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These notes are based on my own notes as well as the nice work of E. Kogan.1

The basic question is the following: we have a discrete state with energy ε. It is coupled to a
continuum of states (continuous energy band). We start the system in the discrete state at

1E. Kogan, “Nonexponential decay via tunneling to a continuum of finite width”, arxiv
http://arxiv.org/abs/quant-ph/0609011 , Sept 2006.
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time t = 0. How does the system evolve, and how does the system decay out of the discrete
state into the continuum (or tunnel out)?

There are many physical realizations of this type of situation. Perhaps we have an atomic or
molecular excited state that decays via photon emission or via emission of an electron (if the
system is an anion and energy is above the ionization limit). Perhaps we have an electron
starting in an atomic or molecular state on a surface or in the bulk of a material that then
couples to the continuum of band states. Perhaps we create the electron on a particular
atomic state via transition from a core state by X-ray absorption.

1 The model

We begin with our model. We have our discrete state |d〉 with energy ε. We label the
continuum states |k〉 with energies ωk. The coupling between them is Vk. So the Hamiltonian
is

H = ε|d〉〈d|+
∑
k

ωk|k〉〈k|+
∑
k

Vk|d〉〈k|+ V ∗k |k〉〈d| (1)

and the wave function is
|ψ(t)〉 = g(t)|d〉+

∑
k

b(k, t)|k〉 . (2)

The basis states {|d〉, |k〉} are assumed orthonormal. Our initial condition is that

g(0) = 1 , b(k, 0) = 0 . (3)

For convenience, we will assume g(t) = b(k, t) = 0 for t < 0. Normalization means

|g(t)|2 +
∑
k

|b(k, t)|2 = 1 .

We would like to solve the time-dependent Schrödinger equation (~ = 1)

i∂t|ψ(t)〉 = H|ψ(t)〉

which in terms of expansion coefficients is

iġ(t) = εg(t) +
∑
k

V ∗k b(k, t) , iḃ(k, t) = ωkb(k, t) + Vkg(t) .

An interesting thing to note is that this type of Hamiltonian is in fact quite generic. Given a
general Hamiltonian matrix, we can select one state (row/column) to be the “discrete” state
|d〉 with diagonal element ε. The remainder of the Hamiltonian minus the row and column
corresponding to |d〉 can then be diagonalized to yield the energies ωk. The Hamiltonian
matrix elements between |d〉 and |k〉 are then the Vk.
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2 Eigenstates

Although it is not convenient to solve the problem in the eigenbasis, we will study this
anyways since it provides useful information for what follows. An eigenstate |Ej〉 (indexed
by j) has expansion coefficients obeying

Ejaj = εaj +
∑
k

V ∗k ckj , Ejckj = Vkaj + ωkckj .

For this simple model, we can solve for ckj explicitly:

ckj =
Vk

Ej − ωk
aj .

Plugging this into the equation for aj gives a relation only in terms of aj. Either aj = 0
and we have nothing (i.e., Ej is not an eigenvalue afterall) or aj 6= 0 and we must have the
condition

Ej = εj +
∑
k

|Vk|2

Ej − ωk
.

This is the condition for an eigenvalue, and it has a simple graphical interpretation. For
example, we are guaranteed to have one eigenvalue between pairs of adjacent ωk. Thus is we
have N values of ωk that are monotonically increasing, then N − 1 of the eigenvalues must
lie between these; since the ωk form a dense band, so must the eigenvalues which will pretty
much have the same layout and density as the ωk. Outside the band of ωk we may or may
not have solutions that separates off from the band by a finite amount; this depends on the
Vk and the density of states of the band.

Next, normalization of the eigenstate

1 = |aj|2 +
∑
k

|ckj|2

turns into a simple formula for |aj|2 once we plug in the form for ckj which is

|aj|2 =
1

1 +
∑

k |Vk|2/(Ej − ωk)2
.

Since aj = 〈d|Ej〉, this is the probability |〈d|Ej〉|2 of being in the discrete state |d〉 for
eigenstate |Ej〉.

