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We are interested in the diffusion equation of type

∂c(~r, t)

∂t
= D~∇ ·

[
~∇c(~r, t) + c(~r, t)β~∇V (~r)

]
= −~∇ ·~j(~r, t) (1)

for current
~j(~r, t) = −D~∇c(~r, t)−Dc(~r, t)β∇V (~r, t)

where c(~r, t) is the concentration or density, D is the diffusion constant, and β = 1/(kBT )
is the inverse temperature (inverse energy units). Here the particles diffusing around feel
a total potential given by V (~r). This equation can be true in any number of dimensions
but we’re really interested in 2D so ~r has two Cartesian components. As a side note, this is
also called a master equation or the Fokker-Planck equation. From a stochastic viewpoint,
this is the equation for the probability/density distribution of independent particles giggling
around when each of them moves as per the Langevin equation

d~r(t)

dt
= −Dβ~∇V (~r(t)) + ~g(t)

where ~g(t) is a Gaussian random variable (random kicks in time)

〈~g(t)~g(t′)〉 = 2Dδ(t− t′)I .

This is a bit hard to digest or define, so in practice people would do discrete time simulations
with time step ∆t and then the positions one step forward is

~rn+1 = ~rn + ∆t
(
−Dβ~∇V (~rn) + ~gn

)
where ~gn is a random Gaussian variable with variance 2D/∆t along each component and the
~g at different time steps are uncorrelated.
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At any rate, the diffusion equation is very hard to solve in general for an arbitrary potential
V . All one can really say is that the distribution c(~r, t) will approach equilibrium which is
given by the Boltzmann distribution

c(~r, t→∞) = cequil(~r) =
exp(−βV (~r))

Z
.

This follows immediately from setting ~j = 0 and integrating the equation. A formal approach
is to define a propagator K(~r, ~r ′, t) that says what the probability is for a particle starting at
~r ′ at t = 0 to end up at ~r after time t. If one knows this, then the solution is straightforward
given the initial distribution:

c(~r, t) =

∫
d~r ′K(~r, ~r ′, t)c(~r ′, 0) . (2)

If no time elapses, the particle can’t go anywhere. So for short times

K(~r, ~r ′, t→ 0) = δ(~r − ~r ′) .

Clearly, the propagator itself must reduce to the equilibrium distribution for long times: i.e.
it must forget the initial distribution

K(~r, ~r ′, t→∞) =
exp(−βV (~r))

Z
.

At present, I know of two simple cases where analytical solutions are available. The first
is really simple and represents pure diffusion with constant potential so ~∇V = 0. The
propagator is the Gaussian one

Kdiff (~r, ~r
′, t) =

[
1

4πDt

]d/2
exp

(
−−(~r − ~r ′)2

4Dt

)
Here, d is the number of dimensions being considered, so d = 2 for us. This just says that
the particle does a random walk away from ~r ′ and each axial component has a standard
deviation of

√
2Dt about the starting point. Then to find the final distribution, one must

do the integral of Eq. (2) with this K.

The second case with analytical answer is that of a harmonic potential: V = ~r ·K ·~r/2. Here
K is a d× d matrix of spring constants (the Hessian matrix) that must be positive definite
so the minimum is at ~r = 0. The diffusion case above is actually then a subclass of this
problem with K = 0. If we decompose this matrix into its eigenbasis with eigenvalues kα
and we represent ~r in the eigenbasis with components xα, then the propagator is given by

Kharm(~r, ~r ′, t) =
d∏

α=1

[
βkα

2π(1− e−2Dβkαt)

]1/2

exp

(
−βkα(xα − x′αe−Dβkαt)2

2(1− e−2Dβkαt)

)
.

This is a long and complicated looking result but one can digest is step by step. First, for
t→∞, all the exponential factors go to zero and we recover the equilibrium distribution

Kharm(~r, ~r ′, t→∞) =
d∏

α=1

[
βkα
2π

]1/2

exp

(
−βkαx

2
α

2

)
=

[
β

2π

]d/2√
det(K) exp

(
−β~r ·K · ~r

2

)
.
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Although somewhat tedious, one can show that the t → 0 limit is correct (it is the same
as the diffusion result in the same limit since for very short times the particles only diffuse
and have not time to feel the force on them). Finally, the time dependence comes in only
through the factor exp(−Dβkαt). Namely, short times are when t � (Dβkα)−1 and the
distribution has not had time to evolve much at all towards the equilibrium (although its
shape may change from the initial one: e.g. the diffusion cases changes from a delta function
to a Gaussian shown above); in this short time limit, there is only really diffusion happening
so one can ignore the harmonic potential along axes α where this relation is obeyed. Long
times are when t � (Dβkα)−1 and the distribution approaches equilibrium. If you make
plots of this over time, you see it starts as a Gaussian centered around ~r′ at short times, and
then the Gaussian changes width and its center moves to ~r = 0.

For the case we are interested in, which is oxygen vacancies on an oxide surface like SrTiO3

and a tip with voltage that attracts them, our present best guess at reasonable parameters
are

D ∼ 10−12 cm2s−1 , β ≈ 39 eV−1 (about 300 K)

and for the potential we have something like

V (~r) =
zeVtipR√

(R + δ)2 + ~r 2

where
zeVtip ≈ −4 eV , R ≈ 50 nm , δ ≈ 1 nm .

Since zeVtip is so huge compared to kBT , it turns out that the equilibrium distribution is
very narrow. I made a crude plot and found that for |~r| >4 nm, the equilibrium distribution
is drops by a factor like 1/2. Anyways, this is much smaller than R which is the scale over
which the function V starts departing from quadratic behavior. So it seems reasonable to
use a harmonic approximation for V to make some estimates. (Basically, the tip potential
is big compared to kBT .)

Taylor expanding, I get

V (~r) = zeVtip

(
1− ~r 2R

2(R + δ)3
+ · · ·

)
so here the K matrix is nice and diagonal and the two axes are equivalent by symmetry, so

kx = ky = k = − zeVtipR

(R + δ)3
≈ 1.5× 1011 eV cm−2 .

So the time scale for the evolution is

τ = (Dβk)−1 ≈ 0.17 s .

For an example of what this means, consider an initially flat distribution over a square of
very large sides L: c(~r, t = 0) = 1/L2. Let’s ask what the density is right under the tip as
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a function of time c(~0, t) (this makes the integrals easy to do for me — an alternative is to
start with a really wide Gaussian like c(~r, t = 0) = exp(−~r 2/(2σ2))/(2πσ2) for very large
σ and have Maple to the Gaussian double integral of Eq. (2) since it can be done in closed
form for any ~r and not just ~r = 0). Large here means compared to the final equilibrium
distribution. In this case, we have

c(0, t) =
1

L2

∫ L/2

−L/2
dx′
∫ L/2

−L/2
dy′

βk

2π(1− e−2Dβkt)
exp

(
−βk(x′2 + y′2)e−2Dβkt

2(1− e−2Dβkt)

)
.

For times short enough so that the exponential factor e−Dβkt is not too small so that
βkL2e−Dβkt � 1, the integration can be extended to infinity and then it is just some Gaussian
integrals that give

c(0, t) ≈ e2Dβkt

L2
.

This says that the central density for short times is growing exponentially compared to its
initial value. (In fact this result should be true for a range of |~r| < Le−Dβkt for such short
times.) At longer times, the distribution starts looking more like the equilibrium one.
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