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This is mainly mathematical and about the precise form of the Coulomb interaction in a
periodic supercell appropriate for slab or sheet calculations where on direction z is of length
L and is being converged to large values of vacuum separation between periodic copies along
z. In the xy plane, the unit cell has area A and along z it has length L for a volume Ω = AL.
The reciprocal vectors in the xy plane are called Gxy, the position vector projection in the
xy plane is rxy, and the reciprocal vectors along z are Gz = 2πn/L for integer n.

In any periodic supercell, the Coulomb interaction is made periodic and the divergence at
zero wave vector is removed by actually using the interaction function

Vc(r − r′) =
∑
G 6=0

4π

Ω|G|2
eiG·(r−r

′) (1)

where this function obeys the key properties

∇2Vc(r) = −4π
∑
R

δ(r −R) Poisson equation

Vc(r +R) = Vc(r) Periodic∫
Ω

dr Vc(r) = 0 Zero average

We want to find the form of this function for a slab geometry.

So we separate out the xy sum from the z sum to get

Vc(r) =
∑
Gz 6=0

4πeiGzz

ALG2
z

+
∑
Gxy 6=0

4πeiGxy ·rxy

AL

∑
Gz

eiGzz

G2
xy +G2

z

= Vl(z) + Vs(rxy, z) (2)

The first part is the long-range part average over the xy cell (i.e. Gxy = 0) and the second
part is the short-ranged part. For the short-ranged part, we use the following two facts:
first, we have the following continuous Fourier transform∫ ∞

−∞

dq

2π

eiqz

G2
xy + q2

=
e−|z||Gxy |

2|Gxy|
,
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and second, for any one-dimensional discrete sampling of a Fourier transform we get a peri-
odized function in real space:

if f(z) =

∫ ∞
−∞

dq

2π
f̃(q)eiqz then

∑
n

f̃

(
2πn

L

)
e2πinz/L = L

∑
m

f(z − Lm) .

This means that the short range part is

Vs(rxy, z) =
∑
Gxy 6=0

4πeiGxy ·rxy

AL

∑
Gz

eiGzz

G2
xy +G2

z

=
∑
Gxy 6=0

2πeiGxy ·rxy

A|Gxy|
∑
m

e−|z−mL||Gxy | (3)

As long as L is much larger than the xy lattice spacing and the z of interest does not get
as large as L (i.e. z is not deep in the vacuum region), only the m = 0 term contributes to
exponential precision so

Vs(rxy, z) ≈
∑
Gxy 6=0

2πeiGxy ·rxy

A|Gxy|
e−|z||Gxy |

The error is ∼ e−L|Gxy | ∼ e−2πL/axy where axy is the length of the xy lattice vector(s). This
is some periodic function in rxy that is highly localized within a few axy in the z direction
going into the vacuum: charge modulations of wave vector Gxy in the plane give a Coulomb
potential that decays exponentially into the vacuum with decay length 1/|Gxy|.

The long-range part is more problematic:

Vl(z) =
∑
Gz 6=0

4πeiGzz

ALG2
z

=
L

Aπ

∑
n6=0

e2πinz/L

n2

This function obeys the following properties

V ′′l (z) = − 4π

AL

(
L
∑
m

δ(z −mL)− 1

)
,

∫ L

0

Vl(z) = 0 , Vl(z + L) = Vl(z) .

We are only interested in the fundamental region 0 < z < L. The first relation says that
Vl(z) will be parabolic in the region with curvature 4π/AL:

Vl(z) = a+ bz +
2πz2

AL

Ensuring periodicity V (0) = V (L) gives us the value of b = −2π/A. There are two methods
to determine a. One is to enforce the zero average

0 =

∫ L

0

dz Vl(z) =

∫ L

0

dz (a− 2πz/A+ 2πz2/(AL))

The other is to directly compute V (0) as

V (0) =
L

πA

∑
n 6=0

1

n2
=

2L

πA

∞∑
n=1

1

n2
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where the infinite sum was shown first by Euler to be π2/6. Either way gives a = Lπ/(3A).
Thus we have found that

Vl(z) =
Lπ

3A
− 2πz

A
+

2πz2

AL
. (4)

Therefore, the final expression is for 0 < z < L

Vc(r) =
Lπ

3A
− 2πz

A
+

2πz2

AL
+
∑
Gxy 6=0

2πeiGxy ·rxy

A|Gxy|
∑
m

e−|z−mL||Gxy | (5)

What this result means is the following: we would like to extract converged results for
L → ∞ involving integrals over Vc(r − r′). The short-ranged part is very well behaved.
The long-ranged part has three components but only one is the physical one we want: the
middle −2πz/A which is the potential due to a sheet of charge with unit surface areal charge
density. The last one scales as 1/L so it no problem, but first diverges. Thus if our integrals
are over non-neutral distributions, this term will contribute and our results will be formally
infinite. In practice, we will have to fit this term out and separate out the L independent
component.

This diverging term only exists because we are enforcing that the integral of Vc(r) over a
unit cell is zero. It would be “nice” to only work with the physical −2πz/A term but this
one is not periodic.

Incomplete for now...

We can try to see how dielectric screening may modify these consideration in the simplest
approximation. We will focus on the long-range part where Gxy = 0. So we have a single
sheet of charge at z = 0 as our free charge. The dielectric is linear, homogenous, and extends
over the range −a < z < b where a, b > 0. For convenience we work with −L/2 < z < L/2
for this particular case as our periodic unit cell. The potential, electric, and displacement
fields obey

dD(z)

dz
= 4πρfree =

4π

A

[
∞∑

m=−∞

δ(z −mL)− 1/L

]
, E(z) =

D(z)

ε(z)
,
dφ(z)

dz
= −E(z)

where

ε(z) =


1 −L/2 < z < −a
ε0 −a < z < b
1 b < z < L/2

and all quantities are periodic with period L. Solving for D(z) is easy as it is just the bare
Coulomb problem:

D(z) = D0 +
2π|z|
A
− 2πz2

AL
for − L/2 < z < L/2

. . . to be continued . . .
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