
A dielectric slab: potential from a point charge in the middle

Sohrab Ismail-Beigi

November 12, 2013

We are interested in the dielectric screening properties of a dielectric slab. In the far field, it turns
out that such a slab is rather ineffective at screening actually. We quantify this below.

We have a slab of infinite extent in the xy plane and finite thickness d in the z direction. The
dielectric constant is ε in the slab and 1 outside (vacuum). We will have the slab be in the region
−d/2 < z < d/2. So the dielectric function is

ε(z) =


1 for d/2 < z
ε for −d/2 < z < d/2
1 for z < −d/2

.

We want to solve the classical electrostatic problem

∇ · (ε(z)∇φ) = −4πρfree

where the free charge can either be a unit point charge in the center of the slab at z = 0 or on the
surface at z = d/2:

ρfree(x, y, z) = δ(x)δ(y)δ(z − z0) .

The far fields are quite similar but having the two cases gives us some different insights. We
obviously have cylindrical symmetry.

Aside from the boundaries at z = ±d/2 and at (x, y, z) = (0, 0, z0), we have the usual Laplace
equation. We will work in Fourier space in the xy plane but keep the real space z description.
Thus the potential will be in mixed variables φ̃(kx, ky, z) and we will denote k = (kx, ky). In these
variables, φ̃ is easy to solve for in regions where ε(z) is constant:

φ̃ = αekz + βe−kz

for some constants α and β. Thus we now have a boundary problem of matching the value and
derivatives of φ̃ at the three boundaries at hand. Also, we assume the potential goes to zero for
z → ±∞. Thus, we will therefore be seeking a solution of the form

φ̃(k, z) =


D2e

−kz for d/2 < z
C1e

kz + C2e
−kz for z0 < z < d/2

B1e
kz +B2e

−kz for −d/2 < z < z0
A1e

kz for z < −d/2

.
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The continuity conditions on φ̃ are

C1 + C2e
−kd = D2e

−kd , C1e
kz0 + C2e

−kz0 = B1e
kz0 +B2e

−kz0 , B1e
−kd +B2 = A1e

−kd

while the derivative discontinuity conditions at some z come from the general relation

ε(z+)
dφ̃

dz

∣∣∣
z+
− ε(z−)

dφ̃

dz

∣∣∣
z−

=
{
−4π if z = z0

0 else

so we have

−D2e
−kd − ε(C1 − C2e

−kd) = 0

C1 − C2e
−2kz0 −B1 +B2e

−2kz0 = −4πe−kz0

εk

ε(B1e
−kd −B2)−A1e

−kd = 0

Rather than solving this for the most general z0, we will simply concentrate on the two cases of
interest to us.

1. The case z0 = 0 so the point charge in inside the center of the slab. Plugging in the above into
Mathematica with z0 = 0 gives

C1 =
2π
k
· (ε− 1)e−kd

ε(ε+ 1− (ε− 1)e−kd)

C2 =
2π
k
· (ε+ 1)
ε(ε+ 1− (ε− 1)e−kd)

D2 =
2π
k
· 2
ε+ 1− (ε− 1)e−kd

The shared denominator goes from 2 at k = 0 to ε+ 1 at k →∞.

The potential is given by the Fourier integral

φ(x, y, z = 0) =
∫
dkxdky
(2π)2

eikxx+ikyyφ̃(k, z) =
∫ ∞

0
dk

k

2π
φ̃(k, z)J0(kρ)

where ρ =
√
x2 + y2 and we have used cylindrical symmetry. Here is a very useful integral: and∫ ∞

0
dk e−k|z|J0(kρ) → φ(ρ, z) =

1√
ρ2 + z2

(Bare Coulomb) .

We are now ready to answer some questions. The first is the field inside the slab, 0 < z < d/2,
and close to the point charge. Namely, ρ is small and so is z (both compared to d of course). The
integral to do is for the field at z given by C1e

kz + C2e
−kz in k space:

φ(ρ, 0 < z < d/2) =
∫ ∞

0
dk

(ε− 1)e−k(d−z) + (ε+ 1)e−kz

ε(ε+ 1− (ε− 1)e−kd)
J0(kρ) .

Since z, ρ� d, the denominator will have converged to ε(ε+ 1) before the numerator starts doing
anything and before the J0 starts oscillating. So the dominant contribution to the integral is from
large k and we can just set the denominator to its value for k → ∞. Also in the numerator, the
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first exponential will be quite small and can be neglected. So we end up with the integrand of
e−kzJ0(kρ)/ε which then simply gives a screened Coulomb interaction:

φ(ρ� d, z � d) =
1

ε
√
ρ2 + z2

.

This is sensible: close to the point charge, it is as if we in an infinite 3D medium and the electric
fields coming out of the point charge are screened isotropically in all directions as expected. The
positive unit charge has been screened by negative polarization charges immediately around it, and
the compensating positive polarization charges are on the surface of the slab and quite far away.

Second, we can ask for the far field. One possibility is to send ρ→∞ while keeping 0 < z < d/2 in
the slab; another is to send z →∞ out of the slab for fixed ρ; there are more but they all give the
same answer actually. For fixed z but ρ� d, the region contributing to the integral is for k � 1/ρ
due to the oscillatory J0. For small k, the numerator becomes 2ε and the denominator 2ε as well:
we just get a bare Coulomb interaction 1/ρ. For fixed ρ but large z, we need to do a different
integral involving D2:

φ(ρ, z > d/2) =
∫ ∞

0
dk

2e−kz

ε(ε+ 1− (ε− 1)e−kd)
J0(kρ) .

