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The thesis presents theoretical studies of photoelasticity and Two-dimensional silica using
first principles calculations. The first project in this thesis concerns the elasto-optic effect
in solids. The elasto-optic effect, or photoelasticity, describes the linear change of dielec-
tric constant with applied strain and is a universal material property for insulators and
semiconductors. Though the elasto-optic responses can be directly computed using first
principles (e.g., density functional perturbation theory), little insight into the governing
microscopic physical principles is provided by these methods. In this work, we describe a
microscopic first principles analysis of photoelasticity in real-space based on Maximally Lo-
calized Wannier Functions (MLWFs). We show that the strain-dependent change of dipole
transitions between occupied and unoccupied Wannier functions is the main determinant of
photoelasticity. By organizing the dipole transitions into spatially localized shells according
to the distances, we find that the photoelasticity is a relatively long-ranged. We believe the
long-ranged nature of photoelasticity makes it unlikely to find simple and localized models
with very few parameters that can describe photoelasticity with sufficient accuracy. The
second project in this thesis investigates the growth of 2D silica and silicate thin films on
Ni,Pd;_,(111) alloy substrates. In the past decade, the creation of 2D SiO2 has added a
new member to the material class of two-dimensional (2D) Van der Waals (vdW) atomically
thin sheet. 2D SiOs is the thinnest form of silica known with the SiO9 stoichiometry. Apart
from being a 2D material, 2D SiOs is also of interest because of its structural similarities
to zeolite catalysts. 2D bilayer SiOs can serve as a model system that imitates the inte-
rior surface of bulk zeolites while its 2D nature permits application of surface microscopy
techniques that reach atomic scale resolution. We employ density functional theory (DFT)

to study the 2D SiO2 on various metal substrates and demonstrate that epitaxial strain



plays an important role in engineering the 2D SiO4y overlayer’s struture. We also focus on
the structural competition between crystalline hexagonal 2D SiOs in commensurate and
incommensurate relation to the substrate when epitaxial strain cannot be realized in exper-
iments. The recent creation of NiPd;_, random alloy in experiments is intended to study
the strain effect on the morphology of the 2D SiOy overlayer through the alloy’s tunable
lattice constant. However, the application is hindered due to its ability to form silicate
overlayer through chemical reaction with the deposited SiO2. We propose a thermody-
namically stable Ni silicate structure as a theoretical model for the silicate thin film on the
Ni,Pd;_,(111) surface and use DFT to characterize its structural and electronic properties.
The next thrust in this effort has been to understand the phase competition between 2D
silica and silicate phases on Ni,Pd;_, alloy substrate. First principles calculations suggest
that by decreasing the oxygen pressure and increasing Si supply, the 2D SiOs will become
the favorable phase. Experiments show that a decreased oxygen and restricted annealing

temperature and time enable the growth of 2D SiO,.
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overlayer ring structure and substrate atoms. (b) The rotation of the moiré
pattern with respect to overlayer. The arrows in the inset indicate the 3°
angle between moiré [1 0] and overlayer [1 1]. (c) Reciprocal space image

generated by applying fast Fourier transforming the model in (b).. . . . . .
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Top and side views of the most stable structures of the Ni silicate and silica
thin layers on NigsPdg 5 alloy substrate (chemical formulas are shown per
(2 x 2v/3) surface unit cell): (a) Ni silicate with chemisorbed oxygens on
the substrate NigSi4O16-20/Nig 5Pdg 5. (b) Ni silicate on the clean substrate
surface NigSigO16/Nig5Pdo 5. (c) Bilayer silica with chemisorbed oxygens on
the substrate SigO16-20/Nip5Pdg 5. (d) Monolayer silica with chemisorbed
oxygens on the substrate Si4O10-20/Nigs5Pdgp5. Color scheme: Si cyan, O
red, Ni (in the overlayer) black, Ni (on the substrate surface) grey, Ni-Pd
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RAIRS spectra simulated for the structures depicted in Figure 5.5. The
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Reflection-absorption infrared spectra recorded following SiO deposition onto
Ni,Pd;_;(111) under different preparation conditions. (a) After annealing
at 950 K in 2 x 107 Torr oxygen for 10 minutes with 1 MLE SiO deposited
on Nig32Pdggs(111), (b) After annealing at 950 K in 2 x 10~ Torr oxygen
for 10 minutes with 2 MLE SiO deposited on Nig32Pdges(111), (c¢) After
annealing at 950 K in 4 x 10~® Torr oxygen for 5 minutes with 2 MLE SiO
deposited on Nig4gPdp52(111) in UHV, and (d) After further annealing the

sample shown in Curve (c) at 1000 K in 4 x 10~® Torr oxygen for 10 minutes. 115

LEED and STM taken on the sample where Ni silicate and bilayer silica coex-
ist. (a)(b) LEED pattern taken at different electron energies. The red dashed
line and green dashed line in (a) indicate the unit cells of commensurate and
incommensurate Ni silicate phases in reciprocal space. The arrows show the
primary directions of the substrate cells. (c)(d) STM images taken at dif-
ferent scales. The green and blue dashed lines in (c) enclose two crystalline
regions with different orientation. The circles and numbers in (d) indicate
representative 4- to 8-member silica rings. . . . .. ... oL
LEED pattern after annealing the sample shown in Figure 6.2 at 1000 K
in 4 x 1078 Torr oxygen for 10 minutes. The red dashed line and green
dashed line indicate the unit cells of commensurate and incommensurate
(rotated 30° overlayer in reciprocal space. The arrows show the substrate
(10) directions. . . . . . . . ..o
Comparison of RAIRS spectra for (a) SiO deposited onto Nig g7Pdg.o3(111)
and annealed at 1000 K in 2 x 107% Torr Oy and (b) 2D VDW silica on

Pd(111). The peak position in (a) is indicative of 2D Ni silicate formation.
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Commensurate-incommensurate transition of Ni silicate with respect to Ni-
Pd(111) composition shown by LEED results. (a)-(c) Ni silicate films with
only commensurate crystalline phase. (d)-(g) Ni silicate films with the co-
existence of incommensurate and commensurate crystalline phase. (h) 2D
VDW silica with commensurate and incommensurate crystalline phases. In
(a), (d) and (h), the red dashed line and green dashed line indicate the unit
cells of non-rotated and rotated overlayer phases in reciprocal space and the
arrows show the primary directions of the substrates. The region enclosed by
purple dashed line in (d) is better resolved by a LEEM system and is shown
in Figure 6.6. The lattice constant of Ni-Pd substrates and corresponding
Pd composition is labeled on the color bar. . . . .. . ... ... ......
High-resolution LEED patterns corresponding to the region enclosed by pur-
ple dashed line in Figure 6.4d. The red dashed line and green dashed line
indicate the unit cells of two crystalline regions. The red dashed line corre-
sponds to the non-rotated phase. The green dashed line corresponds to the
phase rotated by 30. . . . . . ...
Scanning tunneling microscopy images taken on (a) commensurate crystalline
Ni silicate on Nig4gPdo52(111), (b) incommensurate crystalline Ni silicate

