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Here we study a simple model of charge transfer using a two-level system to see the be-
havior of the most elementary quantum system with some covalence. We will first study
the actual man-body system and then the single-particle version of it which shows some
serious deficiencies. For the single-particle version, we have charge transfer from one state
to another and this changes their relative energies (i.e. creates a potential difference) which
seems physical at first but can create seriously bad predictions.

1 Many-body version

We have systems 1 and 2, and for each we have one electronic level of interest called |1〉 and
|2〉. The systems start far apart so they do not interact. State |1〉 initially has two electrons
(full occupation) and state |2〉 is empty. The interesting level alignment is when the energy
of |1〉 is initially higher than that of |2〉 and we want to know what happens when they come
into contact. (For simplicity, we assume the states are orthogonal.) The state |2〉 is quite
localized and has a sizable Hubbard U .

The many-body Hamiltonian is then

Ĥ = −ε0n̂2 − t
∑
σ

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

)
+ Un̂2↑n̂2↓
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where σ is spin ↑ or ↓, n̂i =
∑

σ n̂iσ and n̂iσ = ĉ†iσ ĉiσ.

For t = 0, the eigenstates are (i) |↑↓, 0〉 with energy 0, (ii) triplet |↑, ↑〉, (|↑, ↓〉+ |↓, ↑〉)/
√

2,
and |↓, ↓〉 with energy −ε0, (iii) singlet (|↑, ↓〉 − |↓, ↑〉)/

√
2 with energy −ε0, and (iv) |0, ↑↓〉

with energy −2ε0 + U .

When we have t 6= 0, the triplet states are unaffected but the three spin zero states couple
so we get a 3×3 problem. In the basis ordered {(|↑, ↓〉 − |↓, ↑〉)/

√
2, |↑↓, 0〉, |0, ↑↓〉} the

Hamiltonian is the matrix

HS=0 =

 −ε0 −
√

2t −
√

2t

−
√

2t 0 0

−
√

2t 0 U − 2ε0


The solutions are very messy but of course doable analytically since we have a cubic problem.
First, we get a qualitative idea by looking at some extreme cases for what the ground state
|Ψ0〉 looks like

|t| → ∞ → |Ψ0〉 = strong covalence, mixture of all three states

U →∞ → |Ψ0〉 = a(|↑, ↓〉 − |↓, ↑〉)/
√

2) + b|↑↓, 0〉 where |a| > |b|
|t| → 0 and U > ε0 → |Ψ0〉 ≈ 1√

2
(|↑, ↓〉 − |↓, ↑〉)

|t| → 0 and U < ε0 → |Ψ0〉 ≈ |0, ↑↓〉
|t| → 0 and U = ε0 → |Ψ0〉 ≈ 1

2
(|↑, ↓〉 − |↓, ↑〉) + 1√

2
|0, ↑↓〉

Let’s consider the case of relatively large U so U > ε0 which simply means that at t = 0, the
ground state does not have two electrons on the second state (due to the −ε0) but instead
has put one on each site. In the perturbative limit of small t (specifically |t| � ε0 and U−ε0),
the ground state energy is

E0 = −ε0 −
2t2

ε0
− 2t2

U − ε0
+O(t4)

and unnormalized wave function is

|Ψ̃0〉 =
1√
2

(|↑, ↓〉 − |↓, ↑〉) +

√
2t

ε0
|↑↓, 0〉

√
2t

ε0
+

√
2t

U − ε0
|0, ↑↓〉+O(t2)

and normalized wave function is

|Ψ0〉 =

(
1 +

2t2

ε20
+

2t2

(U − ε0)2

)−1/2
|Ψ̃0〉+O(t3)

and the occupancy of site |2〉 is

〈n̂2〉 =
1 + 2[2t2/(U − ε0)2]

1 + 2t2/ε20 + 2t2/(U − ε0)2
+O(t3) = 1− 2t2

ε20
+

2t2

(U − ε0)2
+O(t3)

The main points are (i) for t = 0, the occupancy of site |2〉 is one electron when U > ε0; (ii)
for t 6= 0 but small, the occupancy is still close but whether it is larger or smaller depends on
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how large U − ε0 is compared to ε0: the double occupancy of |1〉 reduces 〈n̂2〉 while double
occupancy of |2〉 increases it; and (iii) the behavior versus t is quite smooth as we expect
from perturbation theory: we can send U → ∞ and 〈n̂2〉 stays reasonable and close to one
for |t/ε0| � 1.

