Green’s function for one-particle systems. In the
process we’ll see how elimination of degrees of freedom gives nonlocality and frequency de-
pendence to the self-energy or effective Hamiltonian — with no electron-electron interactions
needed at all. Thus these properties of the self-energy are coming from eliminating degrees
of freedom per se.

First, the plan of what we want to do. We have the Hamiltonian H on a full basis of state
labeled by Greek letters so it has matrix elements Hα,β. We choose a subset (subspace) of
these states which we call the d states labeled by d, d′ (or other Latin letters) that we are
interested in describing. The remaining states are the p states we want to eliminate. The
block structure of H is

H =

(
Hd T
T † Hp

)
(1)

The first block of entries are the d ones. What we want is an effective Hamiltonian Heff on
this d subspace which only has matrix elements in the subspace Heff

d,d′ that gives us the same
physics for the bands “belonging” to that subspace — of course, this idea only makes sense
perturbatively in the hopping between the sites. We do this by matching matrix elements
of the Green’s functions.
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The full Green’s function G(ω) is

G(ω) = (ωI −H)−1 (2)

and the matrix elements G(ω)α,β tell us the propagation amplitude β → α at frequency ω.
We then extract the matrix elements of G only between the subspace sites

G(ω)d,d′ ≡ G(ω)d,d′ (3)

so in terms of blocks we have

G(ω) =
(
G(ω) X(ω)
Y (ω) Z(ω)

)
. (4)

We then define the effective Hamiltonian Heff (ω) to give this subspace Green’s function

G(ω) ≡ (ωI −Heff (ω))−1 . (5)

In this way, Heff (ω) is designed to give the correct propagation behavior in the subspace.

To do this in practice, we use perturbation theory. We know this obey’s the Dyson equation

G(ω) = G0(ω) + G0(ω)T G(ω)

where we have an unperturbed G0(ω) = (ωI −H0)−1 where H0 is the Hamiltonian with no
hoppings between the two subspaces

H0 =

(
Hd 0
0† Hp

)
(6)

and T is the strictly off-diagonal matrix of hopping elements

T =

(
0 T
T † 0

)
(7)

and H = H0 + T . Thus G0(ω) is also block diagonal

G0(ω) =

(
G0

d(ω) 0
0 G0

p(ω)

)
. (8)

The Dyson series for G is

G(ω) = G0(ω) + G0(ω)T G0(ω) + G0(ω)T G0(ω)T G0(ω) + · · · (9)

We compute G based on this.

Extracting G as the d sunblock of G and the block diagonal nature of G0, we find

G(ω) = G0
d(ω) +G0

d(ω)TddG
0
d(ω) +G0

d(ω)TdpG
0
p(ω)TpdG

0
d(ω) + . . . (10)

2



Now, T is off diagonal so a block diagonal entry for it like Tdd = 0. In this way, we find that
all terms in the series with odd numbers of T vanish. We cleanup by using the definition of
the off diagonal block T to see that non-zero terms in the Dyson series look like

G(ω) = G0
d(ω)+G

0
d(ω)TG

0
p(ω)T

†G0
d(ω)+G

0
d(ω)TG

0
p(ω)T

†G0
d(ω)TG

0
p(ω)T

†G0
d(ω)+ . . . (11)

A short examination of this series shows that the d-block self-energy is Σ(ω) = TG0
p(ω)T

†

since
G(ω) = G0

d(ω) +G0
d(ω)Σ(ω)G

0
d(ω) +G0

d(ω)Σ(ω)G
0
d(ω)Σ(ω)G

0
d(ω) + . . . (12)

This we end up with the expression

G(ω) =
(
[G0(ω)]−1 − Σ(ω)

)−1
=

(
ωI −H0

d − Σ(ω)
)−1

(13)

so our effective Hamiltonian is

Heff (ω) = H0
d + Σ(ω) = H0

d + TG0
p(ω)T

† . (14)

This is the main result we’ve been looking for. Written explicitly as matrix elements

Σ(ω)d,d′ =
∑
p,p′

Td,p (ωI −Hp)
−1
p,p′ T

∗
d′,p′ (15)

We have a second-order virtual hopping through non-subspace p states. At first, it may seem
confusing that there is an explicit ω dependence here. But there must be since the subspace
Green’s function is designed to reproduce the exact behavior including its full frequency
dependence. Within the perturbative limit, however, we will be setting ω at or close to the
unperturbed d energies and then we will have actual numbers to compute.

We now work out some examples below.

First consider a one dimensional lattice of sites where even sites have energy zero, odd sites
have energy −ϵ and there is a hopping element t between even and odd sites. This could
represent identical transition metal atoms separated by oxygen atoms in an oxide. The
microscopic Hamiltonian is thus

H =


t 0 t
t −ϵ t

t 0 t
t −ϵ t

 .