A final thing to observe is how |aj|2 behaves for a discrete state that occurs outside the band
when we go to weak coupling Vk → 0. If the discrete state does exist, say above the band,
then as Vk → 0 its energy must smoothly go to the top energy of the band ωT . Thus in the
eigenvalue condition, it must be that |Vk|2/(Ej−ωT ) remains finite as Vk → 0 and Ej → ω+

T .
Then |Vk|2/(Ej − ωT )2 must go to infinity and |aj|2 → 0: as we weaken the coupling, either
the bound state disappears or its projection onto the discrete state must to go zero.
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3 Green’s function solution and self-energy

The differential equation for g(t) and b(k, t) is not easy to solve as written, so we do a Fourier
transform to change to an algebraic equation. Our Fourier convention is

g(ω) =

∫ ∞
−∞

dt g(t)eiωt , g(t) =

∫ ∞
−∞

dω

2π
g(ω)e−iωt . (4)

The choice of initial conditions and zero wave function for t < 0 mean the time integrals for
the Fourier transform run only over t ≥ 0. So in our specific case

g(ω) =

∫ ∞
0

dt g(t)eiωt

and we can get this to absolutely converge if Im ω > 0 because |g(t)| ≤ 1 by normalization.
Doing the Fourier transform and using g(0) = 1 and b(k, 0) = 0, we get

−i+ ωg(ω) = εg(ω) +
∑
k

V ∗k b(k, ω) , ωb(k, ω) = ωkb(k, ω) + Vkg(ω) .

We can easily eliminate b(k, ω) and solve for g(ω) alone:

g(ω) =
i

ω − ε− Σ(ω)
(5)

where the self-energy or mass operator is

Σ(ω) =
∑
k

|Vk|2

ω − ωk
.

We note that even though we didn’t have any interactions to speak of in the usual sense of
the word, we have gotten rid of degrees of freedom (all the b(k, t)) so the effective dynamics of
g(t) alone must feel a more complex and time-dependent “potential” which is the self-energy.

At this point it is important to note the connection between g(ω) as written above and the
local density of states for |d〉. Since it is also true that

g(t) = 〈d| exp(−iĤt)|d〉 =
∑
j

|〈d|Ej〉|2 exp(−iEjt) .

we can do the same type of Fourier transform to get

g(ω) =
∑
j

|〈d|Ej〉|2 i
ω − Ej + i0+

from which we have the local density of states projected onto |d〉 or spectral function

A(ω) = − 1

π
Im [g(ω)/i] =

∑
j

|〈d|Ej〉|2δ(ω − Ej) =
−ImΣ(ω)

(ω − ε−ReΣ(ω))2 + (ImΣ(ω))2
.
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We would like to take the continuum limit as the sum over k becomes infinitely dense and
the ωk infinitesimally separated. But the present form is slightly inconvenient so we first
rewrite Σ(ω) in terms of a hybridization function ∆(E) for continuous energy E

∆(E) =
∑
k

|Vk|2δ(E − ωk) . (6)

Notice how this function contains all the information about the coupling to the band as well
as the discreteness of the band itself. In addition, assuming Vk is “smooth” versus ωk, the
function ∆(E) converges to a continuous function of E in a straightforward manner. The
self-energy now can be written as a continuous integral

Σ(ω) =

∫ ωT

ωB

dE
∆(E)

ω − E
(7)

where ωT = maxωk is the top of the band and ωB = minωk is the bottom of the band.

4 Analytical behavior of Σ and its continuation

We now need to analyze the analytical properties of Σ(ω) and set up the inverse Fourier
integral to get g(t), which is again

g(t) =

∫ ∞
−∞

dω

2π

ie−iωt

ω − ε− Σ(ω)
. (8)

We want to evaluate this integral for t > 0. To use contour integral methods and create a
closed loop, t > 0 means that Im ω < 0 is needed to get exponential convergence as ω →∞
so we would close this with a loop over a half circle on the lower half plane. However, our
derivation and definition of Σ(ω) so far has assumed Im ω > 0: namely, we can only perform
the above Fourier integral for the imaginary part of ω being slightly positive. So we need to
first figure out how to define things in the lower complex ω half plane. Namely, we need to
analytically continue Σ(ω) to the lower half plane.

