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Chapter 1

Introduction

Since Richard Feynman’s 1959 lecture “There’s Plenty of Room at the Bottom”

popularized the ideas of building machines on an atomic scale, there has been an

incredible growth in research and applications related to nanotechnology and nano-

materials, which consist of functional materials with dimensions on the order of 1

nm (nanometer, 10−9 m).[1] As materials processing techniques such as chemical

vapor deposition (CVD), molecular beam epitaxy (MBE) and lithography continue

to improve, and the use of bottom-up nanomaterials like carbon nanotubes becomes

more widespread, the active areas in electronic devices, catalytic systems, and other

materials systems will continue to decrease in size, and are already reaching atomic

dimensions.[2, 1] As this process continues, the understanding of surfaces and inter-

faces on an atomic scale will have increasingly important implications for the design

and construction of new and better transistors, memory devices, catalysts, energy

storage devices, etc. For example, the smallest layer of a modern transistor has al-

ready been scaled down to 1.2 nm, which is only 5 atoms thick, and the interface

between this layer and the silicon substrate is crucial to device performance.[2, 3]

In parallel with this process, as both computing power and theoretical techniques

1



have improved, there has been a great increase in the capabilities of first principles

modeling to describe interesting surfaces and interfaces with the accuracy necessary

to quantitatively study new systems. First principles techniques are well-suited for

understanding new phenomena at surfaces and interfaces, as they do not require the

fitting of parameters to previous experiments or similar materials, and can therefore

predict and explain effects which are not present in the bulk. In conjunction with

careful experimental measurements, first principles calculations have provided insight

into many nanoscale structures and properties.[4] In this work, I use first principles

techniques to understand and design a variety of technologically relevant interfaces

and surfaces.

A large portion of this work is related to the integration of complex oxides with

silicon at an atomically sharp epitaxial interface. Si-based substrates and transistors

are the backbone of the modern semiconductor industry, which over the past 50 years

has managed to exponentially increase the density of transistors in a given area on

a Si chip (the number of transistors per area has doubled roughly every two years,

a phenomenon known as Moore’s law).[5] This process has proceeded by scaling

down the dimensions of a transistor, which requires each individual component of

the transistor to decrease in size. However, this process has begun to reach atomic

dimensions, as mentioned above, and further scaling will require improved materials.

In particular, the dielectric layer of a transistor, which has traditionally been made

of SiO2, has already been replaced with a Hf-based oxide in modern transistors, due

to its superior dielectric constant.[2, 3] This allows the dielectric layer to be made

physically thicker, reducing quantum mechanical leakage currents, while maintaining

the desired electric properties. One possible application of complex oxides on Si is

to replace this dielectric layer with a material with even higher dielectric constant,

allowing further scaling of transistors to take place.[6, 7, 3]

2



More broadly, the complex oxides display a dizzying array of potentially useful

properties, including ferroelectricity, ferromagnetism, multiferroic behavior, colossal

magnetoresistance, and high temperature superconductivity[8, 9]. However, in order

to use these properties in applications such as a non-volatile transistors, spintronics,

and multiferroic memory, they frequently must be integrated with Si. Our current

ability to grow epitaxial oxides on Si is limited to a few materials, and detailed un-

derstanding of the growth procedures and the materials properties which enable the

formation of high quality interfaces is necessary to both improve existing interfaces

as well as expand the range of materials which can be grown epitaxially on Si.[6]

In this work, I investigate the properties of Sr which make it an ideal material to

form a template layer for epitaxial growth of oxides on Si. I look at Sr on both Si and

Ge, and I consider the effects of temperature on the growth of these materials. These

results have already improved understanding of growth techniques for high quality

interfaces between Si and SrTiO3.[10, 6] In addition, I compare the performance of La

to Sr as a template layer for oxide growth, and then use this knowledge to propose a

series of interface structures which may allow for the growth of LaAlO3 on Si, which

has not yet been achieved.[6]

In addition to this work, I have also investigated the surface chemistry of PbTiO3,

a ferroelectric. The surfaces of ferroelectrics, which are materials with a stable but

switchable polarization, provide an intriguing avenue for controlling surface chem-

istry and catalysis with an external electric field.[11, 12, 13, 14] By switching the

polarization of the substrate, one can reversibly change the surface, potentially bind-

ing or releasing an adsorbate or turning off and on a reaction pathway. In order to

understand the surface chemistry of PbTiO3, a technologically relevant ferroelectric,

I perform the first ab initio thermodynamic analysis of the variation of the PbTiO3

surface with polarization, and I consider the effects of the changing PbTiO3 surface
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on its applications for surface chemistry. Specifically, I investigate the binding of

CO2 and H2O to the surface for different polarizations of the substrate. Finally, I

attempt to design a new surface layer which is both thermodynamically stable and

will maximize the variation of the surface chemistry with polarization.

Interfaces can also be used to couple materials in new ways, creating unexpected

phenomena which are not present in either bulk material.[8, 9, 15, 16] For example,

an epitaxial interface between a SrTiO3 substrate and a thin film of La1−xSrxMnO3

(LSMO) allows phonon modes related to octahedral rotations in the SrTiO3 to couple

directly with the LSMO. The transport properties of LSMO, which is a correlated

oxide which displays colossal magnetoresistance,[17, 18] are very sensitive to these

phonons. At the SrTiO3 phase transition temperature, the frequency of these octahe-

dral rotations approaches zero, leading to the diverging occupation of these phonon

modes. These modes then couple across the interface and into the LSMO, modifying

its transport properties and magnetization, and therefore creating a novel method to

probe the electronic structure near the interface. In order to understand this effect,

I build a first principles model of octahedral rotations at this interface and analyze

the behavior of the octahedral rotations at finite temperatures.

This thesis is organized as follows:

In chapter 2, I review over the theoretical techniques used in my work.

In chapter 3, I investigate the properties of a submonolayer coverage of Sr on a

Si (001) surface. In collaboration with my experimental colleagues James Reiner,

Fred Walker, and Charles Ahn,[10] I explain the previously unknown 1/6 monolayer

(ML) structure and its role in the evolution of the 1/2 ML template layer structure

for oxide growth on Si.

In chapter 4, I calculate the properties of a phase transition between a disordered

lattice gas of Sr on Si and an ordered silicide structure. These findings are in agree-
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ment with the measurements of my experimental colleagues Myrtle-Rose Padmore,

Yaron Segal, James Reiner, Fred Walker, and Charles Ahn.[19]

In chapter 5, I calculate the phases of Sr on a Ge (001) surface, and find a series

of new structures which are in agreement with the scanning tunneling microscopy

images of Boris Lukanov and Eric Altman.

In chapter 6, I investigate the properties of La on Si (001), and compare the

surface to the results of chapter 3. I find a series of previous unknown silicide

structures that indicate La will be difficult to use as a template layer for oxide

growth, and which shed further light on the performance of Sr as an oxide template.

In chapter 7, I propose a growth procedure for epitaxial LaAlO3 on Si, which

builds on the results of the previous chapters. The stable interface structures require

the incorporation of Sr at the interface in order to prevent silicide and SiO2 formation

as well as to compensate the polar field at the stoichiometric (001) LaAlO3 surface.

In chapter 8, I present my work on ferroelectric surface chemistry, done in collab-

oration with Alexie Kolpak. I present the first polarization dependent phase diagram

for the PbTiO3 surface and investigate the effect of polarization on surface chemistry

in this system.

In chapter 9, I present my model of the octahedral rotations between a SrTiO3

substrate and an LSMO thin film. In collaboration with Yaron Segal, Carlos Vaz,

Jason Hoffman, Fred Walker, and Charles Ahn, I explain the observed resistivity

cusp in LSMO at the SrTiO3 phase transition temperature in terms of dynamic

cross-interface phonon coupling.

5



Chapter 2

Methods

2.1 Density Functional Theory

2.1.1 Hohenberg-Kohn Theorems

The central goal of electronic structure calculations is to solve the many-body Schrödinger’s

equation (under the Born-Oppenheimer approximation, in atomic units):

ĤΨ(r1, r2, ...) = EΨ(r1, r2, ...) (2.1)

(T̂ + V̂ee + V̂eI)Ψ(r1, r2, ...) = EΨ(r1, r2, ...) (2.2)

−
1

2

N
∑

l=1

∇2
lΨ+

∑

l<l′

1

|rl − r′l|
Ψ+

∑

l

Uion(rl)Ψ = EΨ(r1, r2, ...) (2.3)

where Ψ(r1, r2, ...) is the full many-body wavefunction, which depends on the posi-

tions and spins of all N electrons in the system, E is the energy, T̂ is the kinetic

energy operator, V̂ee is the electron-electron interaction operator, and V̂eI is the po-

tential due to the nuclei. Unfortunately, the space required just to store Ψ(r1, r2, ...)

numerically grows exponentially with the number of electrons in the system, making

a direct solution of Schrödinger’s equation impossible for all but the smallest number
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of electrons. However, many approximate methods for solving Eq. 2.1 exist, and one

of the most successful for investigating materials systems is density functional theory

(DFT)[20, 21, 22] under the local density approximation (LDA),[21, 23, 24] which is

used extensively in this work.

The main motivation for DFT is the realization that a direct attempt to solve for

Ψ(r1, r2, ...) is asking for too much information. When answering materials science

questions, we are usually interested in far simpler quantities, like the energy, forces,

and electron density of a given configuration of atoms. The great insight of DFT is

that the ground state electron density, in principle, contains all of the information in

the ground state wavefunction, Ψ0(r1, r2, ...),[20] where the electron density is defined

as

n(r) = N
∫

dr1dr2...drNΨ
∗
0(r1, r2, ...)δ(r − r1)Ψ0(r1, r2, ...). (2.4)

The electron density, n(r), is a real function of only three spatial degrees of freedom,

as opposed to Ψ0, which is a complex function of 3N degrees of freedom; solving for

n(r) will greatly simplify the solution of the many-body problem.

In order to prove the claim that we can solve for n(r) instead of Ψ0, we first note

that the ground state energy of a system can be written

E0 = 〈Ψ0 | T̂ + V̂ee + V̂ext | Ψ0〉 (2.5)

E0 = 〈Ψ0 | T̂ + V̂ee | Ψ0〉+
∫

dr n(r)v(r) (2.6)

where the first two terms are the same for any system, and all of the differences

between any particular material system comes from v(r), the external potential,

which is due to the nuclei and any external fields. Normally, one is given v(r) and
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solves for Ψ0 and then computes n(r). In order to show that n(r) contains all the

information of Ψ0, we will show that for any given n(r), there is a unique v(r) (up to

an additive constant), and therefore we can proceed from n(r) to v(r) to Ψ0 without

losing information. We proceed via proof by contradiction. Assume there are two

different external potentials v(r) and v′(r) which produce the same n(r). Then, we

solve for Ψ0 and Ψ′
0 for the two potentials, and we note that due to the variational

principle,

E0 = 〈Ψ0 | Ĥ | Ψ0〉 < 〈Ψ′
0 | Ĥ | Ψ′

0〉 (2.7)

E0 < 〈Ψ′
0 | Ĥ ′ | Ψ′

0〉 − 〈Ψ′
0 | Ĥ − Ĥ ′ | Ψ′

0〉 (2.8)

E0 < E ′
0 +

∫

dr n(r)
(

v(r)− v′(r)
)

, (2.9)

where in the second line we add and subtract E ′
0 = 〈Ψ′

0 | Ĥ ′ | Ψ′
0〉. However, if we

switch the prime and unprimed variables and follow the same steps, we find

E ′
0 < E0 +

∫

dr n(r)
(

v′(r)− v(r)
)

. (2.10)

Adding Eq. 2.9 and 2.10, we find that

E0 + E ′
0 < E0 + E ′

0 (2.11)

which is a contradiction. Therefore, v(r) = v′(r), up to a constant, and there is a

one-to-one mapping between the external potential and the ground state electron

density.

In order to make use of this result, we must find a way to solve for n(r) given
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v(r). This can accomplished by minimizing the energy functional:[20]

E[n] = 〈Ψ0[n] | T̂ + V̂ee | Ψ0[n]〉 +
∫

dr n(r)v(r). (2.12)

In order to prove that the minimum of this function is the ground state electron

density, we again make use of the variational principle. For some trial electron

density ñ(r):

E[n] = 〈Ψ0[n] | Ĥ | Ψ0[n]〉 ≤ 〈Ψ0[ñ] | Ĥ | Ψ0[ñ]〉 (2.13)

with equality achieved when ñ(r) = n(r), the ground state electron density.

2.1.2 Kohn-Sham Equations and the Local Density Approx-

imation

In order to make use of this formalism, we must find an explicit way to calculate

E[n] = 〈Ψ0[n] | Ĥ | Ψ0[n]〉 (2.14)

= F [n] + Vext[n] (2.15)

= T [n] + Vee[n] +
∫

dr n(r)v(r), (2.16)

where F [n] ≡ T [n] + Vee[n] is a universal functional of n(r) which includes both the

kinetic energy and the Coulomb energy of the full many-body system. Following

Kohn and Sham,[21] we will use approximations to F [n] and create a single particle

framework. First, we will write the kinetic energy, T [n], by introducing a set of N

orthogonal single particle states ψi(r), where N is the number of electrons, which
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are constrained to add up to n(r):

T [n] = −
1

2

N
∑

i=1

〈ψi | ∇2 | ψi〉 (2.17)

n(r) =
N
∑

i=1

|ψi(r)|2 (2.18)

〈ψi | ψj〉 = δij (2.19)

(2.20)

The ψi are chosen to give the minimum of Eq. 2.17 while obeying Eqs. 2.18-2.19.

Next, we will rewrite Vee by separating the classical Hartree electrostatic interac-

tions from the rest:

Vee[n] =
1

2

∫

dr
∫

dr′
n(r)n(r′)

|rl − r′l|
+ Exc[n] (2.21)

where Exc[n], called the exchange and correlation energy, is defined to include all

interactions beyond the mean-field Hartree term and the single particle kinetic energy

(Eq. 2.17). One contribution to Exc[n] is classic (Fock) exchange, which is due to

the fact that electrons are antisymmetric under exchange of indicies (this term is

included exactly in Hartree-Fock theory). A second contribution is the correlations

between the electrons, which are due to the fact that electrons repel each other, and

therefore, each electron tends to have a lower instantaneous density of neighboring

electrons around it than would be predicted by mean field theory. In addition, Exc[n]

in principle includes any many-body kinetic energy effects which are not captured

in Eq. 2.17, as well as self-interaction correction terms, which compensate for the

fact that the Hartree term includes interactions between an electron and itself (these

effects are not included accurately in the approximations used in this work).

With the explicit forms of Eqs. 2.17 and 2.21, we can take a functional derivate
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of E[n] with respect to n(r), resulting in the Kohn-Sham equations, which can be

solved self-consistently for the ground state energy and electron density:[21]

[

−
1

2
∇2 + v(r) +

∫

dr′
n(r′)

|rl − r′l|
+ vxc(r)

]

ψj(r) = εjψj (2.22)

vxc(r) ≡
δExc[n]

δn(r)
(2.23)

n(r) =
N
∑

i=1

|ψi(r)|2 (2.24)

Up until this point, DFT is exact; however, the exact forms of Exc[n] and vxc(r)

are unknown, and approximations are required to continue. While many approxima-

tions of varying complexity exist, a simple and widely used approximation is the local

density approximation (LDA), in which Exc[n(r)] is approximated at a given point

in space by the value of the exchange and correlation terms of a uniform electron gas

(jellium) at the same density:[21, 23, 24]

ELDA
xc [n] =

∫

dr n(r)εxc(n(r)) (2.25)

where εxc(n) is the exchange and correlation energy per electron of an electron gas

at density n with a uniform compensating positive background. The exchange con-

tribution to εxc(n) can be calculated exactly,[25] while the correlation contribution

has been computed to high accuracy via quantum Monte Carlo.[26, 27]

The success of LDA in describing materials systems is somewhat surprising, given

how simple the approximation is and how far from a uniform electron gas the elec-

tron density most materials systems are. For instance, DFT using LDA can calcu-

late semiconductor lattice constants to within 1-2%, and bulk moduli and phonon

frequencies to within 5%.[22] More significant errors are found in solid cohesion ener-

gies and molecular atomization energies, which are frequently overestimated by >1.0
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eV.[22, 28, 29] Much of the success of LDA is due to the fact that it gives the exact

exchange and correlation energy for a physical system (the uniform electron gas),

and therefore obeys a series of sum rules which are also obeyed by any real system

under study.[30, 28]

My work also uses the generalized gradient approximation (GGA),[31, 32, 33,

28] which is closely related to LDA. In GGA, the approximation for Exc includes

gradients of the electron gas density:

EGGA
xc [n] =

∫

dr n(r)εGGA
xc (n(r), |∇n(r)|) (2.26)

where εGGA
xc (n, |∇n|) is the exchange and correlation energy per electron of a uniform

electron gas with a electron density n and a electron density gradient |∇n|. This is

not a unique definition, and different GGAs exist that are chosen to reproduce various

sum rules and scaling laws in addition to reproducing the exchange and correlation

energy of a slowly varying electron gas.[28, 33] GGAs tend to improve total ener-

gies, atomization energies, energy barriers, and energy differences between structures

compared to LDA but give similar lattice constants and structural properties.[28] For

instance, compared to LDA, GGA reduces errors in the atomization energies of small

molecules by a factor of four, and cohesive energies are also greatly improved.[28]

2.1.3 Plane Waves and Pseudopotentials

In order to solve the Kohn-Sham equations (Eq. 2.23) numerically in a solid-state

environment, we expand our Bloch single particle wave functions in terms of plane

waves:

ψnk(r) = eikr
|G|≤Gcut

∑

G

cnk(G)eiG·r/Ω (2.27)
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where cnk(G) are our expansion coefficients, and Ω is the unit cell volume. Our ex-

pansion in truncated at finite Gcut, usually specified as Ecut =
|Gcut|

2

2 . This basis has

many nice properties, including: 1) it can be systematically improved by increasing

Ecut, with convergence ensured as the Fourier basis is complete, 2) the kinetic energy

is very simple in Fourier space, and 3) it naturally includes the periodic boundary

conditions present in crystals. Unfortunately, the number of plane-waves required to

accurately describe wavefunctions near the nuclei, which have many high frequency

oscillations (see Fig. 2.1), is prohibitively high. This makes a straightforward appli-

cation of a plane-wave expansion to any large system impossible.

