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The idea of these notes is to look at localized Hubbard-like models for electron correlation
effects and see what one can do exactly (very little) and then more approximately within a
mean-field approximation such as DFT or Hartree-Fock or the like. One of the main aims
is to present background information as well as some derivations and explanations of the
various outcomes that are used in DFT+U calculations.

1 Matrix elements of the Coulomb operator

Start with the electron-electron interaction or Coulomb operator which is usually written as

V̂ee =
1

2

∑
i 6=j

1

|ri − rj|

for a fixed number of electrons and antisymmetry imposed on the wavefunction this V̂ee acts
on. It will be more convenient to work in second quantized notation so the operator contains
the antisymmetry and we can work in an orbital basis directly. The same operator written
using field operators is

V̂ee =
1

2

∑
σ,σ′

∫
dr

∫
dr′

ψ̂†σ(r)ψ̂†σ′(r′)ψ̂σ′(r′)ψ̂σ(r)

|r − r′|

where σ, σ′ go over spin up and down and the field operator ψ̂σ(r) annihilates (i.e., removes)
an electron with spin σ at position r. The form looks simple in term of spin (particular
matchings and only two spin indices) since the Coulomb interaction is spin-independent. We
will be using some type of orthonormal basis to work in, so we write the field operator in
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that basis. Let’s assume as is usual that the basis respects spin: there are spin up and spin
down basis orbitals which we can label as φnσ(r). So

ψ̂σ(r) =
∑
n

φnσ(r)ĉnσ .

The ĉnσ is the usual fermion annihilation operator that removes an electron from state n, σ.
When you plug this in, you get

V̂ee =
1

2

∑
σ,σ′

∑
i,j,k,l

(iσkσ′|V |jσlσ′) ĉ†iσ ĉ
†
kσ′ ĉlσ′ ĉjσ

where the matrix elements or integrals of the Coulomb operator are

(iσkσ′|V |jσlσ′) =

∫
dr

∫
dr′φ∗iσ(r)φjσ(r)

1

|r − r′|
φ∗kσ′(r′)φlσ′(r′) . (1)

This is the Coulomb interaction between two “charge” density distributions given by the
pair products: density φ∗iσ(r)φjσ(r) and density φ∗kσ′(r)φlσ′(r). When i = j or k = l, each is
actually an honest probability density that is positive and integrates to one. But for i 6= j
or k 6= l, the density is in general complex and has zero integral due to the orthonormality
of the basis. So we expect the largest integrals when i = j and k = l as the interaction of
two distributions each with net “charge” +1; next is i = j but k 6= l (and converse) which
is interaction of a net charge +1 with a neutral distribution; and smallest is i 6= j and k 6= l
which is the interaction of two neutral distributions. Note that if all the indices are the same
(i = j = k = l and σ = σ′) we get zero since ĉ2

iσ = 0 for any fermion operator: you can’t
remove two electrons from one single orbital since you had at most one electron there to
start with! So there is no term with (iσiσ|V |iσiσ). This just says electrons don’t interact
with themselves (see below for more on this).

2 Coulomb operator for localized basis sets

This is pretty much all we can say at this very high level of generalization. To make any
progress, we need some simplifying assumptions. If we’re interested in the Coulombic physics
coming from states that are well localized in space around atoms or from bands formed from
such states, then we can make some progress. We can choose our basis states to be highly
localized around each atom, which in principle means Wannier functions, but this could
be localized orthogonalized atomic basis functions as well. The localization means that V
integrals for orbitals on different atoms will be much smaller than those where the orbitals
are on the same atom. Namely, i and j should be on the same atom and so should k and l —
this just follows from the locality assumption of the basis and should be a good one since the
localized states decay something like exponentially with separation. In addition, if i and k
refer to different atoms, the integrals will be smaller than when they refer to the same atom:
so we are ignoring inter-atomic V in comparison to intra-atomic V values. The drop off here
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is not exponential since for i = j and k = l we are talking about the Coulomb interaction
between to +1 net charge distributions that could be on neighboring atoms. This is likely
much smaller than when the two are on the same atoms but the falloff is like 1/r. At any
rate, we drop these, although one can try to include them and there extensions of DFT+U
(or many-body calculations) where nearest neighbor V matrix elements are retained in some
way; within DFT+U, it is called the DFT+U+V method.

Anyways, we will assume that only intra-site V values are relevant. Then V̂ee falls apart into
into a sum over atomic sites at, and we will from now on use i, j, k, l to label orbitals on each
atomic site:

V̂ee =
∑
at

1

2

∑
σ,σ′

∑
i,j,k,l

(iσkσ′|V |jσlσ′) ĉ†iσ ĉ
†
kσ′ ĉlσ′ ĉjσ . (2)

3 General considerations in the many-body case

If we only have one orbital of interest per atomic site, then i = j = k = l is forced. The
four operator sequence is then ĉ†iσ ĉ

†
iσ′ ĉiσ′ ĉiσ. This is zero if σ = σ′. We can also move the

operators around a bit to get

V̂ee =
∑
at

1

2

∑
σ

(iσiσ̄|V |iσiσ̄)n̂iσn̂iσ̄ =
∑
at

Un̂i↑n̂i↓

where n̂iσ = ĉ†iσciσ counts electrons in that state and σ̄ = −σ is the opposite spin. We’ve
recovered the Coulombic sector of the single site Hubbard Hamiltonian. U here is shorthand
for the on-site, same-orbital, opposite-spin Coulomb integral.