First, let’s see what is going on around the segment of continuous band energies ωB < ω < ωT .
Namely, let’s approach an ω in that segment from above and below the real axis, so ω = ω1+is
where ω1, s are real, ωB < ω1 < ωT and s is going to zero either from positive or negative
side. Writing this out

Σ(ω1 + is) =

∫ ωT

ωB

dE
∆(E)

ω1 − E + is

Remembering that

lim
s→0

1

x+ is
= P

1

x
− iπ sign(s) δ(x)

we find for s→ 0

Σ(ω1 + is) = P

∫ ωT

ωB

dE
∆(E)

ω1 − E
− iπ sign(s)∆(ω1) .
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Therefore we have a branch cut for ωB < ω < ωT since the imaginary part is discontinuous.
So we will have to integrate around this non-analyticity. For what follows, we separate out
the real and imaginary part of Σ(ω) for ω close to the real axis:

Σ(ω1 ± i0+) = Σ1(ω1)± iΣ2(ω1) (9)

Σ1(ω1) = P

∫ ωT

ωB

dE
∆(E)

ω1 − E
Σ2(ω1) = −π∆(ω1) .

Second, when doing the Fourier integral to get g(t), it could turn out that ω− ε−Σ(ω) = 0
for some ω outside of the branch cut. Namely a bound (or anti-bound) state would appear
below (or above) the continuum band energy range. This depends on the precise form of the
∆(E), but if they exist, they will be a countable set of solutions. The reason is based on our
eigenstate analysis above and the graphical analysis: we have the eigenvalue condition

Ej = ε+
∑
k

|Vk|2

Ej − ωk
. (10)

For a fixed number of |k〉 states Nk, this problem has Nk+1 eigenvalues since that is the size
of the Hamiltonian matrix. Doing the graphical analysis, we find there must be a solution
between each consecutive pair of ωk since the right hand side will go from −∞ to +∞ in
that narrow region. So there can be at most two solutions that are separated from the band,
one above and one below; whether they will be or will not be separated by a finite amount
from the band as the continuum limit is approached depends on ∆(E).

So let us call these potential real discrete energy solutions Ej where Ej = ω− ε−Σ(Ej) and
the residue of the integrand for them is

Zj = lim
ω→Ej

(ω − Ej) ·
1

ω − ε− Σ(ω)
=

1

1− Σ′(Ej)
. (11)

We can write this in more detail as

Zj =
1

1 +
∑

k |Vk|2/(Ej − ωk)2
.

As noted in our eignstate analysis above, this just says that

|〈d|Ej〉|2 = Zj (12)

which means the residue is the probability/weight of the discrete state in the eigenstate |Ej〉
or it is the overlap of the initial state |d〉 with the discrete eigenstate |Ej〉.

Now we go back to our Fourier integral of Eq. (8). We have two types of non-analytic
behavior in the integrand. There is a branch cut for ωB < ω < ωT and there may be some
discrete and isolated poles at Ej to the left and/or right of the branch cut along the real ω
axis. So when we close the contour integral over a infinite semicircle on the lower half plane,
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we find that our Fourier integral collapses to closed loops around the isolated poles at Ej
and a closed integral around the branch cut going rightwards above it and leftwards below
it. The isolated poles are simple to deal with since they just contribute the residues Zj. The
branch cut requires some more algebra. Looking back at the real and imaginary part of Σ
in Eq. (9) close to the branch cut, we need to sum (above branch cut minus below it)∫ ωT

ωB

dω

2π

ie−iωt

ω − ε− Σ(ω + i0+)
−
∫ ωT

ωB

dω

2π

ie−iωt

ω − ε− Σ(ω − i0+)
.

Plugging in the explicit from for Σ and doing basic algebra we arrive at the result of the
integral around the branch cut∫ ωT

ωB

dω

2π

2π∆(ω)e−iωt

(ω − ε− Σ1(ω))2 + π2∆(ω)2
.

Thus in final form we have for g(t)

g(t) =
∑
j

Zje
−iEjt +

∫ ωT

ωB

dω

2π

2π∆(ω)e−iωt

(ω − ε− Σ1(ω))2 + π2∆(ω)2
. (13)

So we get the contribution from the discrete states which are just oscillatory and do not
damp away, and we have a continuous integral that must go to zero as t → +∞ by the
Riemann-Lebesgue lemma. Therefore, for long times, the discrete state decays into some
component of the bound states but the rest of it “disappears” into the continuum.