In order to use a plane wave basis set, a technique must be used to describe

the regions around the nuclei at low computational cost; in this work, we use

pseudopotentials.[34, 35] In pseudopotential calculations, the core electrons are re-

moved from the calculation, and the atomic potential felt by the valence electrons is

modified so that it reproduces the correct wavefunctions outside of a cutoff radius

(rc), and the wavefunctions and potentials are smooth inside rc (see Fig. 2.1). In

practice, ab initio pseudopotentials are constructed from atomic all-electron calcula-

tions so that the all-electron and pseudo wavefunctions a) have the same eigenvalues

εnl, b) are equal for r > rc and match smoothly at r = rc, c) have matching loga-

rithmic derivatives at r = rc and ε = εnl.[36] The last requirement ensures that the

scattering properties of the pseudopotential match the all-electron potential at the

chosen energy. When constructing and testing pseudopotentials, parameters such as

rc and the number of core versus valence states are adjusted in order to obtain the

required accuracy for atomic and solid-state calculations, where the pseudopotential

must reproduce the effective all-electron potential in a chemical environment which

is not known a priori.
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Figure 2.1: Top: Si all-electron (dashed) and pseudo (solid) wavefunctions, for the
3s and 3p valence orbitals. Bottom: Si pseudopotentials. rc = 2.23 Bohr. This is
example uses the norm-conserving Troullier-Martin’s pseudoization scheme[34].
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2.2 DFT Perturbation Theory

In order to calculate phonon frequencies and other properties that depend on deriva-

tives of the total energy with respect to ionic positions, we need to calculate deriva-

tives of the total energy:

E[n,R] = T [n] + Vee[n] +
∫

dr n(r)Vion[R] + VII [R] (2.28)

where we emphasize the dependence of terms in the energy on R, the ionic positions

(see Eq. 2.16). The first two terms, the electron kinetic energy and electron-electron

interactions, do not depend explicitly on R, and do not directly affect the following

analysis. The forth term, VII [R], contains the ion-ion electrostatic interactions,

computed with Ewald sums, and its derivatives with respect to the ionic positions

are straightforward. However, the third term, the electron-ion interactions, will

require additional analysis. We proceed by computing derivatives of E with respect

to R, which are necessary to calculate the spring constant matrix:

∂E[n,R]

∂R
=

∫

dr n(r)
∂Vion[R]

∂R
+

∂VII

∂R
(2.29)

∂2E[n,R]

∂R∂R′
=

∫

dr
∂n(r)

∂R′

∂Vion[R]

∂R
+

∫

dr n(r)
∂2Vion[R]

∂R∂R′
+

∂2VII

∂R∂R′
(2.30)

Due to the Hellman-Feynman theorem, the first derivative of the energy, ∂E[n,R]
∂R ,

does not require derivatives of the electron density. However, the second derivative,

∂2E[n,R]
∂R∂R′ , requires knowledge of ∂n(r)

∂R′ , which we will compute with first order pertur-

bation theory on the Kohn-Sham equations (see Eqs. 2.23 and 2.31):[37, 38, 39]

H | ψn〉 = εn | ψn〉 (2.31)

∂εn
∂R

= 〈ψn |
∂H

∂R
| ψn〉 (2.32)
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(H − εn) |
∂ψn

∂R
〉 = −(

∂H

∂R
−

∂εn
∂R

) | ψn〉 (2.33)

∂H

∂R
=

∂Vion(r)

∂R
+

∫

dr
∂n(r)

∂R

1

|r − r′|
dr′ +

dvxc(n)

dn

∂n(r)

∂R
(2.34)

∂n(r)

∂R
= 2Re

N
∑

n=1

ψ∗
n(r)

∂ψn

∂R
(r) (2.35)

Eqs. 2.32-2.35 form a self-consistent set, which can be solved for ∂n(r)
∂R . Then, ∂n(r)

∂R

can then be used in Eq. 2.30 to calculate the spring constant matrix ∂2E[n,R]
∂R∂R′ .

2.3 Nudged Elastic Band

The nudged elastic band method (NEB)[40, 41] is a technique for finding the mini-

mum energy path (MEP), and therefore the saddle point, between two local energy

minima. For instance, it can be used to find the energy barrier for the motion of an

adatom between two binding sites on a surface. Using transition state theory,[42, 43]

the energy barrier for motion from site 1 to site 2 can be used to calculate the hopping

rate:

R1→2 = ν exp(−Eb/kBT )) (2.36)

where Eb is the energy barrier, the highest point along the MEP, ν is an attempt

frequency, T is the temperature, and kB is Boltzmann’s constant.

The NEB method works by first creating a series of images (usually around 7)

which are an initial guesses for steps along the MEP between the two local minima

in the atomic positions. The initial guess is frequently very high in energy, and must

be relaxed to the MEP; however, naive force minimization will result in all of the

images returning to one of the two local minima. In order to prevent this, the images

are connected with fictitious springs, with spring constant k (see schematic in Fig.
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2.2). Then, the forces on all of the images are relaxed, except in the direction parallel

(‖) to the current MEP. Motion in this direction is relaxed according to the fictitious

springs:

Fi = F s
i‖ +∇E(Ri)⊥ (2.37)

∇E(Ri)⊥ = ∇E(Ri)− (∇E(Ri) · τ̂i)τ̂i (2.38)

F s
i‖ = k(|Ri+1 − Ri|− |Ri − Ri−1|)τ̂i (2.39)

where Fi is the total force on image i, τ̂i is the local tangent to the current MEP,

∇E(Ri) are the physical forces on an image, and F s
i are the fictitious spring forces,

with spring constant k. The projection of the Fi into perpendicular and parallel

components is necessary to prevent the springs from distorting the MEP by pulling

the images towards the shortest distance between the minima.[40]

2.4 Wannier Functions

While DFT is very good at calculating the Bloch states ψnk(r) and the band energies

εnk in reciprocal space for a given configuration of atoms, we frequently wish to

understand the chemistry between atoms in terms of localized atomic bonds. One

tool for achieving this is a Wannier function basis, which is a Fourier transform of

the Bloch wavefunctions:

wn(R, r) = 〈r | Rn〉 =
1√
Nk

∑

k

eik·Rψnk(r) (2.40)

where Nk is the number of lattice sites and also the number of k-points in the

first Brillouin zone over which the sum is performed. R is the lattice site about
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Figure 2.2: (Color Online) Schematic of Nudged Elastic Band (NEB) method. The
plot is of the energy versus reaction coordinate (the minimum energy path), with
images (red circles) along the path connected by springs, which prevent them from
moving downhill to the local minima. The barrier Eb for transitions from the right
minimum to the left minimum is marked.
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Figure 2.3: (color online) Top view of an isosurface plot of a Wannier function with
dx2−y2 character centered on a Mn atom in La0.5Sr0.5MnO3. The Mn is green and
in the center, the O are cyan with O-O bonds drawn, and the La/Sr are magenta.
The red regions are positive, and the blue regions are negative. The function is
largely localized on the Mn, but extends to neighboring O atoms due to bonding
interactions.

which wn(R, r) is localized. Like the Bloch states ψnk(r), Wannier functions form

an orthonormal set, but rather than extending periodically throughout the crystal,

wn(R, r) are typically localized at a particular lattice site R, which allows us to

visualize and develop intuition for chemical interactions (see Fig. 2.3). In addition,

by rewriting the reciprocal space Hamiltonian Hnm(k, k′) = εnkδnmδkk′ in a Wannier

function basis, Hnm(R,R′), we can create an exact tight-binding Hamiltonian which

reproduces the ab initio band structure εnk. In fact, ifHnm(R,R′) is localized (i.e. the

matrix elements decay quickly as |R− R′| increases), we can truncate our expansion

in R-space and then inverse Fourier transform to any k with losing accuracy, allowing

us to interpolate to a much higher k-point density than can easily be achieved with

straight-forward DFT calculations.
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In order for Wannier functions to be a useful description of the electronic struc-

ture, they must be localized in space. While this is always possible in one dimension,[44]

and is frequently possible in higher dimensions,[45] some care is needed. In partic-

ular, a unitary transformation (ψ′
nk =

∑

m Uk
nmψmk) between any set of overlapping

bands in Eq. 2.40, which cannot change the results of the calculation of any physical

quantities, will nevertheless have a dramatic effect on the resulting Wannier func-

tions and their locality. In this work, we choose the Uk that minimizes the quadratic

spread functional (Ω):[46]

Ω =
∑

n

[

〈r2〉n − 〈r〉2n
]

(2.41)

〈r〉n = 〈Rn | r̂ | Rn〉 (2.42)

〈r2〉n = 〈Rn | r̂2 | Rn〉. (2.43)

This choice leads to maximally-localized Wannier functions, which are related to the

modern theory of polarization.[47]

2.5 Classical Monte Carlo

In order to calculate the finite temperature properties of the systems described in this

work, we would like to sum the partition function and also calculate the expectation

value of operators:

Z =
∑

i

e−βEi , (2.44)

〈O〉 =
1

Z

∑

i

Oie
−βEi (2.45)
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where the sums are over all states of the system, Z is the partition function, Ei is the

energy of state i, 〈O〉 is the average value of operator O and β = 1
kBT is the inverse

temperature. The number of terms in these sums grows exponentially with the

number of particles in the system, making direct summation impossible. In addition,

many unphysical states (i.e. with many broken bonds, or atoms on top of each

other) are included in the sum, but have vanishing contributions. A computationally

tractable method for dealing with high-dimensional sums is to use the Metropolis

Monte Carlo method.[48, 49, 50] Rather than directly sum Eq. 2.44, we calculate

the average value of observables by sampling from the Boltzmann distribution:

〈O〉 ≈
1

n

n
∑

i∝pi

Oi, (2.46)

pi = e−βEi/Z (2.47)

where the states in the sum are drawn randomly, with probability pi according to the

Boltzmann distribution, and the sum has manageable number of terms. In order to

do this summation, we need to be able to sample the Boltzmann distribution, which

can be done by generating new states from prior states while obeying the detailed

balance condition:

cijpi = cjipj (2.48)

where cij is the probability of proposing a step from state i to state j. We impose this

condition because it ensures that if the system is at equilibrium, then the stochastic

evolution of the system maintains equilibrium. The Metropolis algorithm is a way

of generating new states of the system while maintaining detailed balance, which

allows us to calculate the average values of observables with Eq. 2.46. The algorithm
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Figure 2.4: (color online) Example of thermalization in a Monte Carlo run. The log of
the energy of the system is plotted versus iteration number. The initial configuration
of the system is very high energy, but it quickly relaxes to random variations around
its equilibrium value at the chosen temperature.

consists of repeating the following steps:

1) Propose a trial move from the current state (i) to a new state (j).

2) Calculate the energy of the current state (Ei) and the new state (Ej).

3) Accept the move with probability min
[

1, cji
cij
e−β(Ej−Ei)

]

.

The proposed moves from one state to another are often chosen at random (i.e.

move a random atom in a random direction by some step size), in which case, cji
cij

= 1.

In Sec. 9.4.2, we discuss a more complicated scheme, where the current state of the

system (i.e. the forces on the atoms) is used to increase the chance that a move is

accepted, which can increase computational efficiency.

In order to start the algorithm, a random initial state can be chosen, and then the

algorithm is run until the average values of the observables stabilize. This process

is called thermalization, and must be completed before sampling can begin (see Fig.

2.4).
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Chapter 3

Phase Diagram and Kinetics of Sr

on Si (001)

3.1 Introduction

The integration of new materials with current microelectronics technology is an im-

portant prerequisite for both improving many current technologies as well as creating

new ones. In particular, the growth of epitaxial oxides on silicon is a key goal for

the continuation of Moore’s law in current CMOS transistors as well as a necessary

component for many proposed devices.

As the electronics industry strives to pack higher densities of faster transistors

onto a silicon wafer, the area of all the transistors must decrease. Despite this

scaling, due to limitations on the charge and voltage, the capacitance across the

dielectric layer of a transistor must remain constant.[2] In the past, the solution

to this problem has been to decrease the thickness of the dielectric layer, currently

made primarily of silicon dioxide, in order to maintain the desired capacitance per

unit area. Unfortunately, current dielectric layers are only a few atomic layers thick
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and further decreases in the thickness of this layer will result in unacceptably large

quantum mechanical tunneling (leakage) currents through the dielectric.[2]

One solution is to replace the silicon dioxide dielectric with a material which

has a higher dielectric constant, thus allowing the dielectric layer to be physically

thicker but still have the desired capacitance.[7, 51, 6] In order for this approach to

be successful, the new material must have a high quality interface with silicon which

minimizes the scattering of electrons in the channel region of the transistor. Complex

transition metal oxides deposited epitaxially on Si are one class of materials which

can fulfill both requirements.

Beyond current technological concerns, the epitaxial integration of complex oxides

with silicon would also allow the many interesting and potentially useful properties

of oxides to be used in new devices, including but not limited to ferroelectricity,

ferromagnetism, multiferroic behavior, and high-Tc superconductivity. In principle,

these properties could be used in memory applications, improved transistors, or other

novel spin-based devices; however, integrating these properties into practical devices

will require atomic level control over oxide interfaces with silicon.

Currently, all examples of complex oxides grown epitaxially on silicon have re-

quired the deposition of a submonlayer template layer of Sr, Ba, or Ca on the silicon

as a first step.[52, 53] During this initial deposition, experiments with in situ sample

characterization observe several different surface reconstructions. However, the role

of these reconstructions in preparing the surface as an oxide growth template which

forms the eventual interface[54, 55, 6] with the complex oxide is unknown. Here,

we propose several new submonolayer Sr on Si (001) structures which explain these

reconstructions and which enable us to clarify the role temperature plays in creat-

ing an effective oxide template. Our knowledge of Sr on Si (001) has allowed us to

predict an experimentally verified low temperature path to oxide epitaxy.[10]
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In addition to understanding this particular oxide growth method, we hope that,

over longer time scales, the knowledge acquired by studying Sr on Si will help explain

the failure of other elements to provide an effective template layer for oxide growth.

La, in particular, would be very intriguing as an oxide template due to the high

dielectric constant and large band offsets of LaAlO3 with Si (see Chapters 6-7).

Unfortunately, La has thus far failed as a template layer for epitaxial growth on

Si.[56, 6]

This chapter is organized as follows. In Sec. 3.2 we describe our calculational

methods. In Sec. 3.3 we present a review of experimental work on Sr on Si (001).

In Sec. 3.4 we present results for Sr deposited on a standard dimerized surface:

these findings are largely in agreement with previous theoretical work[57] but fail to

explain many of the experimental results. In Sec. 3.5 we present new results for Sr

on modified dimer surfaces which allow us to rule out this entire class of structures.

In Sec 3.6, we present new results for Sr on submonolayer silicon surfaces. In Sec.

3.7 we use the results of Secs. 3.4-3.6 to explain the experimental data and present

a phase diagram for submonolayer Sr on Si (001) up to 0.5 ML coverage. In Sec. 3.8

we present computed STM images for the most stable 1/6 monolayer (ML) structure

which also turn out to compare well with experimental findings, and briefly discuss

recent XRD results. In Sec. 3.9, we present results on 1.0 ML Sr silicides. Finally,

in Sec. 3.10, we present our conclusions.

3.2 Methods

3.2.1 Total energies

Our calculations were based on first-principles density functional theory calculations

using a plane wave basis set.[20, 21] We used the PBE GGA to approximate the
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exchange correlation functional.[28] In order to minimize the number of electrons in

our calculations, we employed norm-conserving Troullier-Martins pseudopotentials

to simulate the valence electrons.[34] For silicon, we used 3s, 3p, and 3d projectors

(d local) with cutoff radii of rs=rp=rd=2.25 Bohr and the reference atomic con-

figuration 3s23p23d0. For Sr, we treated the semicore 4s and 4p states as valence

electrons in addition to the valence 3d, 5s, and 5p states (3d local) with cutoff radii of

rs=1.3 Bohr, rp=rd=2.0 Bohr and reference configuration 5s14d15p0. The semicore

states are necessary to properly describe the physics of Sr. With semicore states,

our calculated Sr lattice constant was 6.05 Å, in excellent agreement with experi-

ment, but when we did not include semicore states in our Sr pseudopotentials, we

found poor transferability between different atomic states and a lattice constant that

varies 5% depending on apparently irrelevant numerical choices in for our reference

configuration or cutoff radii.