on Nig26Pdp.74(111), and (c) incommensurate crystalline 2D VDW silica on
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Atomic structures of 2D surface phases on the NigsPdgs alloy substrate
(chemical formulae are defined per (2 x 2v/3) surface unit cell): (a) Sub-
strate (clean surface), (b) 20 /Substrate (one chemisorbed oxygen on the hol-
low site), (c¢) Si4O19/Substrate (monolayer silica), (d) Si4O19-20/Substrate
(monolayer silica with one chemisorbed oxygen), (e) SigO1¢/Substrate (bi-
layer silica), (f) SigO16-20/Substrate (bilayer silica with one chemisorbed
oxygen), (g) NigSisO16/Substrate (Ni silicate), (h) NigSisO16-20/Substrate
(Ni silicate with one chemisorbed oxygen). Oxygen polyhedrons are drawn
to emphasize the neighboring oxygen atoms surrounding the Si and Ni atoms
in the 2D thin film. Color scheme: Si cyan, O red, Ni (in the overlayer) black,
Ni (on the substrate surface) grey, Nig5Pdgs VCA atom white. Background
color under each chemical formula corresponds to the color of region in the
phase diagram in Figure 6.9. . . . . . . .. ... o oL
Phase diagram for the silica/silicate 2D surface phases on the Nig5Pdg 5
alloy substrate. Each colored region corresponds to the thermodynamically
stable surface phase based on the surface free energy as a function of the
Si and O chemical potentials. Letters denoting different phases follow the
same notation as Figure 6.8. The bilayer silica can be stabilized above the
blue dashed line on the surface. The experimentally accessible region of the

chemical potentials in this study is inside of the blue solid line. . . . . . ..
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Chapter 1

Introduction

The goal of this thesis is to use first principles to understand the physical properties of
materials at a microscopic level. The main computational tool is density functional theory
(DFT) as well as other tools derived from DFT. This thesis has two relatively indepen-
dent threads of research projects. The first one describes a first principles method for
understanding the spatial behavior of the dielectric and photoelastic responses of insulators
and semiconductors. The second one concerns a joint effort of experiments and theory to
characterize 2D silica and silicate thin films grown on alloy substrates.

The first project in this thesis concerns the elasto-optic effect in solids. The elasto-optic
effect, or photoelasticity, describes the linear change of dielectric constant with applied
strain and is a universal material property for insulators and semiconductors. Though the
elasto-optic responses for solids can be computed directly from first principles (e.g., by us-
ing density functional perturbation theory) and measured experimentally, these methods do
not provide significant insight into the governing microscopic physical principles of photoe-
lasticity. In this work, we describe a microscopic first principles analysis of photoelasticity
in real-space based on localized Wannier functions. We show that the strain-dependent
change of dipole transitions between occupied and unoccupied Wannier functions is the
main determinant of photoelasticity. By organizing the dipole transitions into spatially lo-
calized shells, we find a relatively long-ranged nature of these responses: one needs to sum
up contributions of up to third neighbor shells to converge the elasto-optic coefficient with

reasonable precision. In our opinion, this makes it unlikely that simple “rule-of-thumb”



approaches or models with very few parameters can describe photoelasticity with sufficient
accuracy for practical materials design.

The second project in this thesis investigates the growth of 2D silica and silicate thin
films on NiyPd;_,(111) alloy substrates. In the past decade, the creation of 2D SiO,
has added a new member to the material class of two-dimensional (2D) Van der Waals
(vdW) atomically thin sheet. 2D SiOj is the thinnest form of silica known with the SiOq
stoichiometry. The structure of 2D SiO, has no layered structural counterpart in bulk
form, and thus it cannot be found by thinning a known bulk phase silica. Apart from being
a 2D material, 2D SiOs is also of interest because of its structural similarities to zeolite
catalysts. 2D bilayer SiOs, whose chemical reactivity can be introduced by Al dopants
to form aluminum silicate, can serve as a model system that imitates the interior surface
of bulk zeolites while its 2D nature permits application of surface microscopy techniques
that reach atomic scale resolution. We study the properties of 2D SiO5 on various metal
substrates as the first step to understand the chemical properties of 2D Al silicate, which can
lead to a better understanding of bulk zeolite’s catalytic mechanisms. We employ DFT to
study the 2D SiOs on various metal substrates and demonstrate that epitaxial strain plays
an important role in controlling the morphologies of 2D SiOgy overlayers, agreeing with
prior DFT simulations. We also focus on the structural competition between crystalline
hexagonal 2D SiO2 in commensurate and incommensurate relation to the substrate when
epitaxial strain cannot be realized in experiments.

The recent creation of NiyPd;_, random alloy (by our collaborators from Altman’s
group at Yale) [1] provides a substrate system with a continuously tunable lattice constant
(through changing the chemical composition), enabling the study of how the substrate
lattice mismatch and binding can determine the 2D SiOy overlayer’s morphology. We are
interested in how much epitaxial strain can be imparted in the overlayer before it becomes
incommensurate or amorphous. However, the Ni,Pd;_, alloy substrate can form a metal
silicate through chemical reaction with the deposited SiOy and this adds another layer
of complexity. The surface microscopies reveal that high temperature annealing in an
oxygen-rich environment causes substrate Ni to segregate towards the surface where it can

be oxidized to form a 2D crystalline layer that includes Ni-O-Si bonds. Figure 1.1 depicts
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Figure 1.1: A schematic plot showing the process of SiO4 layer deposited on NiyPd;_, alloy
surface reacts to the substrate to form Ni silicate thin film.

such a process. We propose a thermodynamically stable Ni silicate structure as a theoretical
model for the thin film on the Ni,Pd;_,(111) surface and use DFT to characterize its
structural and electronic properties.

The next thrust in this effort has been to understand the phase competition between
2D silica and silicate phases on Ni,Pd;_, alloy substrate in order to avoid the formation of
2D Ni silicate phase and grow 2D SiOs in a controlled manner. First principles calculations
suggest that by decreasing the oxygen pressure and increasing Si supply, the 2D SiO9 will
become the favorable phase. Experiments show that a decreased oxygen and restricted
annealing temperature and time enable the growth of 2D SiO,.

The structure of the thesis is as follows. In Chapter 2, we briefly review the main theo-
retical tool, i.e., density functional theory (DFT), throughout this thesis research and other
computational tools driven by DFT. In Chapter 3, we present the first principles study of
elasto-optic effect in solids, where we focus on analyzing the spatial locality of it using Wan-
nier functions. In Chapter 4, we report the DFT calculations on 2D SiOs on various metal
substrates, where we examine the effect of epitaxial strain on overlayer morphology and
the competition between commensurate and incommensurate structures. In Chapter 5, we
present our published study [2] on 2D Ni silicate thin films on Ni,Pd;_, alloy substrate. In
Chapter 6, we discuss the competition between 2D silica and silicate phases under different

growth conditions. In Chapter 7, we summarize each project presented in this thesis and



present a future outlook.