Again only k � 1/z gives significant contributions, we can set the J0 to unity, the denominator
to 2, and the integrand is really simple and again gives the Bare Coulomb interaction 1/

√
ρ2 + z2.

Therefore, the slab can not screen the Coulomb interaction in the far field. This is also straight-
forward: being a dielectric, only dipoles and no monopoles can be induced by the point charge.
Assuming these charges are localized (which we will show) around the point charge, they can give
only dipolar contributions in the far field which are subleading compared to the bare Coulomb
contribution.

The near field analysis showed that a net negative polarization charge of 1/ε − 1 surrounds the
point charge. So the positive polarization charge 1− 1/ε will be on the two surfaces of the slab (in
the interior of the slab, ∇2φ = 0 so there are no charges at all in the interior). How is this charge
distributed? By symmetry we can just look at one surface. The surface charge density at z = d/2
is given by the discontinuity of −dφ̃/dz at z = d/2 divided by 4π. Some algebra shows that it is

Σ̃(k) =
(ε− 1)e−kd/2

ε(ε+ 1− (ε− 1)e−kd)
=

(1− 1/ε)
2

· e−kd/2

1 + (ε− 1)(1− e−kd)/2
.

We see that Σ̃(k → 0) = (1− 1/ε)/2 which is the right amount of total polarization charge on the
surface (half on top and half on bottom). The actual distribution is

Σ(ρ) =
∫ ∞

0
dk

k

2π
Σ̃(k)J0(kρ) .

An elementary integral for this case is

Σ̃(k) = e−kw → Σ(ρ) =
w

(w2 + ρ2)3/2

which is a unit of charge spread over a region of ρ ∼ w. Naively, for our case, as long as ρ� d such
that the denominator is constant for k � d, we basically have the charge (1 − 1/ε)/2 spread over
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a region of ρ ∼ d/2 — the actual distribution is more complex for ρ ∼ d due to the more complex
behavior of the integrand denominator.

We can do some more analysis for Σ̃(k). Let’s first series expand the k dependent part for weak
screening ε→ 1:

Σ̃(k) =
(1− 1/ε)

2
· e−kd/2 ·

[
1−

(
1− e−kd

)
·
(
ε− 1

2

)
+O

(
ε− 1

2

)2
]

The leading term is just the charge spread over a region of size d/2, the next is the superposition
of two opposite charges (a dipole) over regions of somewhat different size ∼ d, etc. So basically the
surface charge is spread out over a region of extent ∼ d. The opposite limit of strong (metallic)
screening ε → ∞ is more tricky as a direct expansion in 1/ε gives divergent integrands. Instead,
we focus on the rapidly varying denominator

1 + (ε− 1)(1− e−kd)/2 .

This function is 1 at k = 0, very large ≈ ε/2 for k � d, and by series expanding the exponential
the transition happens over a region in k satisfying kdε/2 ∼ 1 of k ∼ 2/(dε). For ε� 1, this region
in k is much smaller than 1/d so the numerator e−kd/2 is basically constant over this region. So the
integrand has the fastest variation over a narrow range of k of size ∼ 2/(dε) which corresponds in
real space to ρ ∼ dε/2. Thus for a almost metallic system, the charge is spread not over a region
of size d on the surface but instead of much larger size εd — our native analysis above is actually
only true for ρ larger than εd and not merely d. That the charge is more spread out makes sense:
if we had a true metal, the positive surface charge would be completely spread out over the surface
to give a constant potential everywhere (the point charge would be perfectly screened by negative
charges in the interior).

2. Now we put the point charge on the surface of the slab. Here it is more convenient to have z = 0
be the top surface of the slab where the point charge is located and have z = −d be the bottom
surface. Also, instead of three conditions we only have two conditions. So we redo this case from
scratch:

φ̃(k, z) =


C2e

−kz for 0 < z
B1e

kz +B2e
−kz for −d < z < 0

A1e
kz for z < −d

.

The conditions are
B1 +B2 = C2 , A1e

−kd = B1e
−kd +B2e

kd

and
ε(B1e

−kd −B2e
kd)−A1e

−kd = 0 , −C2 − ε(B1 −B2) = −4π/k .

We solve and get

C2 =
2π
k
· 2[ε+ 1 + (ε− 1)e−2kd]

(ε+ 1)2 − (ε− 1)2e−2kd

A1 =
2π
k
· 4ε

(ε+ 1)2 − (ε− 1)2e−2kd
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for the field on the z = 0 and z = −d planes. In both cases, in the far field where k → 0, both
just turn into 2π/k which will then simply give the bare Coulomb field 1/ρ: as before, the slab
can’t screen the point charge in the far field due to the induced dipoles being localized around the
charge and not having a monopolar moment. The near field ρ→ 0 and k →∞ for z = 0 surface is
C2 = 2π

k · 2/(ε + 1) which is just a Coulombic field screened by the average dielectric constant of
vacuum and the slab: we have partial screening. The near field filed on the bottom slab is harder
to figure out since it is a non-divergent constant so the integral just has to be done more precisely.

In the limit of a very thick slab, d → ∞, C2 = 2π/k · 2/(ε + 1) so the half-screened Coulomb
potential is actually the exact answer for all ρ; A1 goes to a constant but we don’t care about the
potential that far away.
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