All our calculations were run at the theoretical lattice constant of silicon, which

we calculated to be 5.456 Å, and with a plane-wave cutoff energy of 60 Ryd. We used

a slab geometry with periodic boundary conditions in the x and y directions and a

finite thickness in the z direction, which is the (001) direction in the Si crystal. This

geometry creates two surfaces, one on each side of the slab. We treated the surfaces

symmetrically by adding Sr to both sides to create two physically identical surfaces

(see the next paragraph for why this is important). The slab was simulated with at

least 8 layers of silicon plus an equivalent of 8 silicon layers of vacuum. We found

binding energies to be converged to within 0.01 eV/Sr using a 6x6 k-point sampling

per 1x1 surface unit cell of silicon with a Fermi-Dirac smearing temperature of 0.1

eV. In this work, the z direction is the surface normal, x is by default the direction in

which a clean Si (001) surface doubles it periodicity by dimerizing, and y is orthogonal

to both x and z.
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Table 3.1: Comparison of Sr binding energies for different Si slab configurations. All
energies are relative to the 8 layer symmetric configuration used in this work which
has the same atomic configuration on both sides of the slab. For the unreconstructed
configurations, each Si in the bottom layer is frozen to its bulk position and two H
atoms per surface Si are used to passivate its dangling bonds. In the reconstructed
configurations, the bottom of the slab is dimerized with one H atom per surface Si.
Sr Coverage (ML) Slab configuration ∆Ebind (eV)

1/4 4 layers unreconstructed -0.33
1/4 4 layers reconstructed 0.10
1/4 8 layers reconstructed -0.04
1/4 8 layers symmetric ≡ 0.00
1/2 4 layers unreconstructed -0.22
1/2 4 layers reconstructed 0.13
1/2 8 layers reconstructed -0.02
1/2 8 layers symmetric ≡ 0.00
1/2 12 layers symmetric 0.01

Initially, we attempted to decrease the size of our calculation by only using one

Sr on Si surface and passivating the opposite slab surface with hydrogen, as per Ash-

man et al.[57] and Stekolnikovet al.,[58] among others. However, we found that these

configurations were insufficient to converge binding energies to within 0.01 eV/Sr.

Table 3.1 compares the results of several different methods of approximating a Si

slab to our 8 layer symmetric surface method. The reason for the insufficiency is the

following: an examination of the electric potentials of the asymmetric calculations

revealed significant long range electric fields through the vacuum. Due to the dif-

ferent charge densities at the two surfaces, this electric field is unavoidable, and the

energy associated with it seems sufficient to change the computed total energy in an

uncontrolled fashion.

Sr binding energies were calculated relative to a bare silicon surface in the p(2×2)

configuration and an isolated Sr atom at rest in vacuum. More positive binding

energies mean stronger binding. In this work, we considered many surfaces with

non-stoichiometric Si coverages, i.e. less than a full monolayer (ML) of Si on the
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surface, which required the use of a bulk Si reservoir to calculate binding energies.

The chemical potential of the bulk reservoir was determined by subtracting the two

nearest full monolayer silicon slab calculations and dividing the difference by the

number of silicon atoms. For example, to determine the binding energy of a structure

with 8 full layers of Si plus 2 extra Si atoms per side, we used a chemical potential

determined from the 8 and 10 layer Si slab calculations. This method was used to

approximate the energy of bulk Si to the same accuracy as the rest of the slab and

to remove an ambiguity as to whether a structure with a partial Si layer should be

considered as adding bulk atoms to a thinner reference slab or subtracting bulk atoms

from a thicker reference slab. For a sufficiently thick reference slab, this method for

determining the chemical potential will give the same result as the more intuitive

method of using a ab initio bulk Si calculation to determine the chemical potential,

but our method converges faster for finite-sized slabs.

3.2.2 Phonons free energies

Most first principles calculations assume that contributions to the free energy from

the vibrational degrees of freedom of similar structures are either too small or too

similar to be relevant at experimental temperatures. However, since we were exam-

ining temperature dependent effects and small energy differences, we were forced to

consider phonon contributions to the free energies. Phonon calculations require the

first derivative of the charge density with respect to the nuclear positions, which we

calculated using DFT perturbation theory.[37, 38, 39]

Our method for calculating the free energy of large slabs with periodic boundary

conditions in the x and y directions depended on the locality of the dynamical matrix

in real space. First, we calculated the dynamical matrix on a coarse grid in (kx,

ky) space. Next, we Fourier transformed to get the dynamical matrix in (x, y)
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space and we checked to see if the matrix elements between atoms which were well

separated in real space had decayed to negligible values. Once we had the real space

dynamical matrix with sufficient range such that any further matrix elements would

be negligible, we could Fourier transform back to (kx, ky) space exactly and therefore

calculate the dynamical matrix at any k-point essentially exactly. We found that real

space matrix elements typically converged within three 1x1 unit cells of silicon. In

order to ensure the convergence of low frequency modes in a computationally efficient

manner (see discussion in Mounet and Marzari[59]), we enforced the translational

acoustic sum rule by editing the diagonal elements of the real-space dynamical matrix

D,

Dαα
ij = −

∑

β )=α

Dαβ
ij , (3.1)

where α and β label the atoms in the system and i and j label the x, y, or z directions.

Enforcing the acoustic sum rule ensures that moving all the atoms collectively results

in exactly zero restoring force, and therefore that the frequencies of the three acoustic

modes do in fact go to zero at Γ.

Once we had the real-space dynamical matrix, we used the above method to

sample the phonon dispersion on for a dense k-point grid sufficient to converge the

free energy. The free energy was calculated with the standard formula for quantum

harmonic oscillators,

F = E0 +
∑

i

1

2
h̄ωi + ln(1− exp(−h̄ωi/kbT )) (3.2)

where E0 is the total ground state energy of the system as determined by the plane

wave calculation, ωi are the phonon frequencies, kb is Boltzmann’s constant, and T

is the absolute temperature. For a slab system, the sum over i represents both the
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sum over both the 3Natoms modes in the unit cell as well as (kx, ky) space.

While the Sr atoms on the surface only interacted significantly with the first three

to four layers of Si directly, we still needed to converge our free energies with respect

to the thickness of our slab in order to properly capture the differences between low

frequency modes in the z direction. In order to accomplish this in a computationally

efficient manner, we attached additional layers of bulk Si to the ab initio slab and

converged free energy differences as a function of the number of added bulk layers

(see Figure 3.1). Specifically, we first derived an accurate ab initio second nearest

neighbor model for the dynamical matrix of bulk Si. Second, we computed the ab

initio dynamical matrix elements of all atoms comprising the surface and and first

four layers of Si of the slab. Third, to connect this slab data to the added bulk Si

layers, we replaced the dynamical matrix elements connecting the third and fourth

Si slab layers to the added bulk by those appropriate to the bulk second nearest

neighbor model. The free energy differences are converged to 1 meV after attaching

10 layers of bulk silicon to 4 layers of slab data as shown in Fig. 3.1.

3.2.3 Energy barriers

Another potential source of temperature effects are kinetic barriers which prevent the

system from reaching true thermodynamic equilibrium. In order to estimate these

kinetic effects for key configurations, we performed energy barrier calculations for

typical atomic motions. Energy barriers (Ebar) were determined using the Nudged

Elastic Band method plus Climbing Images, which determines the energy of the

transition state between two local minima.[40, 41] We then used simple transition

state theory to estimate transition rates:

R = ν exp(−Ebar/kT )) (3.3)
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Figure 3.1: (Color online) Convergence data for vibrational free energies versus num-
ber of bulk silicon layers added to the slab for 1/2 ML structures (see Figs. 3.2 and
3.6 for all the A and all D structures and Fig. 3.7 for the c(2×2) structure). Top:
Vibrational free energy of all A structure minus all D structure. Bottom: Vibrational
free energy of all A structure minus c(2×2) structure. We found that convergence to
1 meV/Sr at 600oC is achieved after 10 layers of Si were added to a 4 layer ab initio
calculation.

The exponential prefactor (ν) was estimated from our phonon calculations. We

expect these rates to give a good order of magnitude estimate for the rate limiting

steps which dominate the motion of surface atoms.

3.2.4 Wannier functions

Finally, maximally-localized Wannier function calculations were performed in order

to analyze electronic structure and surface chemistry.[46] We considered several dif-

ferent Wannier function schemes to analyze the surface bonding. To get a qualitative

understanding of our surfaces, we used a basis consisting of Sr s and d orbitals plus

sp3-like dangling bonds on surface silicon atoms. In order to get a more quantitative

understanding of the surface, we also considered a full sp3 basis for the silicon. Using

the full sp3 basis allowed us to create an exact first-principles tight binding model

of the surface near the Fermi level, but the additional Wannier functions did not
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change our qualitative interpretation of the surface bonding. All of the density of

states plots in this work were obtained by projecting onto Wannier states. The ad-

vantage of projecting onto Wannier functions rather than the more commonly used

atomic orbitals is that Wannier functions are orthonormal, maximally localized, and

complete within the chosen Hilbert space, which we generally set to be a few eV

around the Fermi level.

3.3 Review of Experimental Work

The first step of the only known pathway to epitaxial oxide growth on Si (001) is

to deposit submonolayer coverages of an alkaline earth metal on silicon near 600oC.

The first structures of this type used Sr,[52] but the method as been expanded to

Ba and Ca.[53] Experiments indicate that Sr coverages between 1/4 ML and 1/2 ML

are suitable for oxide growth,[60] but the role of high temperature Sr deposition in

promoting epitaxial growth is unclear.

Previous high temperature RHEED,[52, 60] LEED,[61] and STM[62, 63] studies

of the surface found that the surface evolves from the 2× reconstruction exhibited

by the bare silicon surface to a 3× structure at 1/6 ML, which is then replaced by a

2× structure at 1/4 ML. The final 2× structure is observed to be stable up to 1/2

ML Sr coverage. These shifting diffraction patterns are often used for calibration

in oxide growth procedures. Unfortunately, their origin has up to now been largely

unknown.

Diffraction experiments on the silicon surface typically suffer from the fact that

the standard Si (001) surface displays terraces separated by single height steps with

reconstructions rotated by 90 degrees, resulting in diffraction data which contain a

mixture of the two terminations. This mixture of surface termination prevents a
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Table 3.2: Experimental symmetry patterns observed with RHEED on miscut silicon
wafers.[10]
Sr Coverage (ML) T = 25oC T = 600oC

0 2×1 2×1
1/6 disordered 2×1 2×3
1/2 2×1 1×2

clear determination of the relative alignments of the observed reconstructions. New

data from the experiments of our collaborators Reiner et al.[10] avoided this issue

by using specially prepared silicon wafers. They deposited Sr on a 4 degree miscut

silicon wafer using molecular beam epitaxy (MBE) and analyzed the surface using

RHEED. The large miscut angle decreases the size of the silicon terraces, which both

reduces the influence of strain effects and increases the influence of step energies.[64]

The combination of these two effects causes all of the silicon dimer rows to align on

all terraces, removing an ambiguity in the interpretation of RHEED results.

This new RHEED data showed an unexplained temperature dependence (see

Table 3.2). At low temperatures (25oC), the experiments indicated that from 0 ML

up to 1/2 ML of Sr coverage, the surface retains the 2×1 symmetry of the initial

dimerized silicon surface. However, at high temperatures (600oC), more complicated

phases emerged. The surfaces started with 2×1 symmetry at 0 ML, but transitioned

to a 2×3 pattern at 1/6 ML. As the Sr coverage was further increased, at around

1/4 ML the pattern again changed to a 1×2 pattern, which continued until 1/2 ML.

These high temperature measurements cannot be explained by existing theory work

of Sr on Si (001), as we explain below.
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3.4 Standard Dimerized Surfaces

To orient the reader, we first summarize key facts concerning the bare Si (001)

surface (see ref. [65] and references therein). The atoms of the top layer of the un-

reconstructed Si (001) surface are each missing two covalent bonds. The surface

has a first order reconstruction whereby each surface Si atom pairs with a neighbor

and forms a strong dimer bond. Due to the highly directional sp3 bonding with

the second layer Si atoms, all of the dimers are forced to lie in the same direction,

perpendicular to the bonds between the first and second layer atoms. These dimers

prefer to arrange themselves into rows, which minimizes bond stretching. This sym-

metry breaking dimerization causes the periodicity of the surface to double in the

x direction, leading to a 2×1 reconstruction. After dimerization, each surface atom

still has one half-filled dangling bond. In order to further reduce the energy of the

surface, each dimer has a further and weaker symmetry breaking reconstruction:

each dimer buckles in the z direction, creating an upper atom and a lower atom (see

Figure 3.2). This reconstruction pushes the upper atom towards a more bulk-like

sp3 geometry with a lower energy dangling sp3-like orbital, and it pushes the lower

atom into a more planar sp2 geometry with a higher energy pz-like dangling orbital.

Then one electron is transfered from the dangling orbital of the lower atom to the

upper atom, partially opening a surface band gap. Furthermore, the dimers alternate

buckling direction going down each row. Despite these reconstructions, the silicon

surface still features one unpassivated dangling orbital per surface silicon and tends

to accept electrons.

In our first attempt to understand low coverages of Sr on the surface, we assumed

that the silicon remains in its canonical dimer row pattern and that the Sr simply

sits “on top” of this silicon surface. We calculated the binding energies of several
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different structures and found the results to be in agreement with Ashman et al.[57]

In general, we found the binding energy per Sr to be at least 3.5 eV/Sr at coverages of

up to 1/2 ML (a more positive binding energy indicates strong binding). This shows

that almost all of the deposited Sr will remain on the surface for typical deposition

temperatures of 600oC. In fact, at 600oC and 1/2 ML coverage, the pressure of

an ideal gas of Sr above the surface would be 9 × 10−12 Pa, well below typical

experimental pressures of ∼10−8 Pa.

To begin our search for submonolayer Sr surface structures, we compared possible

binding sites for Sr adatoms. We found that isolated Sr atoms have two local minima

on the silicon surface, which we called site A and site D in accordance with Ashman

et al.[57] (see Figure 3.2 and Table 3.3). We found that site A is most stable, with a

binding energy of 3.64 eV. Site D was 0.41 eV less stable; therefore, we expect all the

Sr atoms to occupy A sites at low coverages. For both the A and D site, one of the

silicon dimers next to the Sr atom becomes flattened and elongated. This effect has

been attributed to the Sr donating 2 electrons to the dangling bonds on the silicon

surface, which causes both dangling bonds on the dimer to become filled.[57] When

both dangling bonds are filled, the charge transfer mechanism which is responsible for

stabilizing the Si buckling reconstruction (summarized above) is eliminated, which

causes the dimer to flatten.

Due to the importance of double height silicon steps in the experiments of Reiner

et al.[10] (see section 3.3), we also considered the binding of a Sr atom to a double

height silicon step (DB in Chadi’s notation [64]) which we found to be 3.75 eV. While

this binding energy is larger than the binding of an isolated Sr atom to the dimerized

surface, it is smaller than the most stable 1/6 ML chain structures presented below

(see Table 3.3); therefore, we do not expect Sr atoms to bind preferentially to step

edges nor step edges to necessarily be important sites of nucleation for the observed
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Figure 3.2: (Color online) Side view of A site (top) and D site (bottom) isolated
Sr. Both figures feature both flattened and buckled dimers. The single large (gold)
sphere in each figure is the Sr adatom while the Si atoms are the smaller (blue)
spheres.

changes of surface structures.

Following Ashman et al.,[57], we began to search the phase space for higher

coverages of Sr on the surface. We found that the most stable structures were those

where the surface silicon atoms were able to arrange their buckling such that as many

raised surface silicon atoms were nearest neighbors of the Sr as possible, without the

Sr aggregating into locally high coverage patches. This condition is generally met

by diagonal chains of Sr atoms, which allow the Sr atoms in adjacent rows to be

linked by flattened dimers and also allow the remaining buckled dimers near the Sr

to arrange their buckling to both keep raised Si atoms near the Sr and maintain an

alternately buckled pattern in each row.

For example, at 1/6 ML, we found the most stable structure to be chain-like pat-
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terns of Sr atoms occupying the A site (see Figure 3.6a and Table 3.3). This structure

has a very strong binding energy of 3.81 eV/Sr. It is important to note that while in

principle this structure will be ordered at zero temperature, there exist zig-zag chain

structures which are essentially isoenergetic with the straight chains. In fact, we

found that the zig-zag chains are 0.014 eV/Sr more stable than the straight chains

at 1/6 ML. This energy difference is essentially within our convergence threshold

and likely beyond the accuracy of the PBE GGA functional, but were it accurate,

we would expect the chains to be disordered well below room temperature. This

near degeneracy between straight and kinked chains causes the positions of Sr atoms

in second nearest neighbor rows in the 2× direction to be very weakly correlated;

therefore, we expect the Sr pattern for this reconstruction to appear disordered, in

contrast to the ordered 2×3 reconstruction observed at 600oC in RHEED experi-

ments (Table 3.2).

As we increased the Sr coverage, the next coherent phase on silicon dimer rows

was the double chain structure at 1/4 ML (see Figure 3.6b and Table 3.3). This

structure is similar to the single chain structure, but with each chain having two

consecutive A sites filled, which again maximizes the number of raised dimer atoms

near each a surface Sr. For the same reasons as the single chain, this structure also

will be disordered at finite temperatures.