A slightly more general version of this is to assume multiple orbitals on an atomic-like site
but to only keep the very largest V integrals: namely i = j and k = l and then further
assume they are all equal to some number U (regardless of what i or k are). Then

V̂ee =
∑
at

U

2

∑
σ,σ′

∑
i,k

ĉ†iσ ĉ
†
kσ′ ĉkσ′ ĉiσ .

Rearranging the operators while using their anticommutation properties gives

V̂ee =
∑
at

U

2

∑
σ,σ′

∑
i,k

n̂iσn̂kσ′ − n̂iσδσ,σ′δi,k .

Since n̂iσ is the electron counting operator, it must have eigenvalues of only 0 and 1 so it is
a projection operator and n̂2

iσ = n̂iσ. Using this we can rearrange the sums a little to get

V̂ee =
∑
at

U

2

∑
iσ,kσ′|iσ 6=kσ′

n̂iσn̂kσ′ .
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We get a sum over products of number operators between pairs of orbitals except if they
are the same orbital which is called self-interaction correction: an electron in an orbital does
not interact with itself but only with the other electrons in other orbitals. This is some type
of a generalized Hubbard model. One can write it in a few equivalent ways using the total
number of electron operators N̂ =

∑
i,σ n̂iσ as

V̂ee =
∑
at

U

2
N̂(N̂ − 1) =

∑
at

U

2
(N̂2 −

∑
iσ

n̂2
iσ) =

∑
at

U

2
(N̂2 −

∑
iσ

n̂iσ) .

This form is particularly nice since it says that when U is the same for all orbital interactions
on a site, the repulsion energy only depends on the total number of electrons on that site
and not their specific distribution among orbitals. This is also sometimes called an SU(n)
Hubbard model where n is the number of orbitals on the site since rotating the orbitals by
any unitary transformation among themselves is an invariant of the system. This invariance
is very useful in many-body slave-boson or slave-rotor approaches to electron correlation (it
greatly reduces the number of “fake” bosons that are added to try to model the correlated
behavior).

4 Mean-field Hartree-Fock approach

Beyond these simple cases, it is hard to make any real progress: the four operators in
general are a big mess and hard to rearrange into anything sensible. Separately, the many-
body problem is impossible to solve anyways due to correlations once we add hopping terms
(kinetic and electron-ion). So we now make the key approximation of mean field to get rid
of operators and give us numbers. Another way to say the same thing is that when taking
expectation of the four operators, we assume we can “split” it into the expectation of all the
allowed pairings with appropriate signs for fermion behavior (i.e., Wick’s theorem). This is
easiest written in the following way for the expectation:

〈ĉ†iσ ĉ
†
kσ′ ĉlσ′ ĉjσ〉 ≈ 〈ĉ†iσ ĉjσ〉〈ĉ

†
kσ′ ĉlσ′〉 − 〈ĉ†iσ ĉlσ′〉〈ĉ†kσ′ ĉjσ〉 .

So the two-body expectation with four operators has turned into a product of two one-body
expectations each with two operators. This approximation is a mean-field one. If the wave
function over which we are taking the expectation is a single Slater determinant (i.e., we’re
doing Hartree-Fock), then this expression is exact and not approximate. To the extent that it
is good we are saying that the two particle correlations are not so strong that they invalidate
the mean-field view.

We will generally assume that the spin is a good quantum number so that expectations like
〈ĉ†iσ ĉkσ′〉 are zero unless σ = σ′. In this case, the two operator expectation is actually the
one-body density matrix ρ:

ρσji = 〈ĉ†iσ ĉjσ〉
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which in the position representation is

ρσ(r, r′) = 〈ψ̂†σ(r′)ψ̂σ(r)〉 .

In the position representation, the mean-field approximation says

〈V̂ee〉 =
1

2

∫
dr

∫
dr′

n(r)n(r′)−
∑

σ |ρσ(r, r′)|2

|r − r′|

where n(r) =
∑

σ ρ
σ(r, r) is the electron density. This expression is a standard way to write

the Coulomb interaction energy for a Hartree-Fock mean-field theory: the interaction energy
has been simplified and only depends on products of one-body expectations (density and
density matrix). The first term is the Hartree energy and the second the Fock exchange
energy as it only applies to parallel spins. If you are a purist, however, notice that the above
form is true both if we have a single Slater determinant (i.e., single-particle occupancies are
either zero or one) or a statistical mixture of Slater determinants (occupancies between zero
and one), so it is slightly more general than the traditional single determinant Hartree-Fock
approach.

In the orbital representation in mean-field, the basic equation (2) becomes

〈V̂ee〉 =
∑
at

1

2

∑
σ,σ′

∑
i,j,k,l

(iσkσ′|V |jσlσ′) (ρσjiρ
σ′

lk − ρσliρσjkδσ,σ′) . (3)

We have the Hartree part and then the Fock part which requires parallel spins. This is a
very general expression but hard to really digest in this form since the density matrix ρijσ is
not diagonal. However, we can certainly choose the diagonal basis for purposes of analysis,
but when we do an actual computation we will use the general non-diagonal basis.