Chapter 2

Methods

2.1 Density functional theory

Electrons in their ground state moving and interacting in a solid can be described by the

many-body Schrédinger equation under Born-Oppenheimer approximation:

H\Il()(rl,rg, veey I’N) = EQ\I/()(I‘l, ro,..., I‘N)

(2.1)

where ¥( is the ground state wave function with energy Ey, and r; is the coordinate of

electron number i (we suppress the spin index for simplicity). The non-relativistic many-

body Hamiltonian can be decomposed into three terms as follows

H:T‘F‘/ee"“/ei

where T is the kinetic energy (m is the bare mass of an electron)

and V.. is the electron-electron repulsive interactions (e is the elementary charge)
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(2.4)



and V,; is the electron-ion attractive interactions (Z; is the ionic charge and Ry is the

coordinate of ions)

N

ve,-:zi:vm(rl - Z|rZIeR1| > () (2.5)

i=1

Solving the many-body Schrodinger equation provides full access to the detailed cor-
relations between all the electrons in the solid. But the many-body problem is essentially
impossible to solve exactly, and full wave function ¥y depends on all electronic coordinates.
In addition, the problem becomes computationally unmanageable beyond a few electrons
since exponentially large storage is needed to store and represent the exact Wy. However,
there is no need to track the detailed dynamics of all N electrons simultaneously: phys-
ical quantities of interests are typically numbers (e.g., the ground state energy Ej or the
band gap Ey) or a function of a single electronic variable (e.g. electron density n(r)), and
therefore they are far less complex than the full many-body wave functions. Based on
these considerations, a simplified description that delivers only these quantities based on

an independent electron framework is preferable.

2.1.1 Hohenberg-Kohn Theorems and Kohn-Sham equations

The main computational tool we use throughout the thesis is density functional theory
(DFT) which we will briefly outline in this section. Density functional theory (DFT) [3,4]
is one of main computational tools used in material science and chemistry to understand the
electronic structure. DFT provides an, in principle exact, independent electron framework
for a many-body electronic system.

There are three foundational theorems in DFT. The first Hohenberg-Kohn First theorem
states that total energy of a many-electron system is a functional of its electron density.

One can define the relationship through the following expression:

E[n] = Fn] + /d3r n(r)v(r) (2.6)

where the second term is the energy from an external potential acting on the electrons



(usually the ionic potential caused by nuclei from Eq. (2.2) above). Main observation is
that F'[n] takes the same form for all many-electron systems regardless of v(r). The second
Hohenberg-Kohn theorem states that this energy functional takes its minimum value when
n(r) is equal to the ground state density of the system and its minimum value is equal to
exact ground state energy Ejy. The first and second Hohenberg-Kohn Theorems tell us that
we can find both Ey and n(r) by minimizing E[n] with respect to density n(r). In this
way, the number of degrees of freedom needed for finding ground state energy are greatly
reduced, from an N-variable many-body wave function ¥(ry,rs,...,ry) to a single-variable
electron density n(r).

The third theorem of DFT (Kohn-Sham equations) [4] creates an independent electron
representation in order to carry out the minimization. First, the N interacting electron
system is mapped into an N non-interacting electron system moving in an effective potential
which yields the same ground state total energy Fy and electron density n(r). The ;(r)
(1 < i < N) are the single-particle orthonormal wave functions for the non-interacting

electrons satisfying the following constraints

(Wi lhj) = 0 (2.7)

N
D i) = n(r) (2.8)
1=1

Then the universal functional F[n(r)] is split into three terms:

Fn] = Ts[n] + Ex[n] + Exe[n] 29
_ K2 N ) 201 1 3 3 n(r) . n(r/)

where Ts[n| is the kinetic energy of the non-interacting electrons described by the wave
functions ;(r), Ex[n| is the Hartree energy, and the exchange-correlation energy FE,.[n]
is defined to be whatever is left over from the other two terms. The third theorem of
DFT proves that minimization of energy functional E[n| from Eq. (2.6) with respect to

n(r) is equivalent to solve the following N single-particle Schrodinger equations, known as



Kohn-Sham equations:

2
*jfmv2 + Ueff(r):| Yi = €iti(r), (2.11)

Vet (r /d3' n(r [+ Vaelr), (2.12)

5E$c 0Eye[n]
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= Z [i(r)[* (2.14)
i=1

Uge(r) = (2.13)

In these self-consistent single-particle Schrédinger equations, ; is governed by an ef-
fective potential which consists of the ionic potential v(r) describing the electron-nucleus at-
traction, the electrostatic repulsive Hartree potential (second term in veg), and the exchange-
correlation potential v,.(r) which encodes all the many-body effects and correlations among
electrons. The ¢; are the Lagrange multipliers that enforce the orthonormality constraints
of the auxiliary single-particle wave functions ;. We notice that veg(r) is dependent
on the wave functions {;}1<;<n through its dependence on the density n(r), so the N
single-particle Schrodinger equations are coupled to each other and need to be solved self-

consistently. Once these self-consistent equations are solved and yield the optimal set of

wave functions {wl} , the ground state electron density and total energy can be com-
puted as
N 2
r)=> |di(r (2.15)
i=1
and
h? & no(r) - no(r)
By = —5 > (5|92 i) [ dbrate PO b ol [ drmote)-ote) (216)
=1

Now we arrive at a theoretically rigorous formula within the independent electron frame-
work which yields exact ground state electron density n(r) and energy Fy. Though strictly
speaking the {¢;}, ;< and {€;}; ;< y in Eq. (2.11) do not necessarily have direct physical

meanings (other than the fact that the highest eigenvalue €x of the highest energy occupied



single-particle state 1y is equal to the system’s Fermi energy or chemical potential [5]), in
practice they are interpreted as electron states and eigenenergies to draw physical intuition

and understand the system’s physical properties.

2.1.2 Exchange-correlation energy functional

Though DFT is theoretically rigorous up to this point by packaging all of our ignorance
about electron correlations into the exchange-correlation energy, in practice, one has to
adopt some approximation to evaluate the exchange-correlation energy and potential, i.e.,
E.c[n] and vg.(r), respectively. The most frequently used approximation is the local density

approximation (LDA) [6,7] which takes the following form:

ELDA (1)) = /d?’r n(r) - exc(n(r)). (2.17)

In this expression, e,.(n) is the exchange-correlation energy per electron in a uniform elec-
tron gas with density n. The total exchange-correlation energy in this approximation is the
sum of all the electrons’ exchange-correlation energy as if they are all embedded in local
uniform electron gases with local densities n(r). Accurate numerical values of €,.(n) have
been calculated by the Quantum Monte Carlo method [8]. Overall, experience shows that
LDA works reasonably well in many solids especially those not showing strong and local-
ized electronic correlations. Empirically, LDA is quite good for computing crystal lattice
constants, atomic positions and electron densities, ground state energy differences of solids
in similar configurations, and is reasonable for computing cohesive and binding energies [9)].
It is also widely used to compute band structures of solids though its underestimation of
band gaps is a well-known problem [10, 11].