Finally, at 1/2 ML Sr coverage, we found the most stable structure to have every

A site filled, which produces a coherent 2×1 diffraction pattern (see Figure 3.6c and

Table 3.3). If each Sr atom fully donated 2 valence electrons to the silicon surface,

this structure would have every Si dangling bond passivated, and we did find that the

surface has a band gap (see Figure 3.4). However, our Wannier function calculations

indicated that the bonding is more covalent than previously thought, as there was

significant hybridization between the Si dangling bonds and the Sr orbitals (see
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Figures 3.3a-c). This strong overlap between Si and Sr states pushes the Sr states

out of the silicon band gap. We can understand this process better by examining the

Wannier functions for the D site 2×1 ML structure. By comparing Figures 3.3a-c

with Figures 3.3d-f, we can see that while the silicon states are very similar, the

lowest energy Sr state for the D structure is much farther from the surface and has

much less overlap with the dangling bonds than in the A site case. This difference

results in Sr states interacting less with the silicon and remaining in the middle

of the silicon band gap (compare Figures 3.4 and 3.5), which accounts for the large

difference in binding energies between the A site and D site (Table 3.3). Additionally,

in both cases, there is a significant contribution to the density of states below the

Fermi level which has Sr character. A pure ionic model would have no occupied Sr

valence states. Thus, these contributions indicate a hybridization between the silicon

dangling bonds and the Sr orbitals in a covalent bonding picture. By comparing our

Wannier function calculations with and without Sr d orbitals, we found that both Sr

s and d orbitals contribute to this bonding.

Because of the importance of the 1/2 ML A site structure in epitaxial oxide

growth and interface formation, we were interested in determining how disordered it

might become at finite temperatures. Namely, we wanted to know the lowest energy

localized excitations of this surface. Due to the ordered Sr pattern, with all of the A

sites filled, as well as the highly directional nature of silicon sp3 bonding, the only

available low energy surface excitation is to move a single Sr atom from an A site to

a D site. In order to calculate this energy, we compared the energy of a 4×4 patch

of the 1/2 ML all A site structure to the same 4×4 patch except with a single A site

Sr atom moved to a neighboring D site. We found that this excitation requires 0.25

eV of energy. While this D site excitation energy is much less than the 0.60 eV/Sr

required to move all of the A sites to D sites at 1/2 ML coverage, it is still several
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Figure 3.3: (Color online) Isosurface plots of bonding state Wannier functions at 1/2
ML coverage (red regions are positive). a-b) A site Si dangling bonds c) A site low
energy Sr state. d-e) D site Si dangling bonds. f) D site low energy Sr state. Note:
the Sr states in c) and f) are centered between the Sr atoms along the y direction,
perpendicular to the plane of the figure.
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Figure 3.4: (Color online) Total density of states (DOS) in blue (upper curve) and
Sr projected DOS from sp3 Wannier function calculations in red (lower curve) for
the 1/2 ML all A site structure. The strong interaction between the Sr states and Si
states (see fig. 3.3 a and b) pushes the Sr levels away from the Fermi level (vertical
dashed), opening a band gap.
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Figure 3.5: (Color online) Total density of states (DOS) in blue (upper curve) and
Sr projected DOS from sp3 Wannier function calculations in red (lower curve) for
the 1/2 ML all D site structure. The weaker interaction between the Sr states and
Si states ((see fig. 3.3 c and d) results in Sr levels in the silicon band gap and less
hybridization between Sr states and Si states. The Fermi level is the vertical dashed
line.

times kbT (0.075 eV at 600oC, a typical deposition temperature). If we make the

simple approximation that each Sr atom on the 1/2 ML surface can occupy either an

A site or a D site and is uncorrelated with the other Sr atoms, we find that less than

4% of the Sr will be in D sites. While calculations with a higher density of defects

(e.g. AAAD in Figure 3.6 and Table 3.3) indicate that there is an attraction between

second nearest neighbor D sites which partially stabilizes higher densities of D sites,

due to the low density of defects at deposition temperatures, these interactions will

not occur frequently enough to change our simple estimate significantly.

The 2×1 all A site structure is consistent with the low temperature RHEED

results and is the most stable structure at 1/2 ML coverage we found in our work.

However, while this 2×1 pattern has the correct size unit cell, it cannot by itself

explain the 1×2 pattern seen at high temperatures because the 1×2 pattern is per-

pendicular to the original dimers (see Table 3.2). The only reasonable way the surface

dimers can change orientation is for an entire layer of silicon to leave the surface,

40



Table 3.3: Binding energies of selected standard dimer pattern structures. See
Figs. 3.2 and 3.6.

Sr Coverage (ML) Pattern Figure Ebind (eV/Sr)
Isolated A site 3.2 top 3.64
Isolated D site 3.2 bottom 3.23

Isolated at step edge DB[64] 3.75
1/6 Single Chain 3.6a 3.82
1/4 Double Chain 3.6b 3.78
1/2 All A site 3.6c 3.54
1/2 AAAD 3.6d 3.50
1/2 Single D, remainder A 3.29

exposing the second layer of silicon atoms, which then naturally reconstructs into

perpendicular dimers. Unfortunately, standard dimerized surface silicon structures

provide no thermodynamic driving force for the 2×1 to 1×2 transition: the starting

point and ending point have identical free energies by rotational symmetry. This

lack of driving force, together with the failure to explain the observed 2×3 pattern

at 1/6 ML, forces us to rule out this entire class of structures when attempting to

explain the high temperature growth experiments.

3.5 Modified Dimer Patterns

When the silicon surface was constrained to be in the original dimer pattern (sec-

tion 3.4), the calculated reconstruction patterns could not explain the observed high

temperature surface symmetries of Table 3.2. In this section, we detail how we con-

sidered and then ruled out the possibility that the experimentally observed 2×3 and

1×2 symmetries could be due to the influence of configurational or vibrational en-

tropy on a stoichiometric silicon surface. (This ruling out was necessary to justify

the explanation of the experimental data presented in section 3.7. As we show below

in this section, none of the structures we found in this class were thermodynamically

stable under growth conditions when compared to those of section 3.6.)
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Figure 3.6: (Color online) Top view of a) 1/6 ML chain b) 1/4 ML double chain c)
1/2 ML all A site d) 1/2 ML AAAD structure. Sr are the largest atoms and are in
yellow, the silicon dimers are medium sized and in light blue, and the 2nd level Si
atoms are in smallest and in dark blue.

We began by searching modified dimer patterns that have similar local silicon

bonding to the standard dimerized silicon surface but allow greater numbers of Sr

configurations. These patterns consist of Sr atoms adsorbed on Si surfaces where all

surface Si form dimers, but the dimers themselves are not arranged into rows (see

Figure 3.7 for some examples). For bare silicon surfaces, these silicon patterns are

all unfavorable when compared to the normal 2×1 pattern, but only by about 0.06

eV/1x1 surface area, which is small compared to typical Sr binding energies and

on the order of kbT at typical deposition temperatures (see Table 3.4 and parts of

Table 3.5).

We began our search by moving every other silicon dimer out of the row alignment,

creating a c(2×2) silicon reconstruction. When we placed 1/4 ML of Sr on this

surface, we found an unfavorable binding energy of 3.37 eV/ Sr; however, there were

several 1/2 ML structures with binding energies which were nearly competitive with
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Table 3.4: Binding energies of selected modified dimer pattern structures. See Fig-
ure 3.7. All modified dimer patterns are less energetically favorable than the lowest
energy 2×1 dimer reconstructions at the corresponding Sr coverages (see Table 3.3);
however, they can be stabilized by entropic effects at high temperatures.
Si pattern Sr coverage (ML) Sr pattern Figure Ebind (eV/Sr)

2×1 1/2 A site 3.6c 3.53
c(2×2) 1/2 c(2×2) 3.7a 3.45
c(2×2) 1/2 Rows 3.7b 3.44
c(2×2) 1/2 Columns 3.02
c(2×4) 1/2 Rows 3.7c 3.48
c(2×4) 1/2 c(2×4) 3.7d 3.41
c(2×6) 1/2 AAA 3.45
c(2×6) 1/3 Rows 3.51
c(2×6) 1/3 AA 3.43
2×3 1/2 AAAshift 3.42
2×3 1/2 Row+A 3.41

Figure 3.7: (Color online) Top view of some low energy modified dimer pattern
reconstructions. a) c(2×2) silicon with 1/2 ML Sr in a c(2×2) pattern; b) c(2×2)
silicon with 1/2 ML Sr in rows; c) c(2×4) silicon with 1/2 ML Sr in rows; d) 2×3
pattern with 1/2 ML Sr. Same nomenclature as Figure 3.6.
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Table 3.5: Surface energies of various bare silicon reconstructions. All surface ener-
gies are given per 1x1 silicon area relative to the p(2×2) buckled dimer row recon-
struction. Any submonlayer silicon is assumed to come from a bulk reservoir. All
these silicon only structures considered are less stable than the p(2×2) bulked row
reconstruction. The Fig. column refers to figures with the indicated silicon pattern
(when Sr is removed).
Si coverage (ML) Symmetry Fig. Esurf (eV/1x1)

0 c(2×4) 3.7c 0.07
0 c(2×6) 0.025
0 c(2×2) 3.7a 0.08
0 2×3 0.08
1/3 2×3 DV-2 3.10a 0.09
1/2 2×4 DV-2 0.09
1/2 Sa 2 3.9b 0.03
2/3 Sa 1 3.9a 0.03

the previously considered 2×1 all A site structure (see Table 3.4 and Figure 3.6).

While these c(2×2) silicon structures are less stable than the 2×1 all A structure,

their geometries allow a greater number of Sr configurations than are possible when

the dimers are forced to be in rows and only A sites are occupied. For instance, some

combination of Figures 3.7a and 3.7b could coexist on the c(2×2) silicon surface.

This configurational entropy should eventually stabilize this structural class relative

to the more ordered 2×1 pattern. We made an optimistic estimate of this effect by

assuming that each 1×2 surface area had 2 allowed Sr configurations with energies

E1 and E2 that were uncorrelated with the other Sr atoms. With these simplifying

assumptions, we had the following formula for the configurational free energy:

Fconfig = kT ln





∑

i=1,2

exp(−Ei/kT )



 (3.4)

In the limit where E1 = E2 ≈ -3.45 eV/Sr, we got the simpler formula F =

−3.45 eV− kT ln(2). This model gives a transition to the c(2×2) silicon dimer pat-

tern at 1200oC, which is much higher than the temperature where the 1×2 RHEED
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reconstruction is first observed (Table 3.2).

Using the same techniques, we also investigated several other modified dimer

patterns at various coverages, the most stable of which was the c(2×4) silicon con-

figuration with 1/2 ML of Sr arranged into rows parallel to the dimers (Figure 3.7c),

with a binding energy only 0.05 eV/Sr less favorable than the 2×1 all A structure.

However, our simple estimate indicated that the transition to this would be above

1000oC, again far too high to explain the experiments.

Encouraged by the relatively close energies of these structures, we considered the

possibility that the different vibrational modes of these surface structures explained

the temperature dependences observed in experiment. While most first principles

calculations assume that the differences in the vibrational free energies of similar

structures are negligible, the different bonding geometries combined with the possi-

bility of low frequency modes associated with the relatively heavy Sr atoms created

the possibility for strong vibrational effects.

To estimate the size of these vibrational effects, we first calculated the differences

in vibrational free energy between the 1/2 ML 2×1 all A site structure and the 1/2

ML 2×1 all D site structure. We found that the contribution from the vibrational free

energy favors the D site over the A site (see Figure 3.1). The free energy difference

between the two structures is primarily due to the low frequency mode corresponding

to Sr motion parallel to the dimers (see the lower panels of Figure 3.8 in particular).

We found that the frequency of this mode is much lower for the D site than for the A

site, which can be explained by the fact that D site Sr is sitting above the dimer rows

so there is little to prevent it from moving parallel to the dimers. However, despite

this low frequency mode, we found that at 600oC, the difference in vibrational free

energy is only 0.057 eV/Sr in favor of the D site which is obviously not enough to

offset the 0.60 eV/Sr difference in binding energies between the structures.
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Figure 3.8: (Color online) Phonon density of states (DOS) of 1/2 ML all A and all
D site surfaces with 14 layers of silicon. Top: A site (left) and D site (right) total
phonon DOS (black solid) and silicon projected DOS (red dash-dotted). Bottom: A
site (left) and D site (right) phonon DOS projected onto all Sr motion (black solid)
and Sr x-direction motion, parallel to the dimers (red dash-dotted). The differences
in the frequencies of the Sr x mode account for the majority the difference in the
vibrational free energy between the A site and D site (see text).
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Encouraged by the magnitude and sign of this result, we considered the differences

in vibrational entropy between the 1/2 ML 2×1 all A structure and the 1/2 ML

c(2×2) structure which should be typical of the bonding scheme in the modified

dimer pattern structures. We found that the 2×1 all A structure is further stabilized

over the modified dimer pattern by 0.047 eV/Sr at 600oC due to vibrational effects.

On the basis of these test cases, we concluded that while the differences in vibra-

tional free energy between the 2×1 all A structure and the modified dimer pattern

structure are not entirely negligible compared to their binding energy differences,

the effects have the wrong sign to explain the temperature dependent reconstruc-

tions observed experimentally. More generally, we expect that even for significantly

different structures, the vibrational contributions to the free energy would tend to

give a correction of at most 0.05 eV/Sr to the difference in ground state binding

energies at typical deposition temperatures.

3.6 Mobile Silicon Reconstructions

After exploring the phase space of Sr atoms sitting on a surface with a full mono-

layer of silicon, we were still unable to explain the periodicity and the temperature

dependence of either the 2×3 or the 1×2 reconstruction observed experimentally.

Therefore, we were forced to explore surfaces with submonolayer coverages of silicon.

Structures featuring silicon atoms with less than three Si-Si bonds were quickly

ruled out as very unstable, as the Sr binding energies tended to be about 2.2 eV/Sr.

Additionally, any structures that created more than one Si dangling bond per 1×1

surface area were found to be very unstable. For example, a naive attempt to create

a 1/2 ML Sr structure with 1×2 symmetry for the Sr atoms involves removing a

column of Si dimers and replacing it with 1/2 ML Sr. However, due to the dangling
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Table 3.6: Sr binding energies of submonolayer silicon Sa structures (see explanation
of notation for Sa and other possible steps in Chadi [64]). Sr fill A sites, but relative
to the second layer silicon. See Figure 3.9.
Si coverage (ML) Sr coverage (ML) Pattern Figure Ebind (eV/Sr)

2/3 1/6 2×3 A 3.9a 3.56
2/3 1/3 2×3 AA 3.30
1/2 1/4 c(2×8) A A 3.9b 3.58
1/2 1/4 c(2×8) AA 3.56
1/2 3/8 c(2×8) AAA 3.42

bonds on the newly exposed second layer Si, this structure has 3 dangling bonds per

2×1 area and a correspondingly poor binding energy of 2.95 eV/Sr.

Due to these constraints, we were forced to look for structures where any ex-

posed second layer silicon atoms were able to reconstruct into subsurface dimers.

By searching structures fitting this constraint, we found two relatively stable classes

of structures with submonolayer Si coverages. The first class of structures can be

thought of as variations of the most stable type of single height steps (denoted as Sa

by Chadi [64]). In these structures, rows of dimers are separated by areas of exposed

second layer silicon atoms. The exposed silicon atoms then reconstruct into second-

layer dimers, creating a 2× periodicity perpendicular to the original dimers (see

Figure 3.9). While these structures are surprisingly stable, none of them are more

stable than the standard dimer row structures at the same coverage, and further-

more, they quickly become unfavorable at coverages approaching 1/2 ML (compare

Tables 3.6 and 3.3). Hence, we excluded these structures from further consideration.

The second structure class, on the other hand, features several structures that are

more thermodynamically stable than any of those we or others considered previously.

These structures are created by removing two adjacent dimers in a row (i.e., removing

two dimers along the original 1× or y direction), reconstructing the exposed silicon

atoms into new dimers perpendicular to the original dimers, and placing a Sr atom

48



Figure 3.9: (Color online) Top and side view of selected Sa structures. a) Top view
of 3×2 1/6 ML structure. b) Top view of c(8x2) 1/4 ML structure. c) Side view of
4x2 or c(8x2) 1/4 ML structure. The Sr atoms are pictured in yellow, the original
silicon dimers (1/3 ML silicon) are in light blue, the second layer silicon atoms are
in green, and lower level silicon are in dark blue.

in the created hole. (These structures are similar to the DV-2 dimer vacancy defect

studied by Wang et al. [66]) In particular, both the 2×3 and c(2×6) 1/6 ML dimer

vacancy reconstructions are more stable than the single chain 1/6 ML reconstruction

previously considered as the most favorable (compare Tables 3.3 and 3.7). The energy

differences of 0.1 eV/Sr or more between these new structure and the single chain at

1/6 ML are larger than any likely difference in vibrational free energy at deposition

temperatures.

In order to understand the unusual stability of these structures, we explored

the electronic density of states of these structures and were surprised to find that

these 1/6 ML surfaces are insulating (see Figure 3.12). This is despite the fact that

in the limit of pure ionic Sr–Si electron transfer, there are 6 dangling Si orbitals

with only 8 electrons to fill them (see Figure 3.13 before interaction). In order to
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Table 3.7: Sr binding energies of submonolayer silicon dimer vacancy structures. See
Figure 3.10.
Si coverage (ML) Sr coverage (ML) Pattern Figure Ebind (eV/Sr)

1/3 1/6 c(2×6) 3.10a 3.96
1/3 1/6 2×3 3.10b 3.90
1/3 1/6 4×3 3.80
1/3 1/3 2×3 3.42
1/2 1/8 2×4 3.62

Figure 3.10: (Color online) Top view and side view of selected dimer vacancy struc-
tures. a) Top view of c(2×6) 1/6 ML structure. b) Top view of 2×3 1/6 ML structure.
c) Side view of 2×3 or c(2×6) 1/6 ML structure. The Sr atom is large and yellow,
the original silicon dimer (1/3 ML silicon) is in light blue, the second layer silicon
atoms are in green, and lower level silicon are in dark blue.
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understand this behavior, we employed maximally-localized Wannier functions to

project the contributions of various orbitals to the density of states. In all of our

Wannier function calculations, we used s and d Sr states. To obtain a qualitative

understanding of the surface, we only added the surface silicon states. For a more

quantitative understanding of the band structure and density of states, we added an

sp3 basis for the surface and subsurface silicon in our calculations.