In the diagonal basis of the density matrix, things simplify quite bit. In this nice basis, ρjiσ
is zero unless i = j. The diagonal values (eigenvalues) are nothing other than the average
occupancies fiσ = 〈ĉ†iσ ĉiσ〉 = 〈n̂iσ〉. We know 0 ≤ fiσ ≤ 1 is a constraint (since n̂iσ has
eigenvalues of only 0 and 1). In this basis, after minor relabeling,

〈V̂ee〉 =
∑
at

1

2

∑
i,j,σ

(∑
σ′

(iσjσ′|V |iσjσ′)fiσfjσ′

)
− (iσjσ|V |jσiσ)fiσfjσ .

Things have simplified quite a bit: there are actually only two overall types of Coulomb
matrix elements. In the Hartree term, we get positive integrals between two densities each
of which is net +1; in the Fock term, all the integrals should be smaller since they represent
neutral-neutral interactions except for i = j where we get again a big interaction. We can
call these Coulomb and exchange matrix elements in some general sense.

We notice that the i = j term in the Fock actually exactly cancels the i = j and σ′ = σ
term in the Hartree. This is correct and is the self-interaction issue discussed above. The
Hartree term itself has this spurious self-interaction, but the Fock zaps it. The fact that
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Hartree-Fock removes self-interaction is general and not restricted to our specific choices of
basis or approximation on what matrix elements we kept from the start; that Hatree-Fock
does this generally is simply a statement of the fact that no matter how bad the Hartree-Fock
single Slater determinant wave function might be, it is a valid many-body fermionic wave
function that obeys antisymmetry so it never can place two electrons in the same state; or
equivalently, we compute the exact expectation of the electron-electron repulsion operator
with an approximate wave function, and the actual electron-electron repulsion operator
never has the same electron interacting with itself. More practically, it seems that we should
remove this term manually so that all the remaining Fock contributions are “small” and we
can make more progress.

Removing the self-interaction term gives a key working expression

〈V̂ee〉 =
1

2

∑
at,σ

[∑
i 6=j

[(iσjσ|V |iσjσ)− (iσjσ|V |jσiσ)]fiσfjσ +
∑
i,j

(iσjσ̄|V |iσjσ̄)fiσfjσ̄

]
(4)

which is split into parallel and anti-parallel spin terms (σ̄ is the opposite spin to σ). In
principle, one could base a mean-field DFT+U scheme on this formula. One would need
to calculate (more likely choose as free parameters) the various Coulombic integrals. Then
one has a simple function of the occupancies and one will optimize it (plus other energy
terms) to get the ground state. Again, the physical content of this equation is identical to
equation (3) but it is just easier to figure out what one is talking about.

5 Dudarev scheme

A most popular approach for DFT+U of Dudarev et al.1 makes a lot of simplifications to
get something straightforward. For example, one could argue or just posit that one will be
doing a kind of spherical averaging: the sums over i and j are over atomic states, e.g. 5
components of the d states on a transition metal. If one assumes the Coulombic integrals are
quite similar irrespective of the choice of orbitals, or one uses an average over the possible
choices of orbitals, then one can simplify greatly. So for the Hartree integrals one says
U = (iσjσ′|V |iσjσ′) and for the presumably smaller exchange integrals J = (iσjσ|V |jσiσ)
where i 6= j. Then we can simplify Eq. (4) to

〈V̂ee〉 =
∑
at

1

2

∑
σ

(
(U − J)

∑
i 6=j

fiσfjσ + U
∑
i,j

fiσfjσ̄

)
. (5)

Here there are only two Coulombic parameters U and J , and we sum over all the orbital pairs
with equal weight so we have a high degree of rotational invariance. Same spin electron pairs
feel repulsion U − J while opposite spins feel repulsion U . This type of expression doesn’t

1S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Physical Review B 57,
1505 (1998); DOI:10.1103/PhysRevB.57.1505
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assume that all the orbitals are equally occupied and thus will admit not only spin ordering
(ferromagnetism or antiferromagnetism) but also orbital ordering (i.e. unequal occupancy
of atomic-like orbitals on a given site). However, it doesn’t know anything about orbital
shapes: so the Coulombic repulsion between two electrons in the same spatial state and or
different spatial states on a site are assumed identical.

The expression can be massaged a bit by using the total (average) number of electrons on
the site for given spin

Nσ =
∑
i

fiσ

and doing some fiddling

〈V̂ee〉 =
∑
at

1

2

∑
σ

(
(U − J)

(
N2
σ −

∑
i

f 2
iσ

)
+ UNσNσ̄

)
.

This is simple enough to write out the spin sum explicitly

〈V̂ee〉 =
∑
at

(U − J)

2

(
N2
↑ +N2

↓ −
∑
i

(f 2
i↑ + f 2

i↓)

)
+ UN↑N↓ . (6)

Most of the terms here only have the total number of electrons of each spin and are thus
rather “averaged”. The exceptions are the f 2

iσ terms which are coming from self-interaction
correction (SIC). Thus DFT+U schemes can be thought of as SIC schemes or close cousins, a
point made emphasized by Marzari and collaborators. This is quite visible if we contemplate
the contribution of this type of energy to the one-electron eigenvalue (band energy). In
the most simplified approach, the Janak theorem would lead to εiσ = ∂Etot/∂fiσ, so this
Coulombic part contributes the following to the eigenvalue

∂〈V̂ee〉
∂fiσ

= (U − J)(Nσ − fiσ) + UNσ̄ .