This problem can actually be solved exactly by hand due to the resulting 2×2 Bloch problem
which gives the bands

E±(k) = − ϵ

2
±

√( ϵ
2

)2

+ 4t2 cos(ka/2)2 ≈ 2t cos(ka/2) for t/ϵ≫ 1
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=
ϵ

2
·

−1±

√
1 +

(
4t

ϵ

)2

cos(ka/2)2


≈

{
0
−ϵ

}
±

(
4t2

ϵ

)
cos(ka/2)2 =

{
0
−ϵ

}
± 2t2

ϵ
[1 + cos(ka)] for t/ϵ≪ 1

where a is the lattice constant which contains two sites. Our objective is to describe one
of these bands approximately by creating a Hamiltonian that only exists on one set of site,
say the even high energy ones (zero energy even sites). This only really will work well for
t/ϵ≪ 1.

We now apply out above formalism to the high energy sites with ϵd = 0. Since all the high
energy sites have the same zero energy, the diagonal block Hd = 0 so in this special case
Heff (ω) = Σ(ω). We get for Heff (ω) written as a row vector (one row of the matrix which
is then periodically replicated)

Heff (ω) =

(
O(t6), O(t4),

t2

ω + ϵ
,

2t2

ω + ϵ
,

t2

ω + ϵ
, O(t4), O(t6)

)
This type of Hamiltonian is trivial to diagonalize with plane waves and gives a single band

Eeff (k, ω) =
2t2

ω + ϵ
(1 + cos(ka)) +O(t4)

which, as expected, agrees with the exact result for the upper band for t/ϵ ≪ 1 and for
ω = 0. Notice how Σ(ω) is nonlocal: first of all it is in principle dense and not sparse
(although with weaker and weaker off diagonal elements for farther hoppings), and second,
it has intra-site matrix elements that don’t exist in the full Hamiltonian. The nonlocality
comes directly from the eliminated states since it was through multiple hoppings through
the low-energy sites that the high-energy sites are connected. Furthermore, it is explicitly ω
dependent: the dependence is centered around ω = −ϵ which are the (unperturbed) energies
of the states we eliminated.

At ω = 0, we can recognize the various parts of Heff (ω) from perturbation theory. The
diagonal shift 2t2/ϵ is the just the second order level repulsion of a high-energy site from its
neighboring low-energy sites. And t2/ϵ is the effective hopping (through virtual processes
one could say) between high-energy sites mediated through low-energy sites. The rule for
these hoppings is to square the microscopic hopping element and divide by the site energy
differences. Notice that t and ϵ could be individually very large, but that is not the relevant
for the effective picture: the effective picture removes some of these large numbers to give
us a low-energy description with different parameters.

The next more complex example is a four site unit cell where the site energies are (starting
with site zero) 0, −ϵ, 0, and v (repeating). Only nearest neighbor hoppings t exist again. This
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could represent a chain of transition metal atoms separated by oxygen atoms where either the
transition metals are different elemental species or where they are the same species but have
an exchange splitting due to antiferromagnetic ordering (or anything giving an alternating
energy shift). This is clearly a generalization of the above case which corresponds to v = 0:
the v = 0 case can describe ferromagnetic ordering where all the metal sites are identical
(and degenerate).

The microscopic Hamiltonian is

H =


t 0 t
t −ϵ t

t v t
t −ϵ t

 .

We want to compute the effective Hamiltonian on the transition metal sublattice (sites
with site energies 0 or v). We just turn the crank on the above formalism. The effective
Hamiltonian now has two inequivalent rows for the ϵ = 0 and ϵ = v sites, and they are to
lowest order given by

Heff (ω) =


t̃ ∆ t̃

t̃ v +∆ t̃
t̃ ∆ t̃

t̃ v +∆ t̃


where

∆ =
2t2

ω + ϵ
, t̃ =

t2

ω + ϵ

These energy shifts and hoppings are actually unchanged from the simpler example above.

When we solve this effective problem so get two bands with a gap instead of a single band.
(It is actually isomorphic to the simpler problem we first solved but with orbitals renamed.)
Solving this effective problem gives

Eeff
± (k) = ∆ +

v

2
±

√(v
2

)2

+ 4t̃2 cos(ka/2)2 ≈ ∆+ 2t̃ cos(ka) for t̃/v ≫ 1

≈ +

{
∆

∆+ v

}
±

(
4t̃2

v

)
cos(ka/2)2 =

{
∆

∆+ v

}
± 2t̃2

v
[1 + cos(ka)] for t̃/v ≪ 1 .

This simple model gives two bands with a gap between them (at ka = π with band gap being
v). But what is interesting to note here is the band widths of the two bands and how they
depend on t̃ and v. When v is small, the two bands basically overlap: we have essentially
two identical sites so we get two bands since we chose a unit cell twice as large as needed;
the band width is given by the effective hopping t̃. However, for large v, the band widths
are much reduced: they are now ∼ t̃2/v ≪ t̃: the large splitting v prohibits efficient hopping
between the two different (effective) sites.
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We end with some comments on the relation of these results to Wannier functions. Returning
to the simpler case with v = 0, for t/ϵ ≪ 1 we have to narrow band centered around 0 and
−ϵ and we are focusing on the upper band. In the effective description for the upper band,
we have one site per unit cell and they are connected by hopping t̃ and if one wanted to
get a Wannier function for the upper band in this effective language, it would be trivial and
just equal to the sites themselves (absolute localization on the site). But this is misleading
since we are talking about the effective states: we are just saying we have a set of identical
effective states on the upper energy sites and so obviously the Wannier function will be the
sites themselves.