We found that the Sr s and d states (Figure 3.11D) interact strongly with the

orbitals belonging to the four Si atoms surrounding the Sr atom (Figures 3.11A and

3.11B). This interaction pushes these Sr states much higher in energy and so these Sr-

derived states donate their electrons to the Si-derived orbitals (note the red curve in

Figure 3.12 that shows some hybridization below the Fermi level). Figure 3.13 shows

a schematic explanation of the energy levels and Figure 3.12 displays the density of

states.

More surprisingly, we found that the dangling bond states on the original sur-

face dimer were rather high energy unoccupied states with strong pz character (Fig-

ure 3.11C). This effect is due to a significant flattening of the original dimer: the

dimer unbuckles and both atoms move closer to the surface due to the stretching

of neighboring bonds. This results in a planar sp2-like bonding scheme with a high

energy dangling pz-like state. These pz-like states also donate their electrons to the

second layer Si dangling orbitals, which opens a band gap: see the magenta line

in Figure 3.12, which is pushed above the Fermi level, and the schematic picture

in Figure 3.13. The band gap is widened by the very strong interaction between

the dangling Si states (Figure 3.11A) and the original dimer states (Figure 3.11C).

This electron donation and interaction by the original surface dimer accounts for the

unexpected electronic structure.

While these 1/6 ML structures are thermodynamically stable, their formation will
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Figure 3.11: (Color online) Side view of 2×3 1/6 ML dimer vacancy structure with
Wannier functions of selected surface states when using the minimal basis for the Si
surface. Red and blue lobes show positive and negative isosurfaces of the Wannier
functions. A) and B): dangling orbitals of exposed silicon atoms adjacent to the Sr.
C): unoccupied pz state on the original surface dimer. D): one of many unoccupied
Sr d-character states.
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Figure 3.12: (Color online) Electronic density of states (DOS) for the 2×3 1/6 ML
Sr structure, projected using Wannier functions with an sp3 basis for the silicon. See
Figure 3.13 for a schematic explanation. The upper solid blue line is the total DOS,
the lower solid red line is Sr projected DOS (Figure 3.11D), the dashed green line is
exposed silicon projected DOS (Figures 3.11A and B), and the dotted magenta line
is the original dimer projected DOS (Figure 3.11C).
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Figure 3.13: (Color online) Schematic Energy Level diagram for 2×3 1/6 ML struc-
ture. Strong interactions push the exposed surface silicon levels (Figures 3.11A and
3.11B) down in energy and the Sr (Figure 3.11D) and original dimer (Figure 3.11C)
levels up. The original dimer levels also form symmetric and antisymmetric combina-
tions, while the exposed surface atoms interact and form low energy occupied bands.
See Figure 3.12, which has matching colors, for the projected DOS, and Figure 3.11
for real space plots of the Wannier functions.
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Table 3.8: . Nudged elastic band and simple transition state theory results. We
calculated the energy barrier to break a silicon dimer and used simple transition
state theory to estimate the rate at both low and high deposition temperatures. See
Figure 3.14.
Sr coverage (ML) Ebarrier (eV) Rate at 0oC (Hz) Rate at 600oC (Hz)

0 1.29 7× 10−12 2× 105

1/4 0.92 5× 10−5 2× 107

1/2 0.63 1× 102 1× 109

be suppressed at low temperatures by the kinetic barrier required to move 2/3 ML

of silicon from the surface to step edges, where it can join the bulk silicon. Because

silicon adatoms are mobile at typical deposition temperatures, [67] we expected that

the energy barrier to break a dimer should provide an order of magnitude estimate

for this kinetic barrier. We performed Nudged Elastic Band calculations of a dimer

breaking on the surface with various Sr coverages (see Table 3.8 and Figure 3.15).

All of our calculations were done in a 2×2 surface cell with the silicon beginning in

dimer rows (see Figure 3.14). Next, one of the dimer bonds broke as its two silicon

atoms move apart. Once the silicon atoms passed the transition state where the

bond was broken, they reformed into a c(2×2) pattern due to the periodic boundary

conditions. We preformed this calculation with no Sr, one Sr in an A site, and two Sr

— one in an A site and one in a D site (see Figure 3.2). We found that the barriers

are large (0.5-1.0 eV) compared to the relevant thermal energy scales and that the

barriers were greatly reduced by the presence of Sr (see Table 3.8). We attribute

this lowering to the electrons from the Sr atom passivating the dangling Si orbitals

present in the transition state and thus reducing its energy.

By using simple transition state theory, we could make an estimate of the rate of

dimer breaking, which was our rate limiting step (see Table 3.8). Our estimate for

the prefactor for our transition state theory calculations was 4× 1012 Hz, which we

calculated to be a typical frequency of a dimer vibrating in the x direction.
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Figure 3.14: (Color online) Transition from silicon 2×1 dimer pattern to c(2×2)
pattern with 1/4 ML Sr on surface. The silicon begins in a 2×1 dimer pattern,
which is a local minimum, in 1). The dimer breaks in 2) and continues to the
transition state in 3). Due to periodic boundary conditions, the dimer then reforms
in 4) in the c(2×2) pattern, another local minimum. On a real surface, the now
separate silicon adatoms would be able to diffuse freely after 3). The energy barrier
for this process is 0.92 eV.

Figure 3.15: (Color online) Energy barrier versus reaction coordinate for Nudged
Elastic Band calculations of dimer breaking (see Figure 3.14 and Table 3.8). Red
diamonds are for the bare silicon surface, green squares are for 1/4 ML Sr on surface,
and blue triangles are for 1/2 ML Sr. The lines are guides for the eye. The reaction
coordinate goes from 0, where the dimer is in its equilibrium position, through the
transition state near 0.5 and continues to 1, where the dimer atoms recombine with
periodic copies into a metastable modified dimer row structure.
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By comparing these rates to an average experimental deposition time of one

minute, we could determine whether the silicon was mobile at any given temperature.

According to the rates in Table 3.8, we expect that the surface silicon should be frozen

for room temperature deposition but highly mobile at 600oC. Also, by looking at the

variation of energy barriers with coverage, we find that submonolayer coverages of

Sr on Si strongly encourage the motion of silicon on the surface (see Figures 3.15).

3.7 Explanation of Experimental Growth

With the addition of the results on mobile silicon surfaces (section 3.6), we can now

understand and explain the symmetries observed during Sr deposition under both

high temperature and low temperature conditions. Figure 3.16 shows a schematic

that organizes the discussion. Both high and low temperature depositions begin with

a 2×1 dimer pattern on the bare silicon surface. At low temperatures, in accordance

with our dimer breaking rate results, this dimer pattern is frozen in place and the

Sr sit on top of the dimerized surface and settle into A sites. We expect these A

sites to arrange themselves locally into the single chain structure at 1/6 ML and the

double chain structure at 1/4 ML. However, both of these patterns will be disordered,

explaining the lack of a coherent diffraction pattern at these coverages. When the

Sr coverage reaches 1/2 ML, all the A sites will be filled, and the surface will display

a 2×1 reconstruction consistent with experiment.

On the other hand, when the deposition is conducted at high temperature, the

surface will not be frozen into a dimer pattern. In particular, as a coverage of 1/6 ML

of Sr is approached, we expect the surface to transition into one of the low energy

dimer vacancy patterns with 2/3 of the silicon dimers moving to step edges (see

Figure 3.16). While our lowest energy 1/6 ML structure has a c(2×6) reconstruction,
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the very similar 2×3 reconstruction is only 0.06 eV/Sr less stable (see Table 3.7) and

matches the experimental observations.[10, 63] We speculate that the 2×3 structure

is stabilized experimentally due to step edge effects, as the step edges appear straight

in STM images,[63] which is incompatible with a c(2×6) reconstruction. These step

edge effects will be especially large for the 4 degree miscut silicon wafers used in

RHEED experiments[10] since these wafers have terraces that are only 10 silicon

(001) unit cells wide.

As Sr coverage is further increased at high temperatures, the extra Sr will begin

to form patches of the 1/4 ML double chain reconstruction (see Figures 3.6 and 3.16).

As these patches of 1/4 ML dimerized surface grow, the remaining 1/3 ML of silicon

must also move to step edges. When this process is complete, one full monolayer

of silicon has been removed from the surface, and the dimers will now be oriented

perpendicular to the original surface dimers, accounting for the observed 1×2 surface

symmetry. As more Sr is deposited, from 1/4 ML to 1/2 ML, the double chain

patches will change continuously into 1/2 ML all A site patches. Therefore, the

high temperature 1/2 ML reconstruction will have the same atomic structure as the

low temperature 1/2 ML reconstruction but rotated 90 degrees with respect to the

original dimers. The rotation simply reflects the geometry of bulk Si: atoms in

successive (001) planes have identical surroundings except for a 90 degree rotation

around [001].

Since the low and high temperature reconstructions are identical up to a rota-

tion, it should be possible to grow an oxide on both surfaces equally well. In order

to investigate this possibility, our colleagues grew BaO on both the high tempera-

ture 1×2 and low temperature 2×1 1/2 ML Sr template layers.[10] As expected, both

template layers promoted excellent epitaxy between the Si and BaO. This experimen-

tally demonstrates that the 2×1 and 1×2 1/2 ML Sr surfaces are physically identical.
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Figure 3.16: (Color online) Schematic phase diagram of submonolayer Sr on Si (001).
Each diagram shows a top view of the surface with silicon surface atoms and dimers
in light blue and the larger Sr in yellow. Both the low and high temperature systems
begin with a 2×1 dimerized bare silicon surface, but as Sr coverage increases they
follow different paths. At 600oC, the silicon is free to move on the surface, and the
surface remains in thermodynamic equilibrium. However, at 25oC, silicon motion is
prevented by a kinetic barrier, and the lowest energy dimerized surface structure is
formed.

Furthermore, a sample grown at an intermediate temperature which displayed an in-

complete transition to the 2×3 pattern displayed poor epitaxy. We believe this is

caused by the intermediate temperature template layer failing to change completely

from a 2×1 to a 1×2 dimer pattern, which prevents large scale epitaxy. These ex-

periments both confirm our calculations and demonstrate a previously unknown low

temperature path to silicon epitaxy.

3.8 Simulated STM and XRD

A recent paper by Du et al.[63] features high resolution scanning tunneling mi-

croscopy images of the 2×3 1/6 ML Sr on Si (001) surface as well as a proposal

for its atomic structure based on DFT calculations. We considered that proposed

theoretical structure, and we found that its binding energy was 1.93 eV/Sr, which is

58



considerably less stable than any of the 1/6 ML structures considered in this work

(compare to Table 3.7). We also computed simulated STM images using the method

of Tersoff and Hamann[68, 69] to compare with the experimental images. We found

very good agreement between our low energy 2×3 dimer vacancy structure (Table 3.7

and Figure 3.10) and the experimental STM images, and also similar images for the

Ba on Si system.[70, 71]

In agreement with experiment, our filled state image (Figure 3.17a) had a single

large protrusion, which corresponded to the four filled Si dangling bonds surrounding

the Sr atom, which were too close together to be resolved experimentally. Wannier

function plots of these states can be seen in Figures 3.11A and B. Also in agreement

with Du et al.,[63] the shape of this protrusion depended only weakly on the applied

tip-sample bias.

In contrast to the filled state image, but also in agreement with experiment,

our empty state images (see Figures 3.17b-d) had two protrusions. One of these

protrusions corresponded to the empty pz orbitals on the original dimer, which are

depicted in Figure 3.11C. The other protrusion corresponded to the empty Sr s and d

states, one of which is shown in Figure 3.11D. The relative size and shape of these two

protrusions depended sensitively on the applied bias (compare Figures 3.17b/c/d).

This behavior can be understood by looking at the projected electronic density of

states (Figure 3.12). At low bias (0.5 V in our theory and 1.0 V in experiment),

the image is dominated by the empty pz orbitals, which form the majority of the

bottom of the conduction band (see Figure 3.12). However, at higher bias, the image

is dominated by the Sr orbitals, which are higher in energy and extend further from

the surface than the pz orbitals. Additionally, the protrusion corresponding to the

empty Sr states changes shape from elliptical at low bias to circular at high bias

(compare Figures 3.17b and 3.17d). Both this change in brightness and the change
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in shape agrees with the experimental images of Du et al.[63] All qualitative features

of the calculated STM images, including the image shapes and bias dependence,

agree with the experimental images, which provides further proof that our 1/6 ML

2×3 dimer vacancy structure is the experimentally observed structure.

Quantitatively, the change in ellipticity in the images happens at approximately

0.5 V lower bias in our theoretical calculations than in the experimental images.

We attribute this fact to the well-known underestimation of the band gap in DFT

calculations. In our calculation, the band gap of silicon is only 0.6 eV, as compared

to the experimental value of 1.2 eV. We believe that this is the reason for the ≈ 0.5

V offset in conduction band features between theory and experiment.

In another experimental work, our experimental collaborators J. W. Reiner, Y.

Segal, H. Hong, C. H. Ahn, and F. J. Walker measured anomalous synchrotron x-ray

diffraction (XRD) from the 1/6 ML Sr on Si structure for deposition at both 25◦C,

where we expect to find a stoichiometric Si surface with chains, and at 650◦C, where

we expect to find the 2×3 DV structure.[72] While a complete structural determina-

tion is not possible, they find results consistent with our calculated structures.

3.9 1.0 ML Silicide Structures

In addition to the 0.5 ML Sr on Si structure, > 0.5 ML Sr on Si structures are used in

growth procedures for Sr on Si.[6, 52, 53, 60, 10] Normally, 0.5 ML Sr is deposited at

high temperature, and then another 0.5 ML is deposited at low temperature, which is

believed to prevent the formation of Sr silicides[52]. This need to prevent silicide for-

mation is initially surprising, as according to our naive electron counting arguments,

the 1×1 1.0 ML Sr structure in Fig. 3.18a should be stable and semiconducting. This

is because each surface Si, which is in a bulk-like 1×1 configuration with no dimer
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Figure 3.17: (Color online) Simulated STM images of the 2×3 dimer vacancy struc-
ture (Figure 3.10) overlayed on atomic coordinates. a) Filled states at 1.0 V bias.
b-d) Empty states at -0.5 V, -1.0 V, and -1.5 V, respectively. The images show the
local density of states integrated from the Fermi level to the desired voltage at a
constant height of about 5 Å above the surface. The scale runs linearly from zero
intensity (black) to the maximum value at the chosen height (white).
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Table 3.9: . Binding Energy per Sr of 1.0 ML structures (See Fig. 3.18).
Symmetry Si coverage (ML) Ebind (eV/Sr) Fig.

1×1 0.0 2.63 3.18a
2×1 0.0 2.71 3.18b
2×2 0.25 2.86
2×2 0.5 2.88 3.18d

bond, has two dangling bonds, and each Sr can donate two electrons to the surface.

However, this surface is actually metallic, as the Sr are too close together (3.86 Å,

versus 4.31 Å in bulk Sr), and the normally empty Sr valence bands cross the filled

surface Si bands. In fact, the surface can lower its energy by forming surface dimers,

which reduces the distance between Sr in the x direction (see Fig. 3.18b and table

3.9). The most stable structure with a stoichiometric Si surface is either a 3×1 or

4×1 combination of the the two structural motifs in Figs. 3.18a-b.[57]

The fact that the 2×1 1.0 ML Sr structure (Fig. 3.18b) is relatively stable, despite

the excess of electrons which are forced to remain in high energy Sr states, suggests

that we could lower the energy of the system by adding Si atoms to the surface,

creating additional low energy electron acceptors. As shown in table 3.9 (see Fig.

3.18c), this is the case since structures with either 1/4 ML or 1/2 ML added Si atoms

are more stable the 2×1 structure with no added Si. These extra Si, which have 4

valence electrons, form a covalent bond with the Si below them. This passivates one

dangling surface bond by creating a filled bonding and empty anti-bonding state,

and allows the surface with extra Si to accept two additional electrons, relative to

the original Si surface.

These structures with extra Si on the surface show that silicide formation, which

will impede oxide epitaxy of Si, will begin thermodynamically for Sr coverages at or

above 1.0 ML. Therefore, care must be taken when growing oxides on a Sr template

layer to avoid heating the system when coverages of Sr exceed 0.5 ML in order
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Figure 3.18: (Color online) Side view of 1 ML Sr on Si structures (see table 3.9). a) 1
ML Sr 1×1 b) 1 ML Sr 2×1 c) 1 ML Sr 2×2 + 0.5 ML Si, in a c(2×2) configuration.
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to impede silicide formation kinetically, as can be done with the 1/6 ML silicide

structure.[10] Similar structures with extra Si on the surface are more important for

transition metals like La which have more valence electrons than Sr and which begin

to form silicides at lower coverage (see Chapter 6).