Here is a table of numerical solutions for 〈n̂2〉 as a function of t/ε0 and U/ε0:

U/ε0
t/ε0 0 0.25 1.1 2 3

0 2.0000 2.0000 1.0000 1.0000 1.0000
0.25 1.8944 1.8380 1.3133 1.0000 0.9415

1 1.4472 1.3817 1.1680 1.0000 0.8867
2 1.2425 1.2075 1.0974 1.0000 0.9155
3 1.1644 1.1414 1.0682 1.0000 0.9356

2 Single-particle version

We begin by computing the expectation of the Hamiltonian under the approximation that
we can factorize the interaction

〈Ĥ〉 ≈ −ε0〈n̂2〉 − t
∑
σ

(
〈ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ〉

)
+ U〈n̂2↑〉〈n̂2↓〉 .

We simplify notation by defining the occupancy numbers (expectations) niσ ≡ 〈n̂iσ〉 so

〈Ĥ〉 ≈ −ε0n2 − t
∑
σ

(
〈ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ〉

)
+ Un2↑n2↓ .

This is a non-linear self-consistent single-particle problem. We are looking for an optimal
single-particle description with lowest energy expectation. Taking variational derivatives
of 〈Ĥ〉 versus single-particle wave functions ψiσ gives us the single-particle Hamiltonian
matrices hσ for each spin in the |1〉, |2〉 basis

hσ =

(
0 −t
−t −ε0 + Un2,−σ

)
We get two standard 2×2 problems where h↑ depends on n2,↓ and vice versa. We can easily
solve the two 2×2 problems. The matrix hσ has eigenvalues

Eσ,± = −ε0 − Un2,−σ

2
±

√
t2 +

(
ε0 − Un2,−σ

2

)2

and eigenvectors

vσ,+ =

(
cos(θ/2)
sin(θ/2)

)
, vσ,− =

(
− sin(θ/2)

cos(θ/2)

)
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where

cos(θ) =
(ε0 − Un2,−σ)/2√

t2 + ((ε0 − Un2,−σ)/2)2
, sin(θ) =

−t√
t2 + ((ε0 − Un2,−σ)/2)2

Since we have two electrons, there are two possibilities for the ground state. First, it could
be that both electrons have the same spin, say ↑. This would mean both eigenvalues of h↑
are lower than both of h↓. So we have n2,↑ = 1 and n2,↓ = 0. The condition E↑,+ < E↓,−
translates into

−ε0
2

+
√
t2 + (ε0/2)2 = E↑,+ < E↓,− = −ε0 − U

2
−

√
t2 +

(
ε0 − U

2

)2

or √
t2 + (ε0/2)2 +

√
t2 + (U/2− ε0/2)2 < U/2

This is actually impossible to fulfill1 so it just says the triplet states are not the ground state!
But notice that the triplets are described perfectly by this single-particle approach since their
total energies are exactly −ε0 and their wave functions are single Slater determinants which
are the same as the exact wave function for triplets.

The second and only remaining possibility is that we fill one state of each spin for net spin
projection zero along z. Namely, we fill one bonding state for spin up and one bonding state
for spin down. The self-consistency condition is then

n2,σ =
1

2

(
1 +

ε0 − Un2,−σ√
4t2 + (ε0 − Un2,−σ)2

)
.

If we define

f(x) ≡ 1

2

(
1 +

ε0/t− xU/t√
4 + (ε0/t− xU/t)2

)
then we wish to find

n2,σ = f(n2,−σ) , n2,−σ = f(n2,σ)

which is the same as finding solutions to

n2,σ = f(f(n2,σ)) .

Solving the algebraic equation x = f(f(x)) for 0 ≤ x ≤ 1 is messy enough of a quartic
equation that we have to solve it graphically and numerically. Below are some representative
plots of x, f(x), and f(f(x)) for various choices of parameters ε0/t and U/t: When U is
small enough, we get only one unique solution to x = f(x) which means equal up and
down spins (paramagnetic solution) n2,σ = n2,−σ). For larger U , we get three solutions: one
paramagnetic x = f(x) and two distinct high/low spin ones where x 6= f(x) but x = f(f(x)).
For the latter, if we choose n2,↑ to be larger, then n2,↓ = f(n2,↑) < n2,↑.

1The impossibility is easily seen via geometry. Let U = x+ ε0 and then the inequality is basically saying
that the hypotenuse of a right triangle is shorter than one side.
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We end up with a symmetric paramagnetic solution and a symmetry breaking spin-polarized
solution roughly like an antiferromagnetic solution but not precisely as we don’t have sym-
metry between the sites (due to ε0 and U only being on site 2). The table below gives some
numerical values

ε0/t U/t Paramagnetic solution n2,σ Spin-polarized n2,σ values

0.1 0.05 0.52 –
0.1 0.2 0.50 –
0.1 5 0.25 –
0.1 10 0.18 0.06 / 0.38
1 1 0.60 –
1 2 0.50 –
1 5 0.34 0.20 / 0.50
1 10 0.23 0.03 / 0.67
2 2 0.66 –
2 4 0.50 –
2 5 0.44 0.17 / 0.75
2 8 0.34 0.04 / 0.82
2 20 0.18 0.004 / 0.85
5 20 0.30 0.005 / 0.96
12 20 0.58 0.02 / 0.99
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As expected, we find that for large enough U , the system spin-polarizes to avoid double-
occupancy so that the paramagnetic solution is higher in energy and the spin-polarized
solution is the ground state.