More interesting is to relate the effective description to the microscopic one to understand
what is going on. Namely, we ask what the true (microscopic) Wannier function correspond-
ing to the upper bands looks like. The reason this helps us understand things is that if we
let W (2n) be the Wannier function of the upper band on site 2n, we first know that the
other Wannier states are just translations of this. But in addition, this Wannier function
must give the effective parameters:

⟨W (0)|H|W (0)⟩ = ∆ , ⟨W (0)|H|W (2)⟩ = t̃ .

So the spatial extent of the Wannier function must be responsible for giving t̃: the actual
high energy (even) sites are not microscopically connected. One can compute the Wannier
function perturbativley by writing an expansion of the Wannier function in the microscopic
sites (and using the fact that the Wannier function will be symmetric here): going to second
nearest neighbors, we write

W (0) = (· · · , 0, γ, β, α, β, γ, 0, · · ·)

where the center site with α is site zero, those with β are low energy sites ±1, etc. Orthonor-
mality gives

1 = ⟨W (0)|W (0)⟩ = α2 + 2β2 + 2γ2 , 0 = ⟨W (0)|W (2)⟩ = 2αγ + β2 .

In a perturbative expansion, β should go to zero as t/ϵ → 0 while α → 1. So from both
these relations we realize that

α = 1 + ᾱt2/ϵ2 , β = β̄t/ϵ , γ = γ̄t2/ϵ2

to leading order where the barred variables are constants of order unity that do not depend
on t/ϵ. Plugging in the expansion for W (0) into the two relations that give us ∆ and t̃, after
some algebra, gives ᾱ = −1, β̄ = 1, γ̄ = −1/2 so the Wannier function looks like

|W (0)⟩ = (· · · , 0, −t2/(2ϵ2) , t/ϵ , 1− t2/ϵ2 , t/ϵ , −t2/(2ϵ2) , 0, · · ·) .

Clearly, the Wannier function is centered at the site with large amplitude on site and rapidly
decaying amplitudes on successive sites. (In general, it will be exponentially localized.) It is
the t/ϵ coefficient of the odd site (the eliminated ones for the effective description) that lead
to the couplings of neighboring even sites and make their Wannier functions overlap to have
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a transfer element t̃. (Note: there are better ways of getting the Wannier function here since
we can solve the 2× 2 problem to get the Bloch states explicitly and just write the Fourier
integral for the Wannier function and do things perturbatively there. See the end of these
notes for the math.)

For the more complex example with v ̸= 0, we can make some general observations. When
t̃/v ≫ 1, we are just in the case we analyzed above: sites with energy 0 and v are basically
the same and they have very similar Wannier functions that are given above with hopping t̃.
However, when t̃/v ≪ 1 and we get the two very narrow bands, we have different Wannier
functions for the 0 and v sites that are very localized on their respective sites; the hoppings
between same energy sites is t̃2/v which is small (but then again it didn’t exist in the effective
model in the first place).

Here we do some math to compute the Wannier function for the two-site-per-cell-problem
from its definition perturbatively. We will choose Block states with phases defined via

ψk = (· · · , ae−ika, b−ika/2, a, beika/2, aeika, be3ika/2, · · ·)

where even sites have a and odd sites b and the central site with energy zero corresponds to
the a entry. These Bloch states have he 2× 2 Hamiltonian

Hk =

(
0 2t cos(ka/2)

2t cos(ka/2) −ϵ

)
.

The eigenvalues of this are given at the beginning of these notes as E±(k). The eigenvectors
follow from writing

Hk = −(ϵ/2)I +

(
ϵ/2 2t cos(ka/2)

2t cos(ka/2) −ϵ/2

)
= −(ϵ/2)I +

√
(ϵ/2)2 + (2t cos(ka/2))2

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

Perturbatively, the angle θ is

θ ≈ sin(θ) =
2t cos(ka/2)√

(ϵ/2)2 + (2t cos(ka/2))2
≈ 4t cos(ka/2)

ϵ
.

The upper 2× 2 eigenvector (for the upper we care about) is

(cos(θ/2), sin(θ/2)) ≈ (1− θ2/8, θ/2) = (1− 2t2/ϵ2 cos(ka/2)2, (2t/ϵ) cos(ka/2)) .

The Wannier function for site n is

Wn =

∫ π/a

−π/a

dk

2π/a
e−ikanψk
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so the Wannier function for site 0 is

W0 =

∫ π/a

−π/a

dk

2π/a
(· · · , cos(θ/2)e−ika, sin(θ/2)e−ika/2, cos(θ/2), sin(θ/2)eika/2 cos(θ/2)eika, · · ·) .

One can plug in the above expansions for cos(θ/2) and sin(θ/2) and do the integrals using
double angle formula and get the same results as before. This approach is more direct but
assumes we can have explicit expressions for the Bloch states.
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