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This is mainly mathematical and about the precise form of the Coulomb interaction in a
periodic supercell appropriate for one-dimension (wire, nanotube, polymer, etc.) calcula-
tions. The periodic direction is z and the unit cell is of length L, and the vacuum separated
periodic copies in the xy plane whose area is being increased to achieve convergence. The
area of the unit cell is A in the xy plane so the cell volume is Ω = AL. In what follows, we
will mainly focus on a square lattice in the xy plane so A = a2. The reciprocal vectors in the
xy plane are called Gxy = 2π(n,m)/a for integer pairs (n,m), the position vector projection
in the xy plane is rxy, and the reciprocal vectors along z are Gz = 2πj/L for integer j. We

will often shorten the length of rxy as r so r = |rxy| =
√
x2 + y2.

In any periodic supercell, the Coulomb interaction is made periodic and the divergence at
zero wave vector is removed by actually using the interaction function

Vc(r − r′) =
∑
G 6=0

4π

Ω|G|2
eiG·(r−r

′) (1)

where this function obeys the key properties

∇2Vc(r) = −4π
∑
R

δ(r −R) Poisson equation

Vc(r +R) = Vc(r) Periodic∫
Ω

dr Vc(r) = 0 Zero average

We want to find the form of this function for a wire geometry.

So we separate out the Gz = 0 long-range part of the sum from the rest:

Vc(r) =
∑
Gxy 6=0

4πeiGxy ·rxy

ALG2
xy

+
∑
Gz 6=0

4πeiGzz

AL

∑
Gxy

eiGxy ·rxy

G2
xy +G2

z

= Vl(x, y) + Vs(x, y, z) (2)
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The first part is the long-range part average over the z direction (Gz = 0) and the second
part is the short-ranged part. For the short-ranged part, we use the following two facts:
first, we have the following continuous Fourier transform∫

d2q

(2π)2

eiq·rxy

q2 +G2
z

=

∫ ∞
0

dq

2π

qJ0(qr)

q2 +G2
z

=
K0(|Gz|r)

2π
.

The modified Bessel function K0(z) has these properties (among others):

K0(z) =

∫ ∞
0

du cos(zu)√
1 + u2

=

∫ ∞
0

du exp(−z coshu) =

∫ ∞
0

du cos(z sinhu)

K0(z) = − ln(z/2) + γ +O(z2) for small z

K0(z) =

√
π

2z
e−z

(
1− 1

8z
+O(z−2)

)
The last property is the useful one as it shows that K0(z) decays exponentially for large
arguments. The second fact we use is that for any two-dimensional sampling of a Fourier
transform we get a periodized function in real space:

if f(rxy) =

∫
d2q

(2π)2
f̃(q)eiq·rxy then

∑
n,m

f̃

(
2π(n,m)

a

)
e2πi(nx+my)/a = a2

∑
j,k

f(x−ja, y−ka)

This means that the short range part is

Vs(x, y, z) =
∑
Gz 6=0

2eiGzz

L

∑
j,k

K0

(
|Gz|

√
(x− ja)2 + (y − ka)2

)
(3)

As long as a � L and the r of interest does not get as large as a (i.e. r is not deep in the
vacuum region and r � a), only the j = k = 0 term contributes to exponential precision so

Vs(rxy, z) ≈
∑
Gz 6=0

2eiGzzK0(|Gz|rxy)
L

The error is ∼ e−a|Gz | ∼ e−2πa/L. This is some periodic function in z that is highly localized
within L going away into the vacuum in the xy plane: charge modulations of wave vector Gz

along the wire plane give a Coulomb potential that decays exponentially into the vacuum
with decay length 1/|Gz|. For non-zero rxy, this is finite and converges quickly over Gz.

The long-range part is more problematic:

Vl(x, y) =
∑
Gxy 6=0

4πeiGxy ·rxy

ALG2
xy

.

We can’t use the above technique of a periodized function since Gxy = 0 is missing from the
sum. We also can’t add it in since it is infinite. It is temping to use a screened interaction
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which does allow us to do the sums

V λ
l (x, y) =

∑
Gxy

4πeiGxy ·rxy

AL(λ2 +G2
xy)
− 4π

ALλ2

=
2

L

∑
j,k

K0

(
λ
√

(x− ja)2 + (y − ka)2
)
− 4π

ALλ2

and then carefully take λ → 0. This is of course fine in principle, but in practice for small
λ we have sums of periodic copies of logarithmic potentials which is poorly convergent and
not easy to deal with analytically; in fact, some part of the sum over the K0 must cancel the
−1/λ2 divergence in the last term.

Below, we will try to do the sum directly and largely succeed. But before that, since we are
mainly concerned with the r/a � 1 region, let’s make a simple approximation to see what
the answer might look like. Instead of woking with a square symmetry, let’s try to make
things as circular as possible since then we will only have a radial problem. So we will solve
the problem inside of a circle of radius R where πR2 = a2, we will assume Vl(r) only depends
on r, and if all goes well V ′l (R) = 0 at the boundary so we can “connect” this answer to the
other circles. This problem can be solved in many ways, but we can use electrostatics to
skip many steps. We have a line charge with 1/L charge per unit length at r = 0 and then
a smooth uniform distribution of charge of density 1/La2 = 1/(LπR2). The total charge
inside a circle of radius r must relate to the electric field E(r) via

2πrE(r) =
4π

L

(
1− πr2/(πR2)

]
→ E(r) = 2/r − 2r/R2

We have E(R) = 0 as needed. Solving V ′l = −E gives

Vl(r) = − 2

L
ln r + (r/R)2/L+ φ0

The constant φ0 is determined by making the average of Vl(r) zero over the circle∫ R

0

2πrdrVl(r) = 0

This gives Lφ0 = 2 lnR− 3/2. So all together

Vl(r) =
1

L
·
(
−2 ln(r/R) + r2/R2 − 3/2

)
We now rewrite this in terms of the basic length a via R = a/

√
π

Vl(r) =
1

L
·
(
−2 ln(r/a)− 2 ln

√
π + πr2/a2 − 3/2

)
=

1

L
·
(
−2 ln(r/a)− 2.6447 + π(r/a)2

)
where we take this seriously only for r < R. The main point is that we’ve extracted the
logarithmic part, the constant part, and subleading quadratic part that goes to zero as
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a → ∞. There are no terms linear in r as expected from basic electrostatics. We keep this
form in mind below.