Let us look at the perturbative case of t being very small compared to ε0 and U . Furthermore,
we will take U > ε0. Then f(0) ≈ 1 and f(1) ≈ 0. We always have that f(ε0/U) = 1/2 so
the transition between 1 and 0 for f will happens over a narrow range of x on the order of
t/U around x = ε0/U . So the paramagnetic solution has n2 ≈ ε0/U while the spin-polarized
solutions have n2,σ values close to 1 and 0. For x not close to ε0/U , we have the Taylor series

f(x) =
1

2

1 +
sgn(ε0 − Ux)√

1 + 4t2

(ε0−Ux)2

 =
1

2

(
1 + sgn(ε0 − Ux)− 2t2sgn(ε0 − Ux)

(ε0 − Ux)2
+ . . .

)

so we get in the perturbative regime

n2,↑ = f(0) ≈ 1− t2

ε20
, n2,↓ = f(1) ≈ t2

(U − ε0)2

and so

n2 = 1− t2

ε20
+

t2

(U − ε0)2
+O(t3)

which has the correct form perturbative form compared to the exact value but off by a factor
of two for the correction to unity.

Before we analyze these results in comparison to the right answer, we digress to see how this
single-particle theory behaves for the paramagnetic solution which is technically interesting
if physically wrong. In the paramagnetic case, both spin solutions are degenerate so we just
have a single self-consistent problem where n2,σ = n2,−σ. When t = 0, if n2,σ = 0 then this
means electrons want to go to site 2; but if n2,σ = 1 and U > ε0, then this would push level
2 above level 1. For large U , what happens is a small number of electrons 2n2,σ = 2ε0/U
transfer from site 1 to site 2 which raises the energy of site 2 to zero energy and this completes
the charge transfer because the two sites are then degenerate in energy.

For t > 0 but still small, here is a numerical example to give a flavor: for ε0/t = 3 and
U/t = 10 we get n2,σ = 0.36 and the two eigenstates

|Elow = −0.75〉 = +0.80|1〉+ 0.60|2〉 doubly-occupied

|Ehigh = +1.34〉 = −0.60|1〉+ 0.80|2〉 empty

Interestingly, the occupied state is mainly on site 1 and not on site 2: the electron transfer
n2,σ = 0.36 has raised the energy of site 2 high enough above zero to make it less occupied
that site 1. So the effect of covalency t 6= 0 is to break the degeneracy of charge transfer
equilibrium for t = 0 and raise the energy of the accepting site to be consistent with the final
small charge transfer. For the same parameters, the spin polarized solution has n2,↑ = 0.904
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and n2,↓ = 0.025 with

|Elow,↑ = −3.07〉 = +0.31|1〉+ 0.95|2〉
|Elow,↓ = −0.16〉 = +0.99|1〉+ 0.16|2〉
|Ehigh,↑ = +0.33〉 = −0.95|1〉+ 0.31|2〉
|Ehigh,↓ = +6.20〉 = −0.16|1〉+ 0.99|2〉

Now let us discuss the physics. Physically, the paramagnetic solution is wrong for large U
since it predicts a finite electron transfer 2n2 ≈ 2ε0/U independent of t for small t which does
not go to zero as it should. The mean-field approach treats electrons as some continuous
fluid that can have fractional densities: with fractional transfer, we raise the energy of site 2
by some desired amount to align it with ε0. But the real system has real discrete electrons:
either there is no electron, one electron, or two electrons on site 2; when there are two, the
energy is higher by the big number U ; there is no sense of scaling up to intermediate U
by some intermediate number of electrons (even if the expectation value 〈n̂2〉 is fractional).
Basically, n2 fluctuates between 0, 1, and 2, and we get big changes of energy: fluctuations
matter a great deal which we can’t incorporate in a simple mean-field approach.

The spin-polarized solution makes the electrons avoid each other by localizing them on
different sites, but it does this by using the spin quantum number as a lever. By wrongly
breaking spin symmetry, it makes eigenstates of one spin localize on one site and of the other
spin on the other site. The actual answer of course has zero spin and zero spin polarization,
so this is also physically wrong. But at least it is reasonable.
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