An improved approximation to the exchange-correlation functional, called the general-
ized gradient approximation (GGA) [12,13], is to incorporate information on the gradient

of electron density:

ESON = [ dPrn(e) - 59 n(e), V(o)) (2.18)

GGA

o (n(r),|Vn(r)]) is the exchange-correlation energy per electron with density n(r)

where €



and gradient Vn(r). The parameterization scheme for GGA exchange-correlation functional
used in this thesis is by Perdew, Burke, and Ernzerhof (PBE-GGA) [13]. By including the
information about electron density gradient, GGA functionals deals with inhomogeneous
electron gas better and shows systematic improvement over LDA in computing the cohesive

and binding energies when compared to experiment.

2.1.3 Planewave basis and pseudopotentials

In solid state system, a periodic supercell with Born-von Karman periodic boundary condi-
tions is equivalent to a uniform k-point sampling of the first Brillouin zone. With the help of

Bloch’s theorem, the electronic eigenstate wave functions of such system can be written as

Y = X T, (r), which is a primitive cell-periodic function u,(r) modulated by a plane

wave. The Bloch eigenstate can be expanded using the plane wave basis set (i.e., a Fourier

series) as

6zk~r

Q

Uak(r) = —5= D eac(G)e'ST (2.19)

G

where G are the reciprocal lattice vectors and the ¢,k (G) are the expansion coefficients.
Thus, the Kohn-Sham equations can solved self-consistently by transforming the kinetic
operator and effective potential into the plane wave basis. Due to the continuity of wave
functions, ¢,k (G) — 0 as |G| — +o0. In practice, ¢,k (G) is truncated to zero once % |G?
is greater than an energy cutoff E.,;. The advantages of using a plane wave basis in solid
state systems include: (i) it automatically encodes the periodic nature of crystals, (ii) the
kinetic energy has a simple expression in this basis, (iii) it offers an unbiased representation
of all spatial regions, and (iv) and its completeness can be systematically improved by
increasing the energy cutoff.

The electron wave functions near the nuclei vary rapidly because of the orthonormality
constraint on the eigenstates as well as their high kinetic energy. Hence, one requires an
enormous number of plane waves with a high energy cutoff to accurately represent this part
of wave functions. In order to use a plane wave basis set for first principles calculation
for atoms beyond the first two rows of the periodic table, one can use a norm-conserving

pseudopotential to reduce the computational cost. The usefulness of the pseudopotential
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method is based on the observation that the electrons closely bounded to the nuclei, i.e.,
the low-energy core electrons, are chemically inert and irrelevant in determining the atom’s
chemical properties in condensed matter systems: hence one does not need to describe
them explicitly in the calculation, and their effect on the valence electrons can be incor-
porated into a smooth pseudopotential that corresponds to smooth valence (pseudo) wave
functions. In addition to reducing the plane wave cutoff to manageable values, the pseu-
dopotential approach also reduces the number of electronic states that must be described
computationally.

Norm-conserving pseudopotentials are constructed through two approximations after
performing an all-electron DFT calculation of an isolated atom. The first approximation is
to separate the inert core electrons from the chemically active valence electrons and remove
them from the calculation of Kohn-Sham equations for the valence electrons. This is called
the frozen core approximation. The second approximation is to replace the oscillatory part
of the all-electron wave function of valence electrons within the core region (defined by a
cutoff radius r.) with a smooth function while keeping the wave function outside of 7. and
the eigenenergy unchanged to obtain pseudo wave functions. Finally, the pseudopotential
is determined such that the solution of the Kohn-Sham equation can generate the corre-
sponding pseudo wave functions with eigenenergies equal to the all-electron calculations.
Different pseudopotential schemes use different smooth functions to replace the all-electron
wave functions in the core region, and each has its merits. The pseudopotential generation
schemes used in this thesis are from Refs. [14-16]. The electronic structure calculations
in this thesis are performed in the QUANTUM ESPRESSO [17] software package with plane

wave basis and pseudopotentials.

2.1.4 Hellman-Feynman theorem

Given the atomic positions, we can solve the Kohn-Sham equations to obtain the ground
state energy and electronic structure for a fixed atomic configurations. However, when
we need to search for the optimal atomic coordinates and/or compute equilibrium lattice
constants, we cannot exhaustively sample the whole phase space of possible atomic con-

figurations since it is exponentially large in the number of atoms. Instead, a more typical
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approach is to start with a number of reasonable initial guesses and to iteratively improve
the atomic coordinates according to the directions of the forces on the atoms to locate local
minima. The Hellman-Feynman theorem permits the efficient computation of the forces
exerted on each ion. By definition, the force on ion [ is the partial derivative of the total
energy (including the electronic part and ionic part) with respect to the atomic coordinate
R;

0
F;= _671:{[ (EO + Eu) (2'20)

where Ej is the electronic ground state energy obtained from DFT and Ej; is the electrostatic

repulsive energy between ions that takes the form

YA RN e
2.21
J;(‘RJ—RK‘ (2:21)

The second term in the partial derivative in Eq. (2.20) is straightforward to compute since
FE;; has only an explicit dependence of atomic coordinates. The evaluation of the derivative
of Ey in the first term of Eq. (2.20) is more complex because Ej has both explicit dependence
(through the ionic potential v(r) in Eq. (2.6)) and implicit dependence (through the electron
density n(r) in Eq. (2.6)) on the atomic coordinates Ry. Formally, the first derivative is

F; = R, /d r Sn(c) OR; /d rn(r) R, (2.22)

However, since Ej is evaluated through a variational principle and has already been min-
imized over variations of the electron density n(r), the first integral is in the previous
equation is equal to zero (this is the essence of the Hellman-Feynman theorem) while the

analytical formula for %1}({? in the second integral can be explicitly worked out. Thus, the

total force on the ion I can be written as

ov(r) €2 Zy- 2k
_ 3
Fr= /d rn)- SR, T2 8R1 Jzﬂ( IR; - Ry (2:23)

which can be evaluated simply using the ground state electron densities.
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2.2 Density functional perturbation theory

In this thesis, we need to compute the dielectric response of an insulating material to a
static and homogeneous external electric field using first principle calculations. When an
external electrical field E.,; is applied to a solid, the electrons and nuclei will rearrange
themselves and create an induced polarization P in response to the imposed filed. The
macroscopic electric displacement in the solid is D = E 4+ 47P where E is the screened
electric field instead of the bare imposed E.;;. Since polarization and electric field are
conjugate variables, the polarization can be evaluated as the derivative of the free energy
of the system versus E. At zero temperature, the free energy is equal to the quantum
mechanical ground state energy which we can compute using DFT. So we have

_ OEy[E]
0E;

P = (2.24)

In macroscopic linear response Maxwell theory, the dielectric tensor describes the response of
solids to electric fields by relating the displacement to the the electric field via the dielectric

tensor
3

D, =E; +47P; = Z EijEj (225)
j=1

By substituting Eq. (2.24) into Eq. (2.25), one arrives at

0?Ey[E]

eij = 5ij — 4

E=0

If the frequency of the external electrical field is much higher than the typical frequency of
phonons, the nuclei will not respond to the external field, and therefore their positions will
remain fixed. In this circumstance, the dielectric tensor only has an electronic contribution
and is called € in the literature. In this work, we only consider > so will omit the oo in
the superscript throughout. Eq. (2.26) shows that the dielectric tensor can be related to the
second order derivatives of ground state energy with respect to electric fields. Density func-
tional perturbation theory (DFPT) [18] provides a computational approach for calculating

quantities that can be expressed as derivatives of the ground state energy versus a variety
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of parameters. From Eq. (2.26), we see that the dielectric tensor falls into this category if
we treat E as a parameter. We briefly outline the method of computing dielectric tensors
with the help of DFPT as follows.

Usually, a system has explicit dependence on parameters only through the potential
acting on the electrons. For simplicity, we call the parameters {)\;} (A\; = E; in our case).
We can write the ground state energy Fy with an emphasis on its parameter dependence

and its derivatives in the first two orders as

Eolma(®) N = Fim®)]+ [ drm@o) (2.27)
Oky 0E, Ony(r) OJux(r) av%%rz
8)5 = /d3r 5n(3) nzm- DA, +/d3rn>\(r)a)\i = /d?’rnA(r) : )
PEy ony(r) Ovy(r) vy ()
aAia;j - / o aAAj o / drna(r) aAjAmi (229)

in which n)(r) means ground state electron density associated with some potential vy (r)

depending on A. In the second line of this equation, the minimization condition of the energy

Ey at ny(r) is used which means that 5‘2%’1?)

= 0. This means that the response of the
density to the change of parameters is not neededAwhen computing the first order derivatives.
And we only need to know the linear order response of density (its first derivatives %) to
compute the second order derivatives of the energy. Hence, the task turns into finding

An(r) for some small imposed {A\;}. Linearizing An(r) in Eq. (2.8) in terms of the small

change of eigen wave functions A); leads to

N

An(r) = 45 (r)Ag;(r) + c.c. (2.30)

j=1
where the finite-difference operator is defined as AF =3 2 v EAN;. Eq. (2.30) shows that
the solution for An(r) amounts to the solution for the eigenstates’ first order variations
{A¢;(r) }1<i<ny. From perturbation theory in quantum mechanics, A;(r) can be written

in a close form as

Adpi(r) =D i) M (2.31)

i#£]j
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Substituting Eq. (2.31) into Eq. (2.30) leads to

An(r) = f: Z W (r)i(r) - W +c.c. (2.32)
J=1 iy

But one can not get An(r) from a direct evaluation of Eq. (2.32) as a one-shot method.
The problem is twofold: the summation in the formula requires knowledge of the full spec-
trum of Kohn-Sham equations which cannot be achieved practically, and Aveg(r) manifests
its dependence on {Av;(r)}1<i<ny through An(r) which is unknown beforehand. The key
trick in DFPT is to write the first order perturbation result as a linearized equation for

Arj(r):
(Hyet — €5) [Atpj) = —(Ave — Agy) [1h5) (2.33)

where Hys = —%Vz + ver(r) is the self-consistent Hamiltonian for the unperturbed sys-
tem and Ae; = (1j |Aveg|10j). Solving this linear equation can be done iteratively (and
efficiently) using numerical methods and does not require the full spectrum of the Hamil-
tonian. DFPT then solves this equation self-consistently in a manner similar to solving the
Kohn-Sham equations. The left hand side of this equation is singular but only in the sub-
space of occupied states. Eq. (2.32) shows that the contributions to An(r) from products
of two occupied states cancel each other, so what really matters is the solution of Aw;(r)
in the subspace of unoccupied states where the equation is not singular. One can eliminate
the singularity of the left hand side by adding aP, and projecting the right hand side onto

the subspace of conduction bands
(Hscf + ap’u - 6j) |A¢j> = _PcAveff Wﬂ (234)

where P, and P, are the projections operators onto valence and conduction bands. The
second equation of DFPT (Eq. (2.34)) yields the same solution with the first one (Eq.
(2.33)) in conduction bands subspace. The formulae for dielectric tensor in solids have been

explicitly worked out in DFPT in the review paper of Ref. [18].
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2.3 Maximally Localized Wannier Functions

Electrons in crystals are often described by the Bloch waves 1,k (r), i.e., eigenstates of
the periodic crystal Hamiltonian that extend through the whole solid with the quantum
number of band index n and crystal momentum k. When we want a description of localized
phenomena, e.g., a chemical bond or point defect in solids, the Bloch representation becomes
less convenient. Alternatively, one can use Wannier functions to describe the electronic
structures of the crystals. For a single isolated band, Wannier functions with band index n
can be achieved by the Fourier transform of Bloch states from the k representation to the

R representation

Wyr(r) = (;)3 /B , d®k e R R4 (1) (2.35)

where V is the volume for the primitive cell of the crystal and the integral runs over
the first Brillouin zone (BZ). It can be seen from the basic properties of Fourier trans-
forms that Wannier functions with different lattice indices R are orthonormal to each other
and, in fact, are related to each other through lattice translations: they can be written as
Wor(r) = W,(r—R). In addition, since they are unitary transforms of the Bloch states, the
set of Wannier functions for a band span the same Hilbert space as the Bloch states so no
information is lost. Wannier function can be made localized in real-space (see below), hence
they are useful tools in understanding localized electronic properties. However, Wannier
functions are nonunique due to the “gauge” degree of freedom in the definition of Bloch
states, leading to difficulties in applying Wannier functions directly without further con-
straints. For example, at each k-point, Bloch states are determined up to an arbitrary phase
Vi (r) — P (r) - €7 and such gauge freedom translates into the Wannier functions

changing their shape after the Fourier transform.

Composite Bands

More generally, for a group of IV interconnected composite bands that are isolated in energy
(i.e. separated by gaps from other bands across the whole BZ), the gauge freedom manifests

itself through mixing of Bloch states at each k-point through a unitary transformation
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matrix U®) when defining the Wannier functions [19]:

N
W _ v 31, —ikR U®
nR(r) - (271_)3 /BZd ke mE_lwmk(r) mn (236)

where U®) is a N x N unitary matrix at each k-point. Different choice of U®) lead
to Wannier functions with different spatial shapes and localities. Therefore, one needs
constraints in the generation of Wannier functions to determine the U® before using them
in practice.