For very large times t → ∞, the integral will go to zero, but we can analyze the way it
goes to zero. Throughout the range of integration (away from the band edges), we expect
∆(E) to be smooth and therefore Σ1(E) will be smooth as well. So the integrand is actually
smooth in the interior of the band, so a Fourier transform of it will go to zero rapidly for
large t. However, generally, there must be some type of discontinuity in ∆(E) across the
band edge since it must be strictly zero outside the band. Let’s focus for argument’s sake
on the lower band edge ωB. If we assume ∆(E) behaves like ∼ (E − ωB)β for some power
β ≥ 0 (so that ∆(E) is not divergent at the band edge), then simple scaling arguments (or
analysis of the discontinuity in the βth derivative of ∆(E)) show that we get a contribution
going to zero as t−(β+1). The upper band will also give power law decay. Thus the long time
behavior of the contribution from the band goes to zero like a power law.

Eq. (13) is as far as we can go without known more about ∆(E). Below follow some examples.

5 Example: infinite band and constant coupling

The first example is the textbook example of a uniform continuum of infinite extent with
uniform coupling to all continuum states. So ωT = −ωB = ∞ and Vk = v so ∆(E) = ∆0.
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The real part of the self-energy in this case is actually zero (z = ω − E below)

Σ1(ω) = P

∫ ∞
−∞

dE
∆0

ω − E
= ∆0 lim

u→0
lim
A→∞

∫ −u
−A

dz

z
+

∫ A

u

dz

z
= 0 .

So g(t) in this case is given by a known Lorenzian integral, and there are no bound states
since the continuum exists is for all energies, which means

g(t) =

∫ ∞
−∞

dω

2π

2π∆0e
−iωt

(ω − ε)2 + π2∆2
0

= exp(−π∆0t).

The probability is
p(t) = |g(t)|2 = exp(−2π∆0t)

so we have a lifetime τ = 1/(2π∆0). This is classic exponential decay of the probability
from the discrete state into the continuum. The density of states on the discrete state is
essentially g(ω) which in this case is

g(ω) =
i

(ω − ε)2 + π2∆2
0

so the discrete level has become broadened due to the coupling to the continuum and this is
the same as saying it has acquired a finite lifetime.

6 Weak coupling and finite width band

In the perturbative limit where |Vk| and thus ∆(E) is very small, the integral over the band
is very sharply peaked around ω = ε + Σ1(ω). Given that Σ1 is small as well, this happens
around ω = ε but we can be more correct by doing a series expansion in ω around ε: the
solution ωs obeys

ωs ≈ ε+ Σ1(ε) + (ωs − ε)Σ′1(ε)

which means

ωs ≈ ε+
Σ1(ε)

1− Σ′1(ε)
≈ ε+ Σ1(ε)

since we are only keeping lowest order terms in the small Σ quantity (which are proportional
to the small Vk quantities). For ∆(ω) we just evaluate it at ε since it already enters are
squared which is second order. We also note that the function ω − ε−Σ1(ω) around ωs has
the approximate linearized form (ω−ωs)(1−Σ′1(ε)) = (ω−ωs)/Z(ε) where we have defined

Z(ε) =
1

1− Σ′1(ε)
.

Thus our integral is approximated as

g(t) ≈
∑
j

Zje
−iEjt +

∫ ωT

ωB

dω

2π

2π∆(ω)e−iωt

(ω − ωs)2/Z(ε)2 + π2∆(ε)2
.
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If ∆(ε) is quite tiny, then the integrand is extremely peaked and gives a state with long
lifetime; only with very long times does that contribution decay and we will see the effects
of the band edges. So there are conditions when we will have something like

g(t) ≈
∑
j

Zje
−iEjt + Z(ε)e−π∆(ε)Z(ε)te−i[ε+Σ1(ε)]t + At−(βB+1) +Bt−(βT +1) .

The first sum is from the discrete pole term: they scale as ∆ for small ∆ from the basic
analysis above of the discrete poles for ∆ → 0. The second term is from our sharp peak
in the integral: it is the usual exponential decay from the discrete state into the band but
renormalized by Z(ε). The last two terms coming from the possible discontinuities in ∆ at
the band edges also scale as ∆. So for weak ∆, for shorter times we see the exponential
decay as in the infinite band width case but at longer times when this exponent becomes
very small, we see algebraic decay from band edges and constant small amplitude oscillations
from the potential bound states.