Let us attempt to perform the sum directly to the extent possible:

Vl(x, y) =
∑
Gxy 6=0

4πeiGxy ·rxy

ALG2
xy

=
1

Lπ

′∑
n,m

exp(2πi(nx+my)/a)

n2 +m2

where the prime means we exclude n = m = 0. This periodic function obeys the following
properties

∇2V ′′l (x, y) = −4π

(∑
j,k

δ(x− ja)δ(y − ka)− 1

a2

)
∫ a

0

dx

∫ a

0

dy Vl(x, y) = 0 , Vl(x+ ja, y +ma) = Vl(x, y) .

We are only interested in the fundamental region 0 < x, y < a. Rather than trying to solve
this differential equation, we will do the sum using known infinite functional series.

First, to make the expressions shorter, we define scaled versions of x and y as

(u, v) =
2π

a
(x, y)

and we split off the n = 0 terms off from the rest

Vl =
1

Lπ

′∑
n,m

einueimv

n2 +m2
=

1

Lπ

∑
m6=0

eimv

m2
+

1

Lπ

∑
n6=0

einu
∑
m

eimv

m2 + n2

=
1

Lπ

∑
m 6=0

cos(mv)

m2
+

1

Lπ

∑
n 6=0

cos(nu)
∑
m

cos(mv)

m2 + n2
.

where we used the fact that the sums are real so we can take the real part of the exponentials
as needed. We use the known sums from Gradshteyn-Rhyzhik p. 48 (#3 and #9)

∞∑
m=1

cos(mα)

m2
=
π2

6
− πα

2
+
α2

4
for 0 ≤ α ≤ 2π

and the much more powerful

∞∑
m=−∞

cos(mα)

(m− β)2 + γ2
=
π

γ

eiβ(α−2π) sinh(γα) + eiβα sinh(γ(2π − α))

cosh(2πγ)− cos(2πβ)
for 0 ≤ α ≤ 2π .

(The first sum can actually be derived from the more general second one.)

Using them, we have

Vl =
2

Lπ

(
π2

6
− πv

2
+
v2

4

)
+

1

L

∑
n6=0

cos(nu)

n
· sinh(nv) + sinh(2πn− nv)

cosh(2πn)− 1
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We now use elementary results that sinh a + sinh b = 2 sinh([a + b]/2) cosh([a − b]/2) and
cosh(2a) = 2 sinh2 a+ 1 to get

Vl =
1

L

(
π

3
− v +

v2

2π

)
+

2

L

∞∑
n=1

cos(nu)

n
· cosh(n(π − v))

sinh(nπ)

The term
cosh(n(π − v))

sinh(nπ)

rapidly approaches e−nv as n gets large (for |v| < π). We can add and subtract this to get

Vl =
1

L

(
π

3
− v +

v2

2π

)
+

2

L

∞∑
n=1

cos(nu)

n
e−nv +

2

L

∞∑
n=1

cos(nu)

n
·
[

cosh(n(π − v))

sinh(nπ)
− e−nv

]
The first infinite sum is actually known: Gradshteyn-Rhyzhik p. 49 (#2)

∞∑
n=1

pn cos(nα)

n
= −1

2
ln
(

1− 2p cosα + p2
)

for 0 < α < 2π , p2 ≤ 1

In our case p = e−v so we get

Vl =
1

L

(
π

3
− v +

v2

2π

)
− 1

L
ln
(

1− 2e−v cosu+ e−2v
)

+
2

L

∞∑
n=1

cos(nu)

n
·
[

cosh(n(π − v))

sinh(nπ)
− e−nv

]
This expression is very useful for numerically computing Vl because the sum is rapidly
convergent for any value of u and v. The linear term in v seems strange since the original
expression seems even in u, v as it is based on cosines. We will see below that it is actually
canceled by a part of the logarithm for small v and u.

To see what this means for small u and v, we just series expand everything. Doing the
expansion by hand (i.e. Mathematica) gives

Vl =
1

L

(
π

3
− v +

v2

2π

)
+

1

L

(
− ln(u2 + v2) + v + u2/12− v2/12 + · · ·

)
+

1

L

∞∑
n=1

[coth(nπ)− 1] ·
[

2

n
− nu2 + nv2 + · · ·

]
The numerical sums needed are

∞∑
n=1

[coth(nπ)− 1] · 2

n
= 0.00749072979907

and
∞∑
n=1

[coth(nπ)− 1] · n = 0.00375586178739 ≈ 1

12
− 1

4π
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and plugging in gives

Vl =
1

L

(
− ln(u2 + v2) + 1.0546883 + (1/(4π))(u2 + v2) + · · ·

)
Converting back to actual units with u2 + v2 = (2π/a)2r2 we have

Vl =
1

L

(
− 2 ln(r/a)− 2 ln(2π) + 1.0546883 + π(r/a)2 + · · ·

)
=

1

L

(
− 2 ln(r/a)− 2.6210658 + π(r/a)2 + · · ·

)
Notice how similar this is to very high precision to the much easier result obtained by the
circular model. The constant is quite close but of course not exactly the same.
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