The interpretation is simple: the electron in question feels a repulsive energy from average
number of electrons present on the site (by U − J for like spin and U for unlike spin). The
−fiσ term corrects this to make sure it doesn’t repel itself. Another way to think about it is
that filled states fi,σ = 1 are lowered in energy while empty states are higher (by U−J); this
is formation of Hubbard bands for broken symmetry (i.e., when the one-electron occupancies
are breaking equivalency). Finally, note that Nσ − fiσ is the number of “other” electrons of
same spin: again SIC. But as we increase or decrease fiσ while holding all other occupancies
fixed, this term doesn’t change so it is SIC for any fiσ (and not only for some particular
value) which is as it should be.

The above derivative also shows that the minimization of the Coulombic part will drive the
occupancies to extremes. Consider holding the number of electrons of a given spin Nσ fixed
while optimizing over the fiσ. The derivative expression shows that one lowers the energy
more by increasing the larger occupancy states at the expense of the smaller ones. This
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will push as many of the occupancies to zero as possible and try to lump the most number
of electrons into the smallest number of orbitals. This is nothing really amazing as many
mean-field theories work like this, but it is a danger of this type of method: by making U
and/or J large enough, one is guaranteed to create symmetry breaking of the occupancies.

A remaining question is how to construct a DFT+U total energy from all of this that one
can use in an actual calculation, or in other words, how to deal with double counting. We
want to paste this 〈V̂ee〉 onto the DFT total energy but don’t want to double count Hartree
energies and possible exchange ones already there. So we want to use the following form of
the total energy functional

Etot = EDFT + 〈V̂ee〉 − Edc
where Edc is some double-counting energy. There are probably lots of ways to wave one’s
hands to get something reasonable. One way is to assert that the DFT total energy has big
problems for partial occupancies of orbitals since it is not SIC but is probably doing an okay
job for the total energy for integer fillings. So one picks the Edc that cancels the 〈V̂ee〉 under
such a condition. If the occupancies of each orbital are either 1 or 0 then f 2

iσ = fiσ and we
would get

〈V̂ee〉
∣∣∣
integer fillings

=
∑
at

(U − J)

2

[
N↑(N↑ − 1) +N↓(N↓ − 1)

]
+ UN↑N↓

=
∑
at

U

2
N(N − 1)− J

2

(
N↑(N↑ − 1) +N↓(N↓ − 1)

)
.

Choosing the above expression to be Edc gives the spherically averaged Dudarev DFT+U
approach. As there are many common terms that cancel, it simplifies to

Etot = EDFT +
(U − J)

2

∑
at

∑
iσ

(fiσ − f 2
iσ) = EDFT +

(U − J)

2

∑
at,σ

trace(ρ− ρ2) (7)

where we have noticed in the second form that we can easily go back to the non-diagonal
basis for a general expression. The eigenvalue corrections in a simplified view looks like

εiσ =
∂Etot
∂fiσ

= εDFTiσ + (U − J)

(
1

2
− fiσ

)
.

So it shifts the LDA bands by a constant as well as splitting occupied and unoccupied states
by U − J .

The only technical criticism of what is written above is the cavalier method of doing the
eigenvalue correction. Technically, the Janak theorem says that for a Bloch state ψnkσ with
occupancy fnkσ we have

εnkσ =
∂Etot
∂fnkσ

=
∂EDFT
∂fnkσ

+
∂(EU − Edc)

∂fnkσ

The density matrix is given by

ρijσ = 〈iσ|ρ̂σ|jσ〉 =
∑
nk

fnkσ〈iσ|ψnkσ〉〈ψnkσ|jσ〉
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so the more proper way to describe the eigenvalue correction is to go back to the expression
of Eq. (7) and to take derivatives and end up with (in the diagonal eigenbasis)

εnkσ = εDFTnkσ +
∑
at,iσ

(U − J)

(
1

2
− fiσ

)
∂fiσ
∂fnk

= εDFTnkσ +
∑
at,iσ

(U − J)

(
1

2
− fiσ

)
|〈iσ|ψnkσ〉|2 .

The näıve eigenvalue correction needs an extra factor saying how large the projection of the
Bloch band nkσ is onto the localized states.

6 Liechtenstein scheme

The more sophisticated approach is to not make such a dramatic assumption of equality of
all types of Coulombic matrix elements as in the Dudarev scheme. In general, this takes us
back to an expression like Eq. (3), which is fine but quite general. To make some progress, we
need to make some assumptions. We will be assuming that the localized orbitals are atomic-
like of the form of a radial function (with no spin dependence) times a spherical harmonic
Rnl(r)Ylm(θ, φ), and using the particularly simple form of the bare Coulomb operator, we
can handle the angular terms explicitly and exactly. Then for the radial parts we will
have to wave hands and parameterize. To make things feasible, we will be assuming the
atomic orbitals come from a single shell of an atom on each site. This results in a so called
rotationally invariant DFT+U form of Liechtenstein et al.2

We take the general expression of Eq. (3) and reduce to the case that the localized orbitals
have the same atomic nl indices so that only the magnetic quantum number m and the spin
are summed over. We have in general form and in diagonal basis

〈V̂ee〉 =
1

2

∑
at,σ,σ′

m,m′,m′′,m′′′

(mσm′′σ′|V |m′σm′′′σ′) (ρσm′mρ
σ′

m′′′m′′ − ρσm′′′mρ
σ
m′m′′δσσ′)

=
1

2

∑
at,σ,σ′
i,j

(iσjσ′|V |iσjσ′)fiσfjσ′ − (iσjσ|V |jσiσ)fiσfjσδσ,σ′ (8)