In this type of model Z(ε) > 1 is often true so we can’t interpret this as a usual renormal-
ization that has Z < 1. Examination of the integral defining Σ1(ω)

Σ1(ω) = P

∫ ωT

ωB

dE
∆(E)

ω − E

shows the following facts: (i) since ∆ ≥ 0 then Σ1 must be negative for ω < ωB and positive
for ω > ωT ; (ii) it drops down to zero as ω moves to larger values from ωT ; (iii) it rises to
zero as ω moves to smaller values from ωB; (iv) for very large |ω| outside the band Σ1 = C/ω
where C > 0. Therefore, we must have at last one zero of Σ1 inside the band and we
generically expect it to be increasing inside the band so Σ′1 > 0 is generically true inside the
band and certainly must be true on overage inside the band. Conversely, Σ′1 < 0 outside the
band for sure. Thus Z > 1 inside the band and Z < 1 outside. Of course, in some parts of
the band, often near the band edges (if ∆→ 0 near the edges), we may have Z < 1.

7 Finite band with constant coupling

A specific example is provided by a finite band of width 2W with uniform coupling:

∆(E) = ∆0 , ωT = −ωB = W .

This can be physically realized for a 2D system which has constant density of states (for
parabolic energies of electrons) and a uniform coupling |Vk| being constant.

Then we can perform the integral for Σ1(ω) to get

Σ1(ω) = ∆0 ln

(
|ω +W |
|ω −W |

)
9



Figure 1: Finite width band model with ∆(ω) = (π/4)v2
0 cos(πω/2). This specific case is

for v0 = 0.3 and ε = 0.4. Top panel shows Σ1(ω) and Σ2(ω). Bottom panel shows in green
vertical line ε and in black vertical line the position of ω̂ that solves ε + Σ1(ω̂) = ω̂; the
difference is the energy shift due to the coupling. The blue curve A is the spectral function
∆/((ω − ε− Σ1)2 + π2∆2) = (−1/π)Im[g(ω)/i] while the red curve is its approximation by
the Lorentzian at ω̂.

and the bound state equation for Ej outside the band reads (|Ej| > W )

Ej = ε+ ∆0 ln

(
|Ej +W |
|Ej −W |

)
which must have two solutions outside the band because the logarithm diverges at the band
edges and drops from infinity down to zero (very slowly). The transcendental equation is
hard to solve, but here are some examples tabulated numerically:
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ε/W ∆0/W Ej/W Zj
0.1 1.0 1.59 0.43
0.5 1.0 1.78 0.52
0.9 1.0 2.00 0.60
0.1 0.5 1.23 0.34
0.5 0.5 1.40 0.49
0.9 0.5 1.62 0.62
0.1 0.2 1.02 0.093
0.5 0.2 1.10 0.35
0.9 0.2 1.30 0.64
0.1 0.1 1.0002 0.0003
0.5 0.1 1.01 0.11
0.9 0.1 1.16 0.63

In the perturbative limit of small ∆0/W , we can also try to solve this. If we let Ej = W (1+δ)
the equation now reads

1 + δ = ε/W + (∆0/W ) ln

(
2

δ
+ 1

)
Assuming δ is small, to leading order the equation reads

W − ε
∆0

≈ ln(2/δ)

which solves to

Ej ≈ W + 2W exp

(
−W − ε

∆0

)
which is a very strong and non-perturbative dependence on ∆0. Since

Σ′1(ω) =
∆0

ω +W
− ∆0

ω −W
when evaluated at Ej we get

Σ′1(Ej) ≈ −
∆0

2W
exp

(
+
W − ε

∆0

)
and so Zj to leading order is

Zj ≈
2W

∆0

exp

(
−W − ε

∆0

)
Thus the bound state weight Zj becomes exponentially small for weak ∆0. So in this limit,
the integral over the band dominates the decay probability.

8 Other examples

Other examples and numerical examples can be found in the Kogan work cited at the start.

11


	The model
	Eigenstates
	Green's function solution and self-energy
	Analytical behavior of  and its continuation
	Example: infinite band and constant coupling
	Weak coupling and finite width band
	Finite band with constant coupling
	Other examples