3.10 Conclusions

We have presented the surface reconstructions of submonolayer coverages of Sr on

Si (001) at both low and high deposition temperatures. Our findings explain the

previously unknown 2×3 reconstruction observed experimentally at high temperature

and 1/6 ML Sr coverage. This structure, which agrees with RHEED, STM, and XRD

data, is key to understanding the effects of temperature on the 1/2 ML phase, which

is important in epitaxial oxide growth. At low temperatures, this 1/2 ML phase is

created by filling Sr into spaces between the dimer rows, which remain intact. At

high temperatures, the formation of the 2×3 phase at 1/6 ML Sr coverage disrupts

the original dimer pattern and forces the motion of 2/3 of the surface Si to step

edges. The deposition of additional Sr causes the rest of the original surface Si layer

to move to the step edges and a dimer pattern to reform on the now exposed second

silicon layer. This new dimer pattern is rotated 90 degrees relative to the original

dimers since an entire monolayer of silicon has moved.

In addition, we have presented low energy Sr-silicide structures at 1.0 ML Sr

coverage, demonstrating that silicide formation must be prevented kinetically for

coverages of 1 ML Sr or higher. This result explains the need for low tempera-

tures during high coverage Sr deposition, and has implications for improving growth

procedures.

Understanding this process has clarified the role of temperature in the deposition
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of epitaxial oxides on Si (001) and has predicted an experimentally verified low

temperature path to oxide epitaxy on Si. Further work must be done to compare

the quality of the interfaces achieved via the low temperature and high temperature

deposition paths. Furthermore, understanding the reconstructions of Sr on Si at

the atomic level helps explain the role of Sr in promoting oxide epitaxy on Si and

provides important information for future work on oxide epitaxy on Si.
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Chapter 4

Phase Transition of Sr on Si (001)

4.1 Introduction

A unique feature of the epitaxial growth of oxides on Si (001) is the formation of

a reconstructed submonolayer alkaline earth metal layer (usually Sr) on the clean

Si surface that occurs before deposition of the oxide itself [52]. The structure and

kinetics of this phase have been the subject of much attention [57, 54]. Recently, it

was shown that there are two deposition paths for Sr on Si (001) which depend on

the deposition temperature[73, 10, 74] (see also Chapter 3). In both cases, the Si

surface begins in its canonical 2×1 dimerized pattern. At temperatures from 0◦C to

400◦C, the Si is kinetically limited, and Sr adatoms bind to the valleys between Sr

dimer rows. This process continues until all the low energy binding sites are filled at

1/2 ML, and the surface still has 2×1 symmetry due to the Si dimers. On the other

hand, at temperatures from 400◦C to 600◦C, Si motion is not kinetically limited. The

surface again starts with 2×1 symmetry; however, as the Sr coverage is increased,

an ordered 2×3 phase is observed at 1/6 monolayer (ML) coverage, which then is

replaced by a 1×2 phase at 1/2 ML. The 2×3 structure results from a reorganization
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of the Si surface catalyzed by the Sr adatoms and is the thermodynamic ground-

state at 1/6 ML. This phase was identified using RHEED[52, 60, 10], and it has also

been studied with scanning tunneling microscopy (STM)[62, 63] and x-ray diffraction

(XRD)[72]. In our recent density functional theory work[73], we provide details of

the structures which explain the RHEED data up to 600◦C as well as simulated STM

images of the 2×3 structure, which are in good agreement with experiment.

Understanding of these two pathways for Sr deposition on Si (001) has provided

two experimentally verified routes for creating an appropriate template layer for

oxide epitaxy [10, 74]. In the low temperature (0–400◦C) deposition route, the Si

dimers remain in place, and the oxide is grown on a 2×1 template layer. In the

high temperature (400-600◦C) route, the initial Si dimers are replaced by the 2×3

structure at 1/6 ML, and then rearranged again into a 1×2 structure at 1/2 ML,

which also provides a template for oxide growth.

Our aim is to predict and understand the temperature-coverage phase diagram

in the high temperature region, 500-800◦C (see Fig. 4.4), for the interesting and

important Si/Sr surface system. In particular, we wish to understand the order-

disorder transition near 1/6 ML between the ordered 2×3 phase and a disordered

lattice gas, which consists of Sr adatoms distributed with no long-range order on

top of a dimerized Si surface. In order to model the transition, we use first prin-

ciples density functional theory (DFT) to analyze the surface chemistry and grand

canonical Monte Carlo methods to evaluate the thermodynamics. We also use reflec-

tion high energy electron diffraction (RHEED) to map out the transition and show

quantitative agreement with theory.

67



4.2 Lattice gas Hamiltonian

First principles results and experiments show that the ground state of Sr on Si (100)

has an interesting behavior versus Sr coverage: For coverages below 1/6 ML, the

Si surfaces is the usual 2×1 dimerized one with the Sr forming disordered chains

(a lattice gas); however at 1/6 ML the ground state changes to an ordered 2×3

structure (formed by creating dimer vacancies) [10, 73]. Although not relevant to

our present work, a kinetic barrier to the Si motion prevents the formation of the

2×3 structure unless the temperature is above 400◦C. In this work, we are concerned

with the behavior of the surface at higher temperatures and for Sr coverages close

to 1/6 ML. Therefore, it is safe to assume that the system will be in thermal equi-

librium. For temperatures below 500◦C, we expect the lower energy 2×3 phase to

dominate. However, as we discuss below, this phase has a very low entropy because

perturbations to it cost a great deal of energy. On the other hand, while structures

with Sr chains on a 2×1 surface have higher energy than the 2×3 structure, the

configurational entropy for the Sr leads to a much larger entropic contribution to the

free energy. Thus we expect a phase transition between the ordered 2×3 and the

2×1 lattice gas phases as temperature is raised for coverages close to 1/6 ML Sr.

Calculating the thermodynamics of dimerized Si with Sr adatoms requires sam-

pling the canonical distribution for all the possible configurations accessible to the

Sr lattice gas. Preferably, one should compute the energy of each configuration from

first principles, but due to disorder and the large simulation cells required, this is

impractical with current computational methods and infrastructure. Therefore, we

resort to using a model lattice gas Hamiltonian which can be evaluated over many Sr

configurations. The form chosen for the Hamiltonian, as well as its key parameters,

are dictated from first principles results (next section), with no fitting parameters.
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In our lattice gas Hamiltonian, we consider only the Sr degrees of freedom, with

the surface Si remaining in a 2×1 dimerized configuration, as we find that all isolated

defects of the Si surface are high in energy. For example, a Sr atom in an isolated

unit cell of the 2×3 structure on an otherwise 2×1 dimerized silicon surface has a

binding energy of 3.60 eV, which is significantly less favorable than the lattice gas,

which has a typical binding energy 3.75 eV/Sr. The form for our model Hamiltonian

HLG is an anisotropic interacting coverage dependent lattice gas model where each

Sr binding site i on the dimerized Si surface has occupancy ni where ni = 0, 1:

HLG =
∑

i

ni

[

εi +
∑

α

Jα(zi)ni+α + ESi
i

]

, (4.1)

zi =
∑

α

ni+α . (4.2)

The lattice is rectangular so each lattice site i has eight nearest neighbors, and α

ranges over the intersite vectors. Specifically, for any site i with integer coordinates

(x, y), α ranges over the eight vectors ±(1, 0), ±(0, 1), ±(1, 1), and ±(1,−1). The

number of occupied nearest neighbor sites for i is zi. The nearest neighbor inter-

actions Jα(zi) are anisotropic. Due to rectangular symmetry, there are only three

independent interactions J10(zi), J01(zi), and J11(zi), and they depend on the local

coverage (zi) (see Fig. 4.1 for examples).In addition to the Sr site interaction terms,

there is an additional term, ESi
i , which imposes an energy cost for every instance of

two Sr atoms with a single unoccupied site between them in y direction. The physi-

cal origin of this term is that this configuration frustrates the Si dimer buckling, as

discussed below (see also Fig. 4.1).

In order to find the phase transition between our lattice gas model and the ordered

2×3 structure as a function of temperature and coverage, we evaluate the grand
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Figure 4.1: Schematic top view of a typical lattice gas configuration. All Sr atoms
(yellow circles) are in the A binding sites (see Fig. 4.2 and section 4.3) between the
Si dimers (light blue rectangles and arrows). The Sr labeled 1 has a single corner
nearest neighbor, and the Sr labeled 2 has both a corner nearest neighbor and a
nearest neighbor in the y direction. Most dimers are buckled, but are shown as flat
for simplicity, and arrows are used to highlight particular buckling. The cluster of
arrows on the left show dimers pinned in an unfavorable configuration by Sr atoms
1 and 3. The cluster of arrows in the center show that the dimers between Sr 4 and
Sr 5 can have the more energetically favorable alternate-buckling pattern.

canonical partition function for the lattice gas,

Z =
∑

{ni}

exp
[

− (HLG[ni]− µ2×3N [ni])/kbT
]

, (4.3)

N [ni] =
∑

i

ni (4.4)

where kb is Boltzmann’s constant, T is the temperature, the sum is over all possible

combinations of ni, and the Sr chemical potential, µ2×3, is set to the binding energy

per Sr of the 2×3 1/6 ML structure. We choose µ2×3 to be temperature independent

because excitations of the 2×3 structure are much higher in energy than kbT for

temperatures considered in this work (see below).

Due to the relatively long-ranged and coverage-dependent anisotropic interactions

in the model Hamiltonian, the grand canonical partition function cannot be summed
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exactly. However, this model lends itself to grand canonical Monte Carlo analysis

using the Metropolis algorithm to sample the partition function[48, 49]. We find that

the correlation function between Sr adatoms on the surface decays exponentially with

a correlation length of approximately two lattice constants at the temperatures and

coverages of interest. As a result, we can safely run our calculations in a 30×30

lattice with periodic boundary conditions. We sample our partition functions until

the sampling error is much smaller than all other uncertainties.

We use Monte Carlo sampling to determine, as a function of temperature, the

coverage of the lattice gas in equilibrium with the 2×3 structure. This set of coverages

and temperatures, which forms the phase boundary between the 2×3 structure and

the lattice gas, is plotted in Fig. 4.4.

4.3 Ab initio calculations and parameter extraction

We use first principles theory to determine the structure and energetics of a variety

of stable Sr on Si (001) configurations in order to extract the parameters for the

lattice gas Hamiltonian. Binding geometries and energies are obtained using den-

sity functional theory [20, 21], the details of which are presented elsewhere [10, 73].

Briefly, we employ a plane wave basis set, norm-conserving Troullier-Martins pseu-

dopotentials [34], and the PBE GGA exchange-correlation functional. Calculations

are run at the theoretical lattice constant of silicon, which we find to be 5.456 Å.

We use a slab geometry, with periodic boundary conditions in the x and y directions

and a finite thickness in the z direction, which is the (001) direction of the Si crystal.

The z direction is the surface normal; x is the direction in which a clean Si (001)

surface doubles its periodicity by dimerizing; and y is orthogonal to x and z.

We begin with isolated Sr adatoms. They adsorb on the standard dimerized Si
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surface in two inequivalent sites, called site A and site D [57] (as shown in Fig. 4.2a

and Table 4.1). Site A, where Sr sits in the trough between dimer rows, is most

stable, with a binding energy of 3.64 eV. Site D is 0.41 eV less stable. As a result,

we expect all the Sr atoms to occupy A sites at low coverages, and the sites i in our

lattice gas thus only range over the rectangular array of A sites.

The bonding between the surface and Sr involves primarily charge transfer from

the Sr adatom to the dangling bonds of a neighboring Si dimer [57]. This means that

other positively charged Sr adatoms prefer to sit near the now negatively charged

silicon dimer, creating correlations between Sr atoms at low coverage. This is evident

in Table 4.1 and Fig. 4.2d, which show the interaction between two otherwise isolated

Sr adatoms. The interaction between Sr adatoms in neighboring binding sites is both

highly directional and much larger than kbT=0.075 eV at 600◦C (a typical deposition

temperature). The strong Sr-Sr interaction makes a simple non-interacting model

inadequate, and we thus resort to an anisotropic lattice gas Hamiltonian.

With increasing Sr coverage, the highly directional interactions between neigh-

boring Sr atoms persist, but their strengths change with coverage. As with lower

coverages, corner nearest neighbors are preferred at 1/6 ML (Table 4.1 and Fig. 4.3).

In agreement with these predictions, scanning tunneling microscopy measurements

show a diagonal chain structure adsorption pattern at low coverages [62]. In addi-

tion to the electrostatic correlations between neighboring Sr adatoms, we find another

longer range interaction which causes the surface to avoid a single unoccupied site

between Sr atoms in the y direction (Esi
i in the model Hamiltonian). This is due

to the natural buckling of the silicon dimers; they are frustrated from reaching their

preferred alternate buckling reconstruction if second nearest neighbor Sr sites in the

y direction are occupied (see Fig. 4.1 as an example). Based on these Sr-Sr interac-

tions, we expect a lattice gas with short range correlations between Sr atoms, but
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Figure 4.2: a) Side view of a Sr atom (yellow) on Si (001) surface in the A site.
Both buckled and flattened dimers are labeled. b) Schematic top view of Sr (yellow
circles) in both A and D sites on surface with Si dimers (light blue rectangles). c)
Side view of the higher energy D binding site. d) Schematic top view of two otherwise
isolated Sr atoms that are diagonal nearest neighbors. See Table 4.1 for energies.
Dimer buckling is captured in the calculations, but not shown in the schematics for
simplicity.

no long range order at finite temperatures.

As detailed elsewhere [73, 10], while the 1/6 ML chain structure discussed above

is the lowest energy Sr adatom configuration on the dimerized Sr surface, it is not the

ground state of the system. The lowest energy structure at 1/6 ML Sr coverage has

a different Si bonding scheme: it is formed by removing 2/3 of the Si dimers in every

dimer row, reconstructing the now exposed second layer Si atoms into subsurface

Sr configuration Figure Ebind (eV/Sr)
Isolated A site 4.2b 3.64
Isolated D site 4.2b 3.23

x dimer 3.65
Diagonal dimer 4.2d 3.83

y dimer 3.79
1
6 ML rows 4.3a 3.48

1
4 ML column 4.3c 3.51
1
6 ML chain 4.3b 3.81

1
4 ML combination 4.3d 3.75

Table 4.1: Binding energies for isolated Sr adatoms, Sr dimers, and submonolayer Sr
coverages on a dimerized Si surface. See Figs. 4.2 and 4.3.
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Figure 4.3: Top view of low coverages of Sr atoms (yellow circles) on a dimerized
silicon surface (silicon dimers represented as blue rectangles). a) 1/6 ML A site rows,
b) 1/6 ML A site diagonal chains, c) 1/4 ML A site columns, d) 1/4 ML combination
of corner and y direction nearest neighbors. See Table 4.1 for energies.

dimers, and placing the Sr atom into the vacancy that is created. In contrast to

the dimerized Si surface, this 2×3 submonolayer Si surface has only one low energy

Sr binding site per 2×3 area. The Sr configurational degrees of freedom are high

in energy and are completely frozen out at typical deposition temperatures. We

have considered the effects of alternate Si bonding schemes for such submonolayer

Si surfaces, and we find that all such excitations of the 2×3 structure are high in

energy and have a negligible contribution to the thermodynamics.

In the case of interest here, we focus on the low coverage and low energy surface

phases, and we consider in detail the interactions between Sr in A sites at local

coverages of zi=0 to 3. For zi=1, we extract the interactions Jx, Jy, and Jxy from the

Sr dimer calculations in Table 4.1. We find that for zi=2 and 3, the interactions J are

similar, and so we combine all of our first principles calculations with zi=2 and 3 and

perform a least squares fit to get Jx, Jy, and Jxy for zi=2 or 3 nearest neighbors. Our

local coverage-dependent Hamiltonian model can reproduce all of our first principles

results for 0 ≤ zi ≤ 3, with errors of 0.01–0.02 eV/Sr. For zi > 3, we find that
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such configurations are physically unimportant for two reasons. First, the energies

of such configurations are much higher than those with zi ≤ 3, so that they do not

play a relevant role in the Monte Carlo sampling. Second, since the coverages we

simulate to find the 2×3-lattice gas transition are close to 1/6 ML, zi > 3 represents

an unusually high local coverage and such configurations are unlikely in the sampling.

For completeness, we incorporate them into the Hamiltonian in the following manner:

for zi > 3 the interaction terms are isotropic but zi dependent, and the interactions

are chosen to reproduce binding energy trends up to 1/2 ML of Sr.

4.4 Experiment

In order to experimentally determine the phase diagram for Sr growth on Si as a

function of temperature [75] and compare with theory, out experimental colleagues

Myrtle-Rose Padmore, Yaron Segal, J.W. Reiner, F.J. Walker and C.H. Ahn[19]

follow the procedure used for the growth of epitaxial oxides on Si (001) [52, 53].

Sr is evaporated from an elemental source in an oxide MBE chamber with a base

pressure of 1× 10−10 Torr at a rate of ∼ 1 ML/min, as measured by a quartz crystal

microbalance. They calibrate the rate by matching the peak intensity of the 2×3 and

1×2 RHEED patterns to 1/6 and 1/2 ML respectively. The substrate temperature

is monitored with a thermocouple, calibrated using an optical pyrometer sensitive

to 0.91-0.97 µm wavelengths. A silicon wafer is introduced into the chamber and

heated to to desorb the native oxide, until sharp 2×1 spots are observed in RHEED,

indicating dimerization of the clean surface. Sr is then deposited onto the substrate,

while RHEED images are recorded at a rate of 15 frames per second. The deposition

and RHEED characterization were performed at the CRISP Teaching MBE facility.