We now start to massage the Coulomb matrix elements based on our assumptions. The first
thing we need is to express the Coulomb operator in terms of something compatible with
radial and angular functions, so we do a multipole expansion and use the spherical harmonic
addition theorem:

1

|~r1 − ~r2|
=
∞∑
k=0

Pk(r̂1 · r̂2)
min(r1, r2)k

max(r1, r2)k+1
=
∞∑
k=0

4π

2k + 1

k∑
q=−k

Ykq(r̂1)Ykq(r̂2)∗
min(r1, r2)k

max(r1, r2)k+1

2A. I. Liechtenstein, V. I. Anisimov, J. Zaanen, Physical Review B 52, R5467 (1995).
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In fact, almost all the derivations below follow for a more general form of any interaction
V (~r1, ~r2) which has rotational symmetry and interchange symmetry so that it can only
depend on the lengths r1 and r2 and the angle between them parametrized by cos θ12 = r̂1 · r̂2:
we expand in the variable cos θ12 using a Legendre polynomial expansion (instead of more
traditional Taylor)

V (r1, r2, cos θ12) =
∞∑
k=0

fk(r1, r2)Pk(cos θ12)

and here we have some series of functions fk(r1, r2) that are symmetric under interchange of
r1 and r2. For the bare Coulomb case fk(r1, r2) = min(r1, r2)k/max(r1, r2)k+1.

A matrix element like (mσm′′σ′|V |m′σm′′′σ′) is then given by

(mσm′′σ′|V |m′σm′′′σ′) =

∫
d3~r1

∫
d3~r2

Rnl(r1)2Rnl(r2)2Y ∗lm(r̂1)Ylm′(r̂1)Y ∗lm′′(r̂2)Ylm′′′(r̂2)

|~r1 − ~r2|

=
∞∑
k=0

k∑
q=−k

4π

2k + 1
〈Ylm|YkqYlm′〉〈Ylm′′′ |YkqYlm′′〉∗F k

where the radial integrals are defined from Slater’s time as

F k =

∫ ∞
0

dr1

∫ ∞
0

dr2Rnl(r1)2Rnl(r2)2fk(r1, r2) .

The angular parts enforce a simple angular momentum conservation rule that m − m′ =
m′′−m′′′. A stronger condition comes from the angular addition rules which say that k > 2l
always will give zero, so the sum actually only runs over k = 0 to k = 2l. Even more
examination of the angular momentum rules for this particular type of product show that
actually the allowed values of k skip in two k = 0, 2, 4, . . . , 2l. So for a typical application
with l = 2 d orbitals, k = 0, 2, 4 are the only three values appearing.

The expression can be further compactified using Slater’s angular integrals ck

(mσm′′σ′|V |m′σm′′′σ′) = δm−m′,m′′′−m′′

2l∑
k=0

ck(lm, lm′)ck(lm′′′, lm′′)F k (9)

where

ck(lm, l′m′) =

√
4π

2k + 1

∫
dΩ Ylm(θ, φ)∗ Yl′m′(θ, φ)Yk,m−m′(θ, φ) .

These angular integrals can be tabulated, so we now have a working expression for all the
Coulomb matrix elements. The question is instead what to use for the F k.

To get to these, let’s connect the F k to simpler objects we could get from some first principles
calculation where we would vary occupancies of the orbitals and see how the energy or
eigenvalues change. However, it is not going to be easy to do this in the general form where
the density matrices are not diagonal since the number of V matrix elements are very large
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and also there are selection rules that are awkward to enforce. In the diagonal basis, however,
we have more sensible Coulomb and exchange matrix elements which we can make sense of.
Therefore, let us formalize the notion of the diagonal basis for the Hermitian density matrices
ρσ. The eigenvalues fiσ and orthonormal eigenvectors V σ

mi are related to ρσ in the usual way:

ρσmm′ =
∑
i

V σ
mifiσ(V σ)†im′

and plugging this into the expression for the matrix element of V gives

〈V̂ee〉 =
1

2

∑
at,σ,σ′

m,m′,m′′,m′′′

(mσm′′σ′|V |m′σm′′′σ′) (ρσm′mρ
σ′

m′′′m′′ − ρσm′′′mρ
σ
m′m′′δσσ′)

=
1

2

∑
at,σ,σ′,k

m,m′,m′′,m′′′

F kδm−m′,m′′′−m′′ck(lm, lm′)ck(lm′′′, lm′′)(ρσm′mρ
σ′

m′′′m′′ − ρσm′′′mρ
σ
m′m′′δσσ′)

=
1

2

∑
at,σ,σ′,k

F k
∑
i,j

fiσfjσ′

∑
m,m′,m′′,m′′′

δm−m′,m′′′−m′′ck(lm, lm′)ck(lm′′′, lm′′)×[
V σ
m′i(V

σ)†imV
σ′

m′′′j(V
σ′

)†jm′′ − V σ
m′′′i(V

σ)†imV
σ
m′j(V

σ)†jm′′δσσ′

]
=

1

2

∑
at,σ,σ′,k

F k
∑
i,j

fiσfjσ′

∑
m,m′,m′′,m′′′

δm−m′,m′′′−m′′ ×[
V σ
mi
∗ck(lm, lm′)V σ

m′iV
σ′

m′′′jc
k(lm′′′, lm′′)V σ′

m′′j

∗

−V σ
mi
∗ck(lm, lm′)V σ

m′jV
σ
m′′′ic

k(lm′′′, lm′′)V σ
m′′j
∗δσσ′

]
If the Kronecker delta enforcing angular momentum conservation were not there, we could
freely sum over the m,m′,m′′,m′′′ to get nice simple matrix expressions of i and j, but this
is not meant to be. However, for k = 0 we can make progress because c0(lm, lm′) = δmm′ .
We peel off the k = 0 term and use the unitary nature of the V σ

mi matrices to get

〈V̂ee〉 =
1

2

∑
at,σ,σ′,i,j

fiσfjσ′

{
F 0(1− δijδσσ′) +

2l∑
k=2

F k
∑

m,m′,m′′,m′′′

δm−m′,m′′′−m′′ ×[
(V σ)†imc

k(lm, lm′)V σ
m′i(V

σ′
)†jm′′′c

k(lm′′′, lm′′)V σ′

m′′j

−(V σ)†imc
k(lm, lm′)V σ

m′j(V
σ)†im′′′c

k(lm′′′, lm′′)V σ
m′′jδσσ′

]}
=

F 0

2

∑
at

(
N2 −

∑
iσ

f 2
iσ

)
+

1

2

∑
at,σ,σ′,i,j

fiσfjσ′

2l∑
k=2

F k
∑

m,m′,m′′,m′′′

δm−m′,m′′′−m′′ ×[
(V σ)†imc

k(lm, lm′)V σ
m′i(V

σ′
)†jm′′′c

k(lm′′′, lm′′)V σ′

m′′j

−(V σ)†imc
k(lm, lm′)V σ

m′j(V
σ)†im′′′c

k(lm′′′, lm′′)V σ
m′′jδσσ′

]
The leading part is quite simple and so we collect all the remaining complicated stuff into
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specialized Coulomb and exchange matrices defined by the expressions

Cσσ′

ij =
2l∑
k=2

F k
∑

m,m′,m′′,m′′′

δm−m′,m′′′−m′′(V σ)†imc
k(lm, lm′)V σ

m′i(V
σ′

)†jm′′′c
k(lm′′′, lm′′)V σ′

m′′j

and

Xσ
ij =

2l∑
k=2

F k
∑

m,m′,m′′,m′′′

δm−m′,m′′′−m′′(V σ)†imc
k(lm, lm′)V σ

m′j(V
σ)†im′′′c

k(lm′′′, lm′′)V σ
m′′j

so the energy expression looks nice and neat

〈V̂ee〉 =
1

2

∑
at

[
F 0

(
N2 −

∑
iσ

f 2
iσ

)
+
∑
σ,σ′,i,j

Cσσ′

ij fiσfjσ′ −Xσ
ijfiσfjσδσσ′

]
(10)

Having done all of this, we can now try to figure out what to do with the F k. For example,
let’s sum over all the Coulomb matrix elements:∑
i,j

Cσ,σ′

ij =
2l∑
k=2

∑
i,j

F k
∑

m,m′,m′′,m′′′

δm−m′,m′′′−m′′(V σ)†imc
k(lm, lm′)V σ

m′i(V
σ′

)†jm′′′c
k(lm′′′, lm′′)V σ′

m′′j

Using the unitary nature of the V σ
mi matrices, m = m′ and m′′ = m′′′ becomes enforced which

automatically satisfies the Kronecker delta, so this simplifies to

∑
i,j

Cσ,σ′

ij =
2l∑
k=2

∑
m,m′′

F kck(lm, lm)ck(lm′′, lm′′) = 0

where we used the sum rule obeyed by the ck integrals∑
m

ck(lm, lm) = (2l + 1)δk,0 .

This means that the the average of Coulomb matrix elements as we have defined starting at
k = 2 is zero so the only average that does survive is the k = 0 term F 0 we peeled off. We
call this average Coulomb element the number U .

For the exchange element averages, we have∑
i,j

Xσ
ij =

∑
i,j,k=2

F k
∑

m,m′,m′′,m′′′

δm−m′,m′′′−m′′(V σ)†imc
k(lm, lm′)V σ

m′j(V
σ)†im′′′c

k(lm′′′, lm′′)V σ
m′′j

and the sums over i, j enforce m = m′′′ and m′ = m′′ which also satisfies the Kronecker
delta. We end up with

∑
i,j

Xσ
ij =

∑
k=2,m,m′′

F kck(lm, lm′′)2 =
2l∑
k=2

F k(2l + 1)ck(l0, l0)
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where we used the sum rule∑
m,m′

ck(lm, l′m′)2 =
√

(2l + 1)(2l′ + 1)ck(l0, l′0) .

There are (2l + 1) choices of magnetic quantum number m (or i or j). Note that when we
sum over all pairs, we include “diagonal” pairs of same spin which actually don’t contribute
to the energy since they cancel off corresponding terms from the Coulomb part. So really,
we should be averaging only i 6= j and (2l + 1)2l pairs instead of (2l + 1)2 pairs and should
drop the leading F 0 term. We will call this averaged exchange integral J and it equals

J =
2l∑
k=2

ck(l0, l0)

2l
F k .

For d electrons with l = 2, c2(20, 20) = c4(20, 20) = 2/7 and 2l = 4 so J = (F 2 + F 4)/14.
To close the loop for d electrons, Liechtenstein et al. say that F 4/F 2 ∼ 0.625 for 3d
elements and then using U , J and 0.625=5/8 we can determine F 0, F 2 and F 4 and we have
a complete practical expression. For reference, J = 13F 2/112 and so F 2 = (112/13)J while
F 4 = (70/13)J .

The next thing to deal with is the double-counting term. If we simply insist that for integer
occupancies fiσ ∈ {0, 1} the double counting term should completely cancel the above energy
term and leave us only with the DFT energy, then this is actually too weak: the expression
of Eq. (8) with integer occupancies still depends on exactly which orbitals are being occupied
since we have the matrix elements of the V between detailed angular momentum functions
that have different shapes, etc. To simplify, either we can have a given number of electrons
integer distributed over various iσ and then we average over all possible such distributions,
or equivalently we simply average the V matrix elements appearing in the expression over
the i indices. But this second averaging ends up giving us U for the Coulomb interactions
and J for exchange so we are just back to the Dudarev scheme with integer occupancies! So
the double-counting is the same as the Dudarev.

So, the Liechtenstein scheme then has us write

Etot = EDFT + EU − Edc

with

EU =
1

2

∑
at,σ,σ′

m,m′,m′′,m′′′

(mσm′′σ′|V |m′σm′′′σ′) (ρσm′mρ
σ′

m′′′m′′ − ρσm′′′mρ
σ
m′m′′δσσ′)

=
1

2

∑
at,σ,σ′
i,j

(iσjσ′|V |iσjσ′)fiσfjσ′ − (iσjσ|V |jσiσ)fiσfjσδσσ′

=
1

2

∑
at

[
U

(
N2 −

∑
iσ

f 2
iσ

)
+
∑
σ,σ′,i,j

Cσσ′

ij fiσfjσ′ −Xσ
ijfiσfjσδσσ′

]
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with the V matrix elements given by Eq. (9) and

Edc =
∑
at

(U − J)

2

[
N↑(N↑ − 1) +N↓(N↓ − 1)

]
+ UN↑N↓

To make progress into the meaning of this scheme and its relation to Dudarev, we will need
to substitute in the angular momentum expansions into the energy and see what we get.
The first order of business is to pull out a J term from the exchange element Xσ

ij to pair off
with the U term just like in the double-counting term. We do this by writing

Xσ
ij = ∆Xσ

ij + J(1− δij)

(this equality defines ∆Xσ). The sum over the J term is easy and we get

EU =
1

2

∑
at

[
UN2 − J(N2

↑ +N2
↓ )− (U − J)

∑
iσ

f 2
iσ +

∑
σ,σ′,i,j

Cσσ′

ij fiσfjσ′ −∆Xσ
ijfiσfjσδσσ′

]
We are now ready to subtract off the double counting term to get

EU − Edc =
1

2

∑
at

[
(U − J)

∑
iσ

(fiσ − f 2
iσ) +

∑
σ,σ′,i,j

Cσσ′

ij fiσfjσ′ −∆Xσ
ijfiσfjσδσσ′

]
Amazingly, the first term is the Dudarev term so the rest is the new contribution of the
Liechtenstein scheme. For the total energy we then have DFT plus Dudarev plus correction

Etot = EDFT +
(U − J)

2

∑
at,i,σ

(fiσ − f 2
iσ) +

1

2

∑
at,σ,σ′,i,j

Cσσ′

ij fiσfjσ′ −∆Xσ
ijfiσfjσδσσ′ (11)

The correction term should be smaller than the Dudarev term. The Coulomb elements
Cσ average to zero so we get nothing if the fiσ have no i dependence. In addition, we have
explicitly separated off the average exchange term so ∆Xσ also averages to zero. In addition,
the corrections involve F k for k ≥ 2 so this means for d electrons that they are all some
type of exchange like terms because F 2 and F 4 are both constants times J . Basically, the
correction term accounts for actual angular character of the interactions: the orbitals have
actual lobes with shapes and point in different directions, and this is missing if we simply
replace by orbital-independent interactions U and J . This shape dependence is something
that is inside of J (and not U as defined) because exchange J is about different orbitals of
same spin being integrated against each other in the matrix element of V .

Let’s also compute the contribution to the eigenvalues in Liechtenstein DFT+U:

∂EU − Edc
∂fiσ

= (U − J)

(
1

2
− fiσ

)
+
∑
σ′,j

Cσ,σ′

ij fjσ′ −∆Xσ
ijfjσδσσ′

To get a physical idea of what this can do, we need to specialize and work out some specific
cases. For d electrons, both C and ∆X are strictly proportional to J so we can write this
as a vector matrix equation

∇fσ(EU − Edc) = (U − J)

(
1

2
− fσ

)
+ J [Aσfσ +Bσfσ̄]
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where fσ is a column vector of the values fmσ and the same spin and we have defined same
spin and opposite spin matrices Aσ and Bσ as

Aσ = Cσ,σ −∆Xσ , Bσ = Cσ,σ̄

A first simple case is to assume that the density matrices ρσ are diagonal in the original Ylm
basis so fiσ = fmσ and V σ = I. Then one gets numerically that

A =


0.00 −0.52 −0.52 0.17 0.86
−0.52 0.00 0.52 −0.17 0.17
−0.52 0.52 0.00 0.52 −0.52

0.17 −0.17 0.52 0.00 −0.52
0.86 0.17 −0.52 −0.52 0.00


and

B =


0.72 −0.40 −0.63 −0.40 0.72
−0.40 0.37 0.06 0.37 −0.40
−0.63 0.06 1.14 0.06 −0.63
−0.40 0.37 0.06 0.37 −0.40

0.72 −0.40 −0.63 −0.40 0.72


So, for example, occupation of the Y20 orbital causes the same spin Y2,±2 orbitals to drop
in energy and the Y2,±1 to rise in energy and pushes the opposite spin Y20 orbital high up
in energy, doesn’t do much to opposite spin Y2,±1 and lowers Y2,±2 of opposite spin. (The
difference between the two matrices is just ∆X here.)

However, this is not really very realistic since very few materials will have diagonal ρσ in the
Ylm basis. Instead, high symmetry materials with d shell states will have t2g (i.e., xy, xz, yz)
and eg (i.e., 3z2 − r2, x2 − y2) orbitals as eigenvectors of ρσ. Here are the relations of
orthonormal such orbitals to Ylm:

|3z2 − r2〉 = |Y20〉

|x2 − y2〉 =
1√
2

(|Y2,2〉+ |Y2,−2〉)

|xy〉 =
−i√

2
(|Y2,2〉 − |Y2,−2〉)

|yz〉 =
i√
2

(|Y2,1〉 − |Y2,−1〉)

|xz〉 =
−1√

2
(|Y2,1〉+ |Y2,−1〉)

So the matrix V σ is

V σ =


0 1/

√
2 i/

√
2 0 0

0 0 0 −i/
√

2 1/
√

2
1 0 0 0 0

0 0 0 i/
√

2 1/
√

2

0 1/
√

2 −i/
√

2 0 0


15



We can then recompute A and B in this basis to get

A =


3z2 − r2 x2 − y2 xy yz xz

3z2 − r2 0 −0.52 −0.52 0.52 0.52
x2 − y2 −0.52 0 0.86 −0.17 −0.17

xy −0.52 0.86 0 −0.17 −0.17
yz 0.52 −0.17 −0.17 0 −0.17
xz 0.52 −0.17 −0.17 −0.17 0


and

B =


3z2 − r2 x2 − y2 xy yz xz

3z2 − r2 1.14 −0.63 −0.63 0.06 0.06
x2 − y2 −0.63 1.14 0.29 −0.40 −0.40

xy −0.63 0.29 1.14 −0.40 −0.40
yz 0.06 −0.40 −0.40 1.14 −0.40
xz 0.06 −0.40 −0.40 −0.40 1.14


A number of interesting facts to illustrate what we get here

• Occupying any orbital causes the opposite spin same orbital to be pushed up in energy
by 1.14J . This effect is completely missing from Dudarev where the only change to
the orbital energy depends on its own occupancy via (U − J)(1/2 − fiσ). The reason
is that an orbital overlaps best with itself spatially so we get the largest Coulombic
repulsion from the Hartree/Coulomb term — it is larger than the average repulsion U
over all possible orbital pairings.

• 3z2 − r2 and x2 − y2 are not at all similar in terms of interaction with the other t2g
orbitals. This is because x2 − y2 are xy are actually just 45o rotates of each other
while 3z2 − r2 is something quite different and has more overlap with xz and yz and
its interaction with xy and x2 − y2 are exactly the same.

• Let’s say we have something like Mn4+ where there are three t2g electrons of up spin
and no other electrons. Then our spin up occupancy is (0, 0, 1, 1, 1) and we get same-
spin eigenvalue contributions of (0.52, 0.52,−0.34,−0.34,−0.34)J and opposite spin
eigenvalue contributions of (−0.52,−0.52, 0.34, 0.34, 0.34)J . So for same spin t2g occu-
pied states we gets additional stabilization beyond Dudarev of −0.34J and unoccupied
same spin eg are destabilized by 0.52J . But opposite spin is exactly the other way: t2g
pushed up by 0.34J and eg puled down by 0.52J.

• If we have Mn3+ in configuration e1
gt

3
2g and spread the eg electron evenly between

3z2 − r2 and x2 − y2 (i.e., no orbital polarization) so occupancy (0.5, 0.5, 1, 1, 1) then
the energy shifts are actually the same as the Mn4+ case but just reduced in magnitude:
(0.26× 2,−0.17× 3) for same spin and (−0.26× 2, 0.17× 3) for opposite spin.

• Continuing on with Mn3+ but with full orbital polarization: it depends which we
fill. If we fill 3z2 − r2 so occupancy is (1, 0, 1, 1, 1), then same spin eigenvalue shift
is (0.52, 0.00,−0.86, 0.17, 0.17)J and opposite spin is (0.63,−1.14,−0.29, 0.40, 0.40)J .
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But for occupancy (0, 1, 1, 1, 1) we get (0.00, 0.52, 0.52,−0.52,−0.52)J and
(−1.14, 0.63, 0.63,−0.06,−0.06)J . So the action on the t2g manifold does depend on
which of the eg we occupy.

• A closed-shell configuration like t62g does nothing: the up and down spin contributions
exactly cancel. So all we have is Dudarev.

• A configuration like e1
gt

6
2g where the eg electron is spread evenly in spin and in eg

orbitals also gives zero. This is something like Ni3+ in a non-magnetic completely dull
electronic configuration.

• A configuration like e1
gt

6
2g where the eg electron is purely spin up but split 1/2-1/2

between the two up spin eg orbitals gives for spin up (−0.25 × 2, 0.17 × 3)J and for
spin down (0.26× 2,−0.17× 3)J .
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