The Maximally Localized Wannier Functions (MLWFs) ansatz proposed by Marzari and
Vanderbilt [19] fixes the gauge degree of freedom by minimizing the sum of the quadratic

spreads of the Wannier functions in real-space using the following expression

N
Q=% (<Wn0 72| Wao) — [(Wio || Wn0>|2> (2.37)
n=1

where € is the sum of the quadratic spreads of all the Wannier function in the home unit

cell. © can be further decomposed into two parts as

Q=0+ Q (2.38)
where
N
Q=2 [(Wao [r?| Wno) = > [(Wr [t| Wno)/* (2.39)
n=1 Rm
and

N
Q=3 S [(Wor x| Woo) (2.40)

n=1Rm#0n
It can be shown that both Q; and Q are positive-definitive quantities and € is gauge
invariant [19], i.e., its value is invariant under different choice of the U®) matrices. Hence,
the minimization of  corresponds to the minimization of Q.

It turns out that the evaluation of the matrix element of the position operator r in
the expressions for the quadratic spread does not have to be carried out in real-space. In

fact, using the quantum mechanical equivalent relationship [20,21] of the position operator
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r in real-space and the derivative operator —iVy in momentum-space, the information
needed to compute the matrix elements in Eq. (2.39) and Eq. (2.40) is the momentum-
space derivatives encoded in the overlaps between the Bloch states (the periodic part) at
neighboring k-point

MR = (i [ty ) (2.41)

where b is the vector that connects two adjacent points in the k-point grid and the wu,x(r)

(k,b)

kT, (r). The overlaps My,

are the cell-periodic parts of the Bloch states, ¥,k(r) = e
only need to be calculated once at the start of the “Wannierization” procedure, and the
actual minimization of the spreads only depends on the unitary matrices U¥) and the
overlaps M,g(ﬁb). Thus, the generation of MLWF's can be treated as a post-processing step
to the standard electronic structure calculation. For the work in this thesis, the QUANTUM
ESPRESSO [17] electronic structure software is used together with the WANNIER90 MLWF
generation software [22,23].

Iterative minimization of ) starts with some reasonable initial guess for the Wannier
functions, which requires a priori knowledge of the material being studied. Different initial
guesses can lead to different MLWFs produced. For example, one can achieve either bonding
and antibonding-like Wannier functions or sp? hybrid-like Wannier functions for tetrahedral
insulators (e.g. diamond and Si). MLWFs are found to be exponentially localized around
their centers [24,25] and are real-valued functions [20]. Wannier functions, because of their
construction, span the same Hilbert space as the Bloch bands, leading to a localized basis
set for electrons that reaches the same level of accuracy as the first principles method. Due
to their exponential locality, Wannier functions can be used as the basis for linear-scaling
electronic structure methods [20]. Next, Wannier functions can provide local chemical
information that is hard to extract from the Bloch state representation of electrons. Finally,
the centers of Wannier functions can be interpreted as the coordinates of the electrons when

computing the electronic polarization and provide an intuitive connection to the modern

theory of polarization [26].
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Entangled Bands

In certain cases, the energy bands we wish to Wannierize overlap in energy (i.e., are entan-
gled) with other undesired bands. For instance, in copper, the bands with d characters are
hybridized with a dispersive band with s character, and we need to “pick” the bands with d
characters before constructing MLWFs for them. The “disentanglement” procedure devel-
oped in Ref. [27] selects the right energy bands before sending them to the spread-minimizing
Wannierization procedure (described in the previous section for composite bands).

We briefly describe the main physical ingredient of the disentanglement procedure. To
perform the disentanglement procedure and obtain N bands, we first identify an energy
window (“outer window”) that can includes all the targeted bands as well as some undesired
bands. Then, at each k-point, we define a transformation matrix V® that mixes the
J¥ eigenstates (JX > N) whose energy falls in the outer window to produce a set of N

orthonormal Bloch states :

U (1) = D duuic(r) - V) (2.42)
meJk

before sending the Bloch states 1#2{):(1') to the Wannierization procedure described above for
composite bands. At each k-point, the V& is a rectangular unitary matrix with dimension
J¥x N which obeys {V(k) }T'V(k) = [. Hence, disentangling is equivalent to choosing a set of
V& to produce a set of Bloch states ¢Zit(r) that can ensure maximal locality (i.e., minimize
Q) after the Wannierization procedure. As noted above, the {1 only depends on V& and
Q depends on both V& and U®). Therefore, the heuristic for constructing MLWFs for
entangled energy bands is naturally decomposed into two step: first €1 is minimized with
respect to V¥ to achieve a set disentangled bands, then ) is minimized with respect to UK
to achieve MLWF's. Conceptually, the disentanglement corresponds to selecting subspaces
at each k-point that are smoothiest across the BZ, and the Wannierization corresponds to
selecting a gauge that smoothly varies the phases of Bloch states in the BZ. The smoothness
of the Bloch states in momentum-space leads to localization of MLWFs in real-space.

The usage of MLWFs in solid state systems will be detailed below in Chapter 3.
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2.4 Van der Waals corrections

Dispersive interaction, or Van der Waals (vdW) interaction, will exist between two separate
fragments of matter that consist of charged particles whose positions can fluctuate. Van der
Waals interactions originate from the long-ranged electrostatic interactions between quan-
tum mechanically fluctuating dipoles and play an important role in the chemical properties
of inorganic molecules and 2D material heterostructures [28,29]. In principle, all correlation
effects including vdW interactions are included in the exact DFT exchange-correlation func-
tional E.[n]; in practice, however, semi-local approximations such as LDA and PBE-GGA
do not contain such long-ranged correlations. How one can try to incorporate vdW effects
into the DFT framework is an active field of research, and the available schemes fall into
two general categories: (i) adding explicitly non-local density-density interaction terms in
the exchange-correlation functional E,.[n] to capture the long-ranged correlations between
electron densities [30], (ii) adding a simple semi-empirical correction term “on top of” the
DFT energy which is proportional to the London formula —Cg/R® at large interatomic sep-
aration R asymptotically. The three vdW corrections used in this thesis belong to category
(ii), which we shall outline briefly here.

The energy correction term for evaluating the total energy for the three vdW functionals
(i.e., DFT-D2, DFT-vdW, DFT—VdWS“rf) take the form
cy

Edisp = - Z fdmp(Rij) ' RT
ij

(i,5)

(2.43)

where C’éj is the dispersion coefficient, R;; is the interatomic distance between atom ¢ and
atom j, and the summation (i, j) runs over each pairs of the atoms in the system. famp(Rij)
is a damping function which converges to 1 at large interatomic distance (R;; — +00)
to achieve a correct asymptotic behavior and decays to zero exponentially fast at small
interatomic distance (R;; — 0) to suppress any singularities in the dispersion term. Three
vdW functionals differentiate from each other in how the C’éj dispersion coefficients are

determined:

e DFT-D2 [31] obtains its C’éj coefficients from first principles calculations of isolated
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atoms of species ¢ and j. Cg is determined by atom i and j’s atomic ionization

potential and atomic dipole polarization.

DFT-vdW [32] first computes the free-atom coefficients Céj as reference values us-

free
ing frequency-dependent polarizabilities of atoms ¢ and j reported from time-dependent
DFT (TDDFT) calculations. The dispersion coefficient Céj used in the solid state cal-

culation is scaled from free-atom C’é] based on the “effective volume” of atom ¢

free
and j in the solid environment to account for the change of atomic polarizability with

the chemical environment.

DFT-vdW*™f [33] is designed for describing the dispersive interaction between the or-
ganic molecules and metallic substrates. It builds on top of the DFT-vdW framework

and can further include the effect of the metallic substrate’s screening behavior.
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Chapter 3

Degree of locality of elasto-optic

response in solids

Note: This chapter is adopted from an article we have submitted to Physical Review B, and

it is under review.

3.1 Introduction

The elasto-optic effect, or photoelasticity, of a crystal describes the linear response change of
optical refractive index with applied strain. By definition, only the electronic contribution
to the dielectric response is included in the elasto-optic effect, and therefore it describes the
strain dependence of the dielectric tensor at frequencies well above those of lattice vibrations
but below the electronic band gap. The elasto-optic effect is of interest for technological
applications as well as for fundamental science. For example, the elasto-optic effect re-
duces the efficiency of fiber Bragg gratings [34]. Next, semiconductor heterostructures in
devices such as transistors have built-in inter-layer strains due to the lattice mistmatch
between their constituent layers which, via the elasto-optic effect, modifies their electronic
and optical properties. The elasto-optic effect also gives rise to birefringence phenomena in
crystals by lowing their symmetries. For example, the normally isotropic dielectric constant
in cubic solids turns into a rank-two tensor under strain, so that light will propagate with

different speeds along different crystallographic axes. This effect has been used to make
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photoelastic modulators to modulate the polarization of light [35]. In nanoscale systems
such as waveguides, the optical forces exerted by electromagnetic waves can be engineered
by the elasto-optic effect through its relation with electrostrictive forces, enabling selective
excitation of acoustic phonon modes in the waveguides [36]. The coupling between elec-
tromagnetic waves and acoustic phonons provide applications in making photonic-phononic
devices [37—41]. Since the magnitude and directions of the electrostrictive forces are deter-
mined by the elasto-optic and dielectric properties which have strong material dependences,
they can be used to enhance or suppress the photon-phonon coupling. Hence, understanding
and predicting elasto-optic response helps with the selection or design rules for materials
for photon-phonon interactions.

Numerous computational works [42-46] have calculated the elasto-optic tensor for insula-
tors and semiconductors using density functional theory (DFT) [3,4] and density functional
perturbation theory (DFPT) [18]. DFPT is a powerful ab initio approach that can provide
physical insight into the separate responses of electrons and ions, and the DFPT-computed
elasto-optic tensors are in a good agreement with available experimental data. However, as
a numerical method for response calculations, DFPT does not provide direct insight into
the underlying physical principles of elasto-optic behavior in a localized, real-space manner
in the sense detailed in Sec. 3.2. There also exist phenomenological models for photoelastic-
ity. Donadio and Bernasconi [46] developed a model to describe the photoelasticity of silica
materials. Their model assumes that the dielectric response of silica is entirely determined
by the sum over each oxygen atom’s polarizability which is affected by the local geometry
of the crystal in response to strain. However, the attempt to generalize the model from
silica to sodium silicate has been less successful [47]. Another model proposed by Damas
et al. [48] centralized the role of individual chemical bonds in silicon and their response
to lattice distortion based on bond orbital theory for tetrahedrally covalent crystals [49].
By analyzing how the bond polarizability changes with strain in Si, Damas et al. were
able to extract the strain dependence of silicon’s dielectric tensor, i.e., the elasto-optic ef-
fect. However, these phenomenological models include a variety of empirical parameters
and assumptions on locality and short-ranged electronic response which must be verified

and extracted from experimental data or ab initio calculations.
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In this paper, we aim to understand the governing physical principle of the elasto-
optic effect at the microscopic level from first principles. We first show that comparing
to state-of-the-art DFPT calculations, the random phase approximation (RPA) presents
a simple yet as accurate enough approach for describing the dielectric and elasto-optic
response. By rewriting the RPA formula for the dielectric tensor in the basis of Maximally
Localized Wannier Functions (MLWFs) [20], we discover that the strain-dependent dipole
transitions between occupied and unoccupied Wannier functions are the main determinants
of the elato-optic effect. We also reveal a surprisingly long-ranged nature for the dielectric
and elasto-optic response using the Wannier basis which means the basic assumptions of
many semi-empirical approaches to photoelasticity should be reconsidered carefully. Four
insulating materials from two distinct material classes are considered in this work: the
covalent semiconductors Si and diamond, and the ionic crystals NaCl and MgO.

The structure of this paper is as follows. Sec. 3.3 describes our computational methods.
Sec. 3.4 presents the state-of-the-art DFPT calculations for elasto-optic responses done in
this work that are in good agreement with prior first principle calculations and experiments.
Sec. 3.5 is devoted to understanding the silicon elasto-optic effect. Sec. 3.5.1 compares the
RPA and DFPT methods for calculating the photoelasticity of silicon and suggests that a
promising venue to describe the elasto-optic effect is to use Wannier functions. It is also
discovered in Sec. 3.5.1 that the change of dielectric constant with strain is dominated by
the dipole matrix elements rather than the eigenenergies of the Bloch states. Sec. 3.5.2
furthers the discussion about the dipole transitions by rewriting the matrix elements into the
Wannier basis. We then develop a “constrained sum” method in real space by partitioning
dipole transitions into shells according to their distances. This “constrained sum” method
reveals the long-ranged behavior of the dielectric and elasto-optic response of silicon which
can be only understood intuitively in a localized basis set like Wannier functions. Sec.
3.6-3.8 apply the tools developed for Si to diamond, NaCl, and MgO. Similar conclusions
about the locality of the photoelasticity can also be drawn for these three materials. We
summarize the main findings, their implications and the relation of our work to the prior

literature in Sec. 3.9.
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3.2 Physical insight and bond-orbital models

As we will see in Sec. 3.4, fully ab initio approaches such as DFPT provide reliable tools for
numerical computation of dielectric and photoelastic responses. However, such approaches
do not provide sufficient insight in terms of a compact localized picture of the response that
allows intuitive understanding and development of simple rules of thumb. More precisely,
an ideal model would describe the materials response in terms of highly localized orbitals
centered on the atoms or bonds constituting the material. Prior work in this area has
been based on Harrison’s bond orbital model [?]: in the simplest approximation, the linear

dielectric susceptibility of a tetrahedral covalent solid (e.g., bulk silicon) can be written as

X1 = N6272d2ag/(12V2)

where N is the mean valence electron density, e is the elementary charge, d is the equilibrium
bond length between neighboring atoms, «. is a parameter that describes the covalency of
the bonds in the solid (in non-polar materials such as Si, a, = 1), twice V3 is equal to the
energy splitting between the bonding and antibonding orbitals on the same chemical bond,
and v is an adjustable scaling parameter that is used to compensate for the discrepancies
between the model and experimental data. All the parameters in the above expression
for x1 relate to the physical properties of one single chemical bond. Therefore, such a
model possesses extreme locality, is straightforward to interpret, and, if accurate, provides
an excellent starting point for materials design. Finding the strain dependencies of these
parameters describes the photoelastic response within the bond-orbital picture. A recent
example of this approach for elasto-optic response can be found in Ref. [48]. Despite the
simplicity and easy interpretation of such models, the fact that the adjustable parameters
such as v can only be found by fitting to known materials properties limits their predictive
power. Ideally, one would prefer to approach the problem using first principles in order to
have predictive power for new materials.

Our fundamental aim in this paper is to answer two basic questions. First, how short-

ranged is the photoelastic response when described in a localized bond-orbital type model
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developed from first principles? In other words, is this physical property short-ranged
enough so that a simple physical picture emerges? Second, can the key parameters in the
localized model be computed from first principles? Below, we will succeed in developing an
ab initio real-space approach based on localized Wannier functions to compute the photoe-
lastic response and find that the responses are longer ranged than assumed in the standard

bond-orbital picture.

3.3 Computational Methods

The elasto-optic tensor p;ji; is defined by the expression
Aq-_jl = Dijki€ki (3.1)

where ¢;; is the dielectric tensor of the crystal and ey is the strain tensor. Therefore,
the elasto-optic tensor p;ji; is a rank-4 tensor with i, j, k,[ being one of the z,y, z axial
directions. The notation Ae~! describes the linear response change of €. Since both the
inverse dielectric tensor e~! and the strain tensor e are symmetric, the elasto-optic tensor
possesses a number of permutation symmetries: (i <> j) and (k <> [) [50]. In this work, we
use Voigt’s notation to compactify: 1 = xx,2 = yy,3 = 22,4 = yz,5b = xz, and 6 = xy.
All the crystal structures studied in this paper (Si, diamond, NaCl, and MgO) have cubic
symmetry at equilibrium which makes their elasto-optic tensors have only 3 independent
components, i.e., pi1, p12, and paq.

In this work, we use density functional theory (DFT) [3,4] to compute the electronic
structure of bulk crystals using the QUANTUM ESPRESSO software package [17] with periodic
boundary conditions and a plane-wave basis. We use the local density approximation (LDA)
[6-8] for exchange and correlation and employ norm-conserving pseudopotentials [14,51] to
describe the ionic cores. The four bulk crystals in this paper are all simulated using 2-atom
primitive unit cells with their experimental lattice constants of ag = 5.43 A, 3.57 A, 5.64 A,
and 4.21 A for Si, diamond, NaCl, and MgO, respectively [52]. A 6 x 6 x 6 uniform k-

point grid sampling with appropriate energy cutoff (35 Ry for Si, 60 Ry for diamond, 30
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Ry for NaCl, and 65 Ry for MgO) achieves total energy convergence within 1 meV /atom.
To calculate the static dielectric constant of solids, we use density functional perturbation
theory (DFPT) [18] as implemented in QUANTUM ESPRESSO. Since we are interested
in describing the change of the dielectric response with strain rather than the dielectric
response itself, further analysis reveals that a 12 x 12 x 12 uniform k grid sampling is
needed to converge the change of dielectric constant to 0.01 in absolute value with 1%
uniaxial strain.

We also use the random phase approximation (RPA) to compute dielectric response
[53,54]. The RPA is very useful because it is written as an explicit analytical formula. Our
results will show that the RPA provides a highly satisfactory approximation to the more
accurate DFPT results for both the dielectric constants and their strain dependences. We

use the expression for the longitudinal RPA dielectric constant given by

¢ — 167T ) QZZ ch k ‘cek ar ‘ Py k+q>‘ (32)

k cv — Eyk+q

where V' = Ny is the volume of the super cell which is equal to number of k-points Ny
multiplied by the volume of the primitive cell 2. The summation ranges over all pairs of
valence (v, occupied) and conduction bands (¢, unoccupied) and also the whole Brillouin
zone (k). The wave vector q is that of the external electric field applied to the material,
but since photoelasticity is a long-wavelength response (i.e, uniform imposed electric field),
we let |q| approach zero (|q| is set to be 1% of a primitive reciprocal lattice vector in our
calculations).

We aim to use an accurate first principles real-space representation for dielectric response
in solids, especially for the <e‘iq’r> dipole matrix elements in (3.2). A natural choice is to
utilize Maximally Localized Wannier Functions (MLWFs) [19,20,27] as the basis set. For a
selected set of energy bands, MLWFs span the same Hilbert space as Bloch states since they
are constructed by unitary transformation of the Bloch states. MLWFs are exponentially

localized in real-space [25], which is a desired feature when describing a system’s locality.
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The mathematical expression for MLWF's is

J
Yo e Ry - U, (3.3)

1
Wnr(r) = IR
k m=1

where UX) are rectangular J X Nyann unitary matrices representing the gauge freedom in
building Wannier functions, J is the number of bands targeted to make Wannier functions
whereas Nyann is the number of Wannier functions wanted per unit cell. The U are
determined to achieve the maximal locality criterion [19]. Wannier functions in this work
are generated using the WANNIERO9O0 software package [22,23].

Wannier functions in this work are generated separately for valence and conduction
bands so that we can describe dipole transitions between filled (valence) and empty (con-
duction) Wannier functions in real-space. The spatial characters of the generated Wannier
functions are determined by the chemistry of the solids (detailed in Secs. 3.5-3.8). For
example, for each 2-atom primitive unit cell of silicon, we generate 4 bonding Wannier
functions for the 4 valence bands and then disentangled the low lying conduction bands
to generate 4 antibonding Wannier functions. The 8 Wannier functions basis per cell form
a “minimum basis set” in a tight-binding model for silicon crystal. By substituting the
relation between MLWFs and Bloch states from Eq. (3.3) into Eq. (3.2), we arrive at an

expression for the RPA dielectric constant in the MLWEF basis:

160 1

e=lt0m g D D> Miyw Mapr Foyriasr (3.4)
lal” SRR
where
Mapr = (Wor |e 4| W