From the recordings, they measure intensity of the 3× RHEED spots as a function
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of coverage (shown in Fig. 4.4b). We determine the coverage of condensation from

lattice gas to the 2×3 phase by noting the coverage at which the 3× intensity begins

to rise (see phase diagram in Fig. 4.4a, and Tab. 4.2). In order to accurately and

consistently determine this point, we extrapolate the linear portion of the intensity

rise in the curves of Fig. 4.4b to zero. The coverage of the intersect is the beginning of

condensation [76]. Uncertainty in the coverage at the point of condensation is mainly

due to the uncertainty in flux measurement and is estimated to be 0.05 ML/min.

4.5 Results and Discussion

The results of our model under experimental conditions (600-750◦C) involve a lattice

gas consisting predominately of Sr atoms with 1-2 corner nearest neighbors, but

with no long range order. A characteristic configuration of Sr adsorption is shown in

Fig. 4.1. Our predicted phase equilibrium between this lattice gas and the ordered

2×3 structure is in agreement with the experimental results (see Fig. 4.4). This

agreement between theory and experiment is in contrast to a simple non-interacting

lattice gas model based on the isolated Sr binding energies, which underestimates

the coverage of the phase equilibrium line by 50%. The effect of the interaction is to

stabilize the lattice gas phase by increasing the binding energy in that phase.

While the experimental values for the magnitude of the coverage as a function

of temperature agree well with theoretical predictions, the slope of the dependence

of coverage on temperature is steeper in the measurement than that predicted by

theory. To account for this discrepancy, we discuss several potential sources of error

in the theory and experiment. The predictions follow the system in equilibrium,

and kinetic limitations, such as a barrier preventing the Si atoms from rearranging

into the lower energy phase, will have less effect as the temperature increases and
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thus cannot explain the observed trend. One quantity that is not considered in

the calculation is the difference in vibrational free energy between the 2×3 dimer

vacancy structure and the disordered lattice gas. An estimate of the magnitude of

this error over this temperature range can be found in ref. [73], which finds that

the difference in vibrational free energy between competitive low energy Sr on Si

(001) structures is at most 0.04 eV/Sr at 600◦C. However, this difference is found

to be nearly constant over our temperature range, so that this uncertainty shifts

the theoretical curve up or down by a constant and does not change its slope. An

additional source of uncertainty is the fitting of the lattice gas Hamiltonian to the

first principles data, which we find to be on the order of 0.01-0.02 eV/Sr. In order

to get an estimate of how these errors affect our predictions, we find the solution to

our lattice gas Hamiltonian for Sr chemical potentials of 3.88 eV/Sr and 3.92 eV/Sr

(instead of the calculated 3.90 eV/Sr). At a given temperature, we find that this

±0.02 eV/Sr uncertainty between the ordered 2×3 dimer vacancy structure and the

disordered lattice gas changes the phase boundary by about 0.01 ML (see Fig. 4.4).

Experimentally, both a thermal Debye-Waller factor and a decrease in 2×3 domain

size with increased temperature will reduce the measured intensity of the 3× RHEED

reflection, causing an increase in the coverage at which the reflection can be detected.

This experimental effect reproduces the observed trend and could contribute to the

discrepancy between the experiment and the theory.

In summary, we used first principles calculations together with Monte Carlo meth-

ods to predict the phase equilibrium line between a lattice gas of Sr on Si(100) and an

ordered 2×3 structure. We also measure the phase equilibrium line using RHEED

and find good agreement with theory. Anisotropic interactions between Sr in the

lattice gas phase are required to reproduce experimental results. The details of the

phase condensation observed here are important for controlling the epitaxy of oxides
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Figure 4.4: a) Coverage versus temperature phase diagram of the Sr on Si system,
showing the lattice gas to 2×3 structural transition. The solid lines represent the-
oretical predictions with Sr-Sr interactions (black) and without interactions (red).
Dotted lines are an estimate of the theoretical uncertainty (see text). The points
with errors bars are RHEED data (see Tab. 4.2). b) 3× RHEED spot intensity for
depositions at different temperatures.

on silicon, especially in light of the importance of the Sr template layer for the new

low temperature route to epitaxy discovered by Reiner et al. [10] and its effect on

the structure of subsequent oxide layers [77, 78].

Temp. (C) Cov. (ML)
600 0.0682 ± 0.0036
625 0.0733 ± 0.0040
650 0.0829 ± 0.0044
700 0.0914 ± 0.0050
750 0.0934 ± 0.0052

Table 4.2: . Coverages at which the 3× RHEED spot intensity begins to rise, as a
function of temperature (see Fig.4.4).
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Chapter 5

Phase Diagram and STM of Sr on

Ge (001)

5.1 Introduction

As has been discussed previously (see Sec. 3.1), growing complex oxides epitaxially

on semiconductors is of great technological and scientific interest.[6] In addition to

expanding the range of oxides which can be grown on Si, there is also great interest in

expanding the range of semiconductors which can serve as the substrate. Germanium,

which has the same diamond structure and 2×1 dimerized surface as Si, is especially

interesting as a substrate due to its high mobility (relative to Si) because moving to

high mobility materials is a long-term goal of the semiconductor industry to improve

transistor performance.[2, 79] As with Si, the first step in growing epitaxial oxides

on Ge requires the deposition of an alkaline earth metal on the surface.[80] We seek

to understand this step in detail in order to clarify the role of the metal atoms in

preparing the surface for oxide epitaxy.

In addition to being a high mobility substrate, oxide growth on Ge is also in-

79



teresting because BaTiO3 has been grown epitaxially on Ge (001)[80], which both

proves that epitaxial growth is possible for this system and provides a further mo-

tivation for study of this interface as BaTiO3 is a ferroelectric material. Replacing

the dielectric layer of transistor with a ferroelectric would allow for the creation of a

non-volatile transistor, where the state of the transistor could be stored in the fer-

roelectric without need of a continuous external voltage.[6] Interface structure and

quality is crucial in the ability of the ferroelectric layer to both switch polarization

as well as to modify the carrier density in the channel region, making the details of

the initial surface and interface layers key to eventual device performance.[80, 6, 55]

More broadly, comparing the phase diagram of Sr on Ge to our previous Sr

on Si results will help elucidate the similarities and differences between these two

substrates, which should help us understand the qualities which are shared by systems

which can serve as template layers for oxide growth. In addition, this comparison

will help us understand how generic the 1/6 ML Sr silicide structure is to alkaline

earth-semiconductor interfaces.

A major part of this work depends on the high quality scanning tunneling mi-

croscopy (STM) images of low coverage Sr on Ge surfaces provided by our exper-

imental colleagues Boris Lunkov and Eric Altman. These images provide direct

confirmation that low Sr coverages cause Ge to become mobile on the surface and

form non-stoichiometric structures, much like the 1/6 ML Sr on Si surface (see chap-

ter 3); however, many details of these images are difficult to interpret directly. In

order to help explain the atomic structures that create these images, we perform first

principles density functional theory (DFT)[20, 21] calculations to explore the phase

diagram of Sr on Ge. We find low energy structures which agree with all features

of the STM images of the 3×4 structure observed near 1/6 ML Sr coverage. These

structures share many features with the 3×2 1/6 ML dimer vacancy structure ob-
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served in the Sr on Si system; however, there are also differences. In addition, we

provide an explanation of the higher coverage Sr on Ge structures which is consistent

with experiment.

5.2 Description of Experiments

Our colleagues use molecular beam epitaxy (MBE) to deposit Sr on Ge at various

temperatures and then perform scanning tunneling microscopy (STM) measurements

on the surface, generating a series of atomically resolved images of the surface. In

addition, they use reflection high energy electron diffraction (RHEED) to analyze

the symmetry of surface reconstructions.

For deposition at room temperature, and for low coverages of Sr, the STM shows

the characteristic 2× 1 pattern of Ge dimers on the surface, with bright spots corre-

sponding to adatoms of Sr, which appear to sit above a normal Ge surface. However,

when deposition occurs at higher temperatures, dramatically different reconstruc-

tions occur. Fig. 5.1 shows the structure at Sr coverages slightly above 1/6 ML at

four different STM tip-sample biases. The large flat area on the right side of the

four images has regions of 3×4 symmetry (Fig. 5.1a has a 3×4 unit cell marked).

In addition, there are regular rows of defects, examples of which are marked by the

yellow dotted lines in Fig. 5.1c-d. The empty state images vary sensitively with bias,

while the filled state images are relatively insensitive to bias (only one is shown) and

look very different than the empty state images.

Fig. 5.2 shows selected areas of Fig. 5.1 which highlight characteristics which

we explore below. The top row of Fig. 5.2 shows regions of the surface with 3×4

symmetry. The filled state image (panel c) appears to show the 3×4 regions to be

made from two 3×2 blocks, which form rows in the x direction (the 3× direction),
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Figure 5.1: (color online) Experimental images of Sr on Ge near 1/6 ML. a-c) empty
state images at 1.0V, 1.75V, and 2.0 V. d) Filled state image at 2.0 V. The yellow
line and magenta × are in the same place on the surface in each image.
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Figure 5.2: (color online) Zoomed in regions of Fig. 5.1. a-c) Regions displaying
3×4 symmetry (surface lattice vectors marked with arrows). d-f) Regions displaying
defect lines (marked with dashed lines). a) and d) are from Fig. 5.1a, b) and e) are
from Fig. 5.1b, c) and f) are from Fig. 5.1d.

but with the neighboring rows offset, creating a wavy pattern in the y direction

(the ×4 direction). On the other hand, at low bias, the empty state images (panel

a) appear to show a centered pattern. This is very unusual for a surface with 3×

symmetry, as it requires the same feature to appear shifted by 1.5 unit cells along

the x direction, in addition to the more typical 2 unit cells along the y direction.

At higher bias (panel b), new features appear between the previous features, so that

there now appear to be 2 features along the x direction per 3 unit cells, which form

an almost regular grid.

In addition to the regular 3×4 regions, the flat regions on the right of Fig 5.1
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also have regular lines of defects along the y direction, which we highlight in Fig.

5.2d-f. In the filled state image (panel f), these defects appear to be extra wide wavy

lines. In the empty state images (panel d-e), the defects appear to be unusually

bright spots, with darker regions between them. The defect lines can be interpreted

as anti-phase defects between the regions of 3×4 symmetry, as the 3×4 regions on

either side are misaligned by 1 unit cell (u.c.). Also, we note that there is some

ordering between neighboring defect lines in the x direction, as the bright spots in

the empty state images are always offset by 2 u.c’s in the y direction, suggesting that

the defect lines may actually be part of a stable surface reconstruction with a large

unit cell.

In addition to all of the details we extract from the flat regions on the right side

of the images in Fig. 5.1, the images also show very interesting behavior on their left

sides. These structures, which appear at Sr coverages above 1/6 ML, consist of what

appear to be raised regions with 3×2 symmetry, which are only 2-3 unit cells thick

in the x direction, and which are separated by lowered trough regions of unknown

origin. These trough regions appear dark at all biases, indicating that they are likely

physically lower on the surface. There are additional images, not shown, in which

the raised 3×2 sections of the surface appear to connect to the 3×4 regions discussed

above, indicating that the 3×2 regions consist of the same building blocks as the 3×4

regions, but are arranged with a 3×2 symmetry which is stabilized by the troughs.

5.3 Methods

In order to investigate the microscopic structure of the system, we perform first-

principles density functional theory (DFT) calculations using a plane-wave basis set

and ultrasoft pseudopotentials.[20, 21, 35]. For Ge, we include 4s and 4p projectors
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which are in the reference state 4s1.444p2.56, and have cutoff radii of rs = rp = 1.8

Bohr, and we include a non-local core correction.[81] The Sr pseudopotential was

presented earlier (see chapter 3). We use a slab geometry with 8-10 layers of Ge and

symmetric surfaces (see discussion in Ref. [73] and chapter 3). We use the PBE GGA

to approximate the exchange correlation functional,[28] and the method of Tersoff

and Hamann[68, 69] to simulate STM images, which consists of integrating the local

density of states from the Fermi level to the bias voltage.

We note that all of our empty state simulated STM images have different volt-

ages than the corresponding experimental images. This is due to the well-known

underestimation of band gaps in DFT under LDA or GGA.[82, 83, 84] This problem

is especially severe in Ge, which has a vanishing band gap in DFT but a value of 0.67

eV experimentally.[25] In order to interpret our calculations, the empty state images

must be shifted upward in voltage by an unknown amount. In addition, several of

our images would agree with experiment better if the empty Sr states were higher in

energy relative to the empty Ge states, which we attribute to the same problem. Due

to the size of the surface reconstructions, applying a theory with more reliable band

alignment (e.g. the GW approximation[85, 86] ) would be prohibitively expensive

computationally.

5.4 Low Coverage Structures

We begin by investigating isolated (1/16 ML) Sr atoms on a dimerized Ge surface.

Similar to our study of Sr on Si, we find that Sr prefers to sit in the trough site

between 4 Ge dimers and donate its two valence electrons to dangling bonds on the

Ge dimers,[57, 73] and our simulated STM images of this system (not shown) agree

well with experiment.
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Next, we consider 1/6 ML Sr coverage. As in the case of Sr on Si,[57, 73, 19] if

we assume that the Ge surface atoms are in the same dimerized configuration as the

bare Ge surface, then the lowest energy structure has Sr atoms sitting in the same

binding site as the isolated the Sr atoms, but these binding sites are arranged in

disordered chain-like structures with a binding energy of 3.47 eV/Sr (see Tab. 5.1,

and Fig. 4.1). However, based on the similar Sr on Si system,[10, 73] we expect

Ge will be mobile at experimental deposition temperatures, requiring us to consider

surfaces with non-stoichiometric Ge coverages.

Again using our knowledge of Sr on Si, we consider two additional structural

motifs which have non-stoichiometric Ge coverages: 1) a 2×3 single dimer vacancy

structure (see Fig. 3.9), and 2) a 3×2 double dimer vacancy structure.[10, 73] Both

structures are more stable than the chain-like structure considered above, and as in

the case of Sr on Si, the most stable structural motif at 1/6 ML is the 3×2 double

dimer vacancy structure (see Tab. 5.1 and Fig. 5.3b). However, unlike the case of

Sr on Si, the most favorable way of arranging these 3×2 units is into a 3×4 pattern,

with the two 3×2 building blocks arranged as in Fig. 5.3a.

The unusual bonding pattern of the 3×4 structure explains both the appearance

and bias dependence of the STM images (see also discussion of 2×3 Sr on Si bonding

in Sec. 3.6 and STM in Sec. 3.8). In this structure, like in the case of isolated Sr

on Ge, the Sr donates its two valence electrons to two of the low-energy half-filled

dangling bond states on the surrounding Ge atoms. More surprisingly, the uppermost

Ge dimer, which is in an unusual planar sp2 bonding geometry rather than the typical

tetrahedral sp3 geometry, also donates two electrons from its high-energy dangling

pz-like states to the low-energy sp3-like dangling bond states on the Ge atoms near

the Sr (see Fig. 3.13 for schematic). This can be seen in the density of states shown

in Fig. 5.4, which shows filled sp3-like dangling bond states (dark green line) just
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Figure 5.3: (color online) a) top view and b) side view of the 3×4 structure, the
lowest energy 1/6 ML structure (see Tab. 5.1). Key: Sr-large yellow, uppermost Ge
dimers-cyan, second layer Ge-green, and lower layer Ge-dark blue. c-e) simulated
empty state images at 0.2 V, 0.5 V, and 0.8 V above the Fermi level. Compare to
Fig. 5.2a-b, f) simulated filled state image 1.0 V below the Fermi level. Compare
to Fig. 5.2c. Each image has the 3×2 building block of the 3×4 reconstruction
superimposed.
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Figure 5.4: (color online) Atomic projected density of states for 3×4 1/6 ML structure
(see Fig. 5.3), with the Fermi level at 0 eV. Filled state images show surface Ge (thick
dark green line) while empty state images show the uppermost Ge dimer (dashed
cyan) at low bias and Sr (thin orange) at high bias.

below the Fermi level and empty pz states from the uppermost Ge just above the

Fermi level (dashed cyan line). The net result of this electron transfer is that the

highest energy occupied states are the four passivated dangling bond states next to

each Sr, and the lowest energy unoccupied states are not Sr states, but rather the

dangling pz-like states on the raised dimer, which opens a surface band gap.

Based on this understanding of the electronic structure of the 3×4 structure,

we can understand the appearance of our simulated STM images of the surface,

which are in excellent agreement with experiment. The filled state images (compare

Fig. 5.2c to Fig.5.3f), which are relatively insensitive to bias, show the 4 passivated

dangling bond states near each Sr. The empty state images, on the other hand, are
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Table 5.1: Energies and average distance from Sr to four nearest neighbor Ge for
various Sr on Ge structures.
Sr Cov(ML) Unit Cell Ge Cov(ML) Ebind (eV/Sr) Sr-Ge(Å) Fig.

1/16 4×4 0 3.07 3.46
1/6 Chain 0 3.47 3.37
1/6 2×3 2/3 3.50
1/6 3×2 1/3 3.53 3.29
1/6 3×4 1/3 3.54 3.27 5.3a-b
3/16 c(8×4) 3/8 3.55 3.18 5.6a
1/2 2×1 0 3.29 3.43 5.7a
2/3 3×1 0 3.33 3.23 5.7b
1 1×1 0 2.81

strongly bias dependent. At low bias (compare Fig. 5.2a to Fig. 5.3 c-d), the images

are dominated by empty pz-like states on the raised Ge dimer, which are at relatively

low energy. The combination of the displacement of these dimers from their ideal

position by about 1/4 u.c. in the x direction with the way the 3×2 building block

structures are arranged into a 3×4 structure on the surface causes the bright spots

at this bias to appear centered (see discussion in Sec. 5.2). At higher bias (compare

Fig. 5.2b to Fig. 5.3e), we begin to see the empty s and d orbitals on the Sr atoms,

which appear as additional spots between the raised dimer atoms.

In addition to explaining the 3×4 STM images at 1/6 ML, we can also explain

the regular lines of defects in this structure, which appear as unusually bright spots

in the empty state images (see Fig. 5.2d-e) and a seemingly disordered wavy pattern

in the filled state images (see Fig. 5.2f). We find that these features can be explained

as either an anti-phase defect between regions of 3×4 structure, or equivalently as a

mixture of a c(8×4) structure at 3/16 ML with the 3×4 structure at 1/6 ML. The

atomic geometry of this structure, which we find the be thermodynamically stable

(see table 5.1) is presented in Fig. 5.5a, a schematic of the resulting STM images are

presented in Fig. 5.5b-d, and the calculated STM is presented in Fig. 5.6. We find

that the prominent bright spots in the low bias empty state images (compare Fig.
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5.2d-e to Fig. 5.6a-b) correspond to the pz states on the isolated extra Ge dimers.

These isolated extra Ge dimers are both geometrically and electronically similar to

the raised dimers in the 3×4 structure, except that the empty states in this dimer

are slightly lower in energy, and therefore appear to be brighter defects at low bias.

5.5 High Coverage Structures

In addition to structures near 1/6 ML coverage, we also consider all of the thermo-

dynamically stable Sr on Si structures up to 1 ML. Unlike Sr on Si, which features a

stable 2×1 structure at 0.5 ML Sr coverage,[57, 73] we find that the Ge on Sr system

has no thermodynamically stable structures between 3/16 and 2/3 ML Sr coverage.

We believe that this difference between Si and Ge is related to their difference in

lattice constant; the surface lattice constant of Si is 0.16 Å smaller than Ge.[25] At

1/2 ML Sr coverage in the 2×1 structure, the Ge-Sr distance is 3.43 Å, but the Si-Sr

distance is only 3.31 Å in the equivalent Si structure (see Fig. 5.7a, and also Fig.

3.3), resulting in weaker overlap between the Sr and Ge orbitals. In fact, all of the

thermodynamically stable Ge on Sr structures have average Ge-Sr distances between

3.18 and 3.27Å, which are all shorter than any of the Ge-Sr distances for dimerized

surfaces (see Tab 5.1).

According to our calculations, the Sr should phase-separate into a low coverage

structure near 1/6 ML (detailed above) and a 3×1 structure at 2/3 ML (see Fig.

3.18b). As discussed in Sec. 5.2, experiments do find a surface which appears to be

a mixture of rows of 1/6 ML 3×2 units, which appear as raised ordered structures

to the left of images in Fig. 5.1, which are separated by troughs of an indiscernible

higher coverage structure. While this large unit cell is too big to simulate directly

in DFT, we believe that the ordered 3×2 units are the same 1/6 ML structure
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Figure 5.5: (color online) Structure (a) and schematic STM images (b-d) of c(8×4)
structure at 3/16 ML coverage. See Fig. 5.6a-c for calculated versions, and compare
to experiments in Figs. 5.2d-f. b) Empty state image at low bias, which shows
isolated Ge dimers in bright white and other Ge dimers with less intensity c) Empty
state image at higher bias; Sr is visible. c) Filled state image, dominated by the four
Ge which surround each Sr.
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Figure 5.6: (color online) Calculated STM for c(8×4) structure. See Fig. 5.5b-c for
schematic versions. a) Empty state 0.5 V. Compare to Fig. 5.2d b) Empty state 1.0
V. Compare to Fig. 5.2e c) Filled state 1.0 V. Compare to Fig. 5.2f
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Figure 5.7: (color online) Side view of high coverage Sr on Ge structures. a) 1/2
ML structure, which is not thermodynamically stable b) 2/3 ML structure, which is
stable.
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which forms the building block of the 3×4 structure discussed above. While the 3×2

structure is 0.01 eV/Sr less stable than the 3×4 structure (see Tab. 5.1), we expect

that the 3×2 structure is stabilized by the high density of step edges in the observed

mixed structure. In particular, there is no obvious way to create a step edge which

runs parallel to the y direction from the 3×4 structure without disrupting surface

bonds or creating a zig-zagged step, either of which is likely to be costly in energy.

The origin of the high coverage trough structure and why it prefers a high density

of steps on the surface is still unclear.

5.6 Summary

We use first principles calculations to analyze the phase diagram of Sr on Ge (001).

At low coverage, we find thermodynamically stable non-stoichiometric structures at

1/6 ML and 3/16 ML which are related to our previously studied 1/6 ML Sr on Si

structure.[73] We have simulated STM images of these structures, and we find them

to be in excellent agreement with experiment. In addition, we have investigated

higher coverage Sr on Ge structures, and we find no stable structures between 3/16

and 2/3 ML Sr coverage. In particular, the 0.5 ML 2×1 structure which is commonly

observed during the growth of Sr on Si, and which is a key feature of some interfaces

between Si/Ge and complex oxides,[77, 87] does not form for Sr on Ge. Due to the

fact that complex oxides can be grown on Ge,[80] this shows that the stability of

the 0.5 ML Sr structure is not a prerequisite to form an epitaxial interface between

a semiconductor and a complex oxide. The origin of the interesting mixed phase

observed instead of the 0.5 ML 2×1 structure will require further study.
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Chapter 6

Phases of submonolayer La on Si

(001)

6.1 Introduction

Complex oxides provide a wide range of potentially useful properties, including fer-

romagnetism, ferroelectricity, superconductivity, multiferroic behavior, colossal mag-

netoresistance, high dielectric constants, etc. However, integrating these properties

into useful devices has proved challenging. Many applications depend crucially on

having a defect-free epitaxial interface between the oxide and a semiconductor sub-

strate, usually silicon.[2, 6] For instance, replacing the SiO2 layer in a field effect

transistor with a complex oxide and using an electric field to modify conduction in

the channel requires a direct defect-free interface with a silicon substrate for good

device performance.[6]

Unfortunately, relatively few complex crystalline oxides have been grown epitax-

ially on silicon; the most successful example is SrTiO3.[52, 53, 6] During the growth

procedure for SrTiO3, a crucial initial step involves the deposition of 0.5 ML Sr,
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which forms an ordered 2×1 reconstruction that passivates the silicon surface and

provides resistance to oxidation, as well as providing an ordered template for oxide

growth.[52, 53, 60, 10, 57, 73]. Expanding the list of materials which can be used to

form this initial layer beyond the alkaline earth metals would be an important step

towards increasing the variety of complex oxides which can be grown directly on Si.

One particular material which would be particularly desirable to grow on silicon

is LaAlO3. Due to its large band gap and high dielectric constant, LaAlO3 is a

promising material for high-k dielectric applications, and it is thought to have favor-

able band offsets with silicon.[51, 88] However, despite having the same perovskite

structure as SrTiO3 and a well-matched lattice constant, no direct method is known

for growing LaAlO3 on Si. However, LaAlO3 can be grown indirectly on a buffer

layer of SrO or SrTiO3,[89, 90, 91, 92] and Si can be grown epitaxially on a LaAlO3

substrate,[93, 94] suggesting that a direct procedure for growing LaAlO3 on Si may

be possible.

Using our experience in studying Sr on Si,[73, 19, 10] (see chapter 3), we calculate

the properties of submonolayer coverages of La on Si (001). First, we investigate the

(001) surface with Si frozen into its original positions on the surface, and find results

in agreement with Ashman et. al [95]. This surface appears to be promising as a

buffer layer for oxide growth; however, when we allow the Si to move, the surface

presents several complications to its use in oxide growth. In particular, at coverages

above 1/5 ML, we find that the surface prefers to form silicide structures, with

Si atoms above a La layer, rather than maintaining a flat surface. These findings

represent a challenge for oxide growth using a La template layer.
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6.2 Methods

We perform first-principles density functional theory calculations using a plane wave

basis set and ultrasoft pseudopotentials.[20, 21] We used the PBE GGA to approxi-

mate the exchange correlation functional.[28] For silicon, our pseudopotential has 3s,

3p, and 3d projectors with d local, our cutoff radii were rs = rp = 1.7 Bohr, and we

used the reference atomic configuration 3s23p2. For La, we include the semicore 5s

and 5p states, in addition to the valence 5d, 6s, 6p, and 4f states. The cutoff radii are

rs = rp = rd = rf = 2.2 Bohr. We use a reference configuration of 5d16s1.56p0.54f 0.

Our calculations are all run at the theoretical lattice constant of silicon, which we

calculate to be 5.47 Å. We use a slab geometry, with periodic boundary conditions

in the x and y directions and a finite thickness of at least 8 layers in the z direction,

which is the (001) direction in the Si crystal. This geometry creates two surfaces,

one on each side of the slab. In order to treat the surfaces accurately, we create

identical surfaces on each side.[73] Binding energies are calculated relative to a bare

silicon surface in the p(2 × 2) configuration and a La atom at rest in vacuum. For

configurations with less than 1 ML of silicon on the surface, the energy of any extra

silicon is compared to a bulk reservoir, determined from slab calculations.[73]

We use the Nudged Elastic Band (NEB) plus Climbing Images method[40, 41] to

calculate energy barriers (Ebar) for La and Si motion on the surface. We then use

simple transition state theory to estimate transition rates,

R = ν exp(−Ebar/kBT ) (6.1)

where kB is Boltzmann’s constant and T is the temperature. The exponential prefac-

tor (ν) is estimated from previous phonon calculations.[73] We expect these rates to
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give a good order of magnitude estimate for the rate limiting steps which dominate

the motion of surface atoms.

6.3 Stoichiometric Surfaces

We begin by reviewing the bonding of an isolated (1/16 ML) La atom on the Si

surface. On an ideal Si (001) surface, each surface atom, which would normally have

two dangling bonds, reconstructs into a dimer with a neighboring Si atom in the

x direction, doubling the surface periodicity.[65] These dimers arrange themselves

into rows (see Fig. 6.1). In addition to dimer formation, each dimer, which has

two half-filled dangling bonds, has a further symmetry breaking reconstruction in

which one atom raises and the other lowers. This reconstruction pushes the upper

atom towards a more bulk-like sp3 geometry with a low energy dangling bond, and it

pushes the lower atom into a more planar sp2 geometry with a higher energy pz-like

dangling bond. Then, one electron is partially transfered from the dangling bond of

the lower atom to the upper atom, partially opening a surface band gap, although

the bands still cross.

Similar to the binding of Sr on Si,[57, 73] and in agreement with the work of

Ashman et. al.,[95] we find that La prefers to bind to a trough site between four Si

dimers (see Fig. 6.1). The La atom has a large binding energy of 6.57 eV to the

surface. There is a second La binding site on top of the dimer row, which is 0.25

eV less stable. In both cases, the La donates electrons to the dangling bonds on the

Si dimers. La has three valence electrons, all of which can be donated to dangling

bonds on the Si. This electron donation causes one or two of the dimers surrounding

the La to become flat (the exact number depends on La coverage and binding site),

because filling the dangling bond states eliminates the energy gained via the buckling

98



Figure 6.1: (color online) Side view of reconstructed Si (001) surface showing isolated
La binding sites. The La is the larger magenta atom and the Si is in cyan. The left
La is in the row binding site, which is 0.25 eV less stable than the right La, which is
in the trough binding site. Between the La is an alternately buckled dimer row.

interaction described above. In addition to creating flattened dimers, any remaining

buckled dimers adjacent to the La orient so that their raised atoms are closer to the

La, which decreases the distance between the positively charged La and the more

negatively charged Si atoms in the dimers.

The binding energy of an isolated La to the surface is more than 50% larger

than Sr, which is due to a) the extra valence electron on La, which increases the

charge transfer bonding, and b) the increased overlap of La d and f states with the

Si surface, as compared to Sr d states, which increases the hybridization between La

and Si.

We calculate the energy barrier for a La to move between binding sites on the

surface. We perform the calculations at 0.25 ML La coverage in a 2×2 cell. In

addition, we calculate the trough-row barriers at 1/8 ML in a 4×2 cell, and we find

only a 0.14 eV difference with the 1/4 ML results. Results are reported in table
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Table 6.1: Energy barriers for La motion at low coverage (see Fig. 6.1).
Start End Barrier (eV) Hop Rate 300 K (Hz) Hop Rate 800 K (Hz)
Trough Trough 0.43 2× 105 8× 109

Row Trough 1.12 6× 10−7 4× 105

Trough Row 1.41 8× 10−12 5× 103

Row Row 1.87 2× 10−19 7× 100

Table 6.2: Binding energies for different coverages of La on a stoichiometric Si surface.
La Coverage(ml) Configuration Ebind(eV ) Figure

1/16 Iso. trough site 6.57 6.1a
1/16 Iso. row site 6.32 6.1b
1/10 Single Chain 6.94 6.2a
1/5 Single Chain 6.81 6.2c
1/3 Double Chain 6.70 6.2d
1/2 2×1 6.41 6.5a
8/15 5×3 6.47 6.5b
3/5 5×1 6.40
2/3 3×2 6.32 6.5c
1 1×1 5.80 6.5d

6.1. We find that a La in a trough site should be able to move parallel to the dimer

rows (along the y direction) even at room temperature. However, in contrast to Sr,

which is mobile at room temperature, any the motion of a La atom which initially

binds to the surface in a row site will be kinetically limited at room temperature.

Therefore, low coverage La systems will not reach equilibrium at room temperature

during the typical deposition time scale of minutes, reducing the effectiveness of low

temperature deposition in producing an ordered surface for oxide growth.

6.3.1 ≤ 1/3 ML Chains

Next, we investigate low coverage La structures on a surface with all the silicon dimer

bonds in place. In agreement with the work of Ashman et. al.,[95] we find that for

La coverages of ≤ 1/5 ML, all La atoms occupy the low energy trough binding sites

described above, and these La arrange themselves into a series of diagonal chains
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Figure 6.2: Top views of chain-like La structures on dimerized Si at a) 1/10 ML
b) 1/6 ML c) 1/5 ML d) 1/3 ML coverage (see table 6.2). La is the large atom in
magenta, top layer Si dimers are in cyan, and second layer Si are smaller and in blue.
All La are in trough binding sites (see Fig. 6.1)
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on the surface (see Fig 6.2). The correlations between La are due the La donating

electrons to neighboring dimers, leaving the La positively charged and the dimer

negatively charged. This causes a second positively charged La atom to prefer to be

near the negatively charged dimer, but avoid the positively charged La.

In Fig. 6.2 a-c, we show examples of low energy chains between 1/10 ML and

1/5 ML; however, the energy cost to disorder the chains is very low (for example,

the chain in Fig 6.2b is only 0.03 eV/La less stable than the chain in Fig. 6.2c).

Therefore, we expect disordered chains on the surface at finite temperature.

For coverages higher than 1/5 ML, it is no longer possible to fit single chains on

the surface while maintaining favorable dimer buckling, and the La atoms condense

into double chains at 1/3 ML coverage, with two adjacent trough binding sites filled

in each row (see Fig. 6.2d). Due to repulsion between the positively charged La

atoms, each La moves 0.3 Å away from its neighboring La (along the y direction).

At 1/3 ML La coverage, there is one half-filled Si dangling bond state per La valence

electron, which leads to a stable passivated surface. This can be seen in the atomic

projected density of states (DOS) in Fig. 6.3a, which shows that despite the signifi-

cant hybridization between surface Si and the La, there is a gap at the Fermi level.

In analogy to the 0.5 ML 2×1 Sr on Si surface, which is isoelectronic to this 1/3 ML

La structure, this double chain structure has been proposed as a possible template

layer for oxide growth on Si, due to its relative chemical inertness and potential for

oxidation resistance.[95]

6.3.2 > 1/3 ML Broken Dimers.

For coverages greater than 1/3 ML, there are no longer enough dangling Si states on

the dimerized Si surface to accommodate the three valence electrons per La atom, as

each dimerized Si has one half-filled dangling bond, and each La has three valence
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Figure 6.3: (color online) Atomic projected density of states for a) 1/3 ML double
chain structure (see Fig. 6.2d) and b) 1/2 ML 2×1 structure (see Fig. 6.5a).
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electrons.[95] This can be seen by comparing Fig. 6.3a, which shows the projected

DOS for the 1/3 ML chain (see Fig. 6.2d) to Fig. 6.3b, which shows the projected

DOS for the 2×1 1/2 ML structure (see Fig. 6.5a). In Fig. 6.3b, there is significant

occupation of the La states above the valence band of Si, indicating that La is

partially changing its oxidation state from La+3 at 1/3 ML to La+2.

This shortage of partially-filled Si dangling states to bind with the La significantly

reduces the binding energy of La at 1/2 ML relative to the lower coverage structures

(see table 6.2). Therefore, instead of forming the 1/2 ML 2×1 structure, as seen for

Sr on Si, the system prefers structures like those in Fig. 6.5 b-d, at 8/15 ML, 3/5

ML, and 2/3 ML, which consist of a combination of both dimerized and undimerized

Si atoms (see Fig. 6.7a for a side view). The undimerized Si have two half-filled

dangling bond states and can accept two electrons; however, the surface is still

electron rich, and the extra electrons remain on La atoms, causing a transition from

a La+3 configuration to a La+2 configuration as the coverage increases. This can be

seen in Fig. 6.4a, which shows the projected DOS for the 2/3 ML structure in Fig.

6.5d. Despite the broken dimers, this structure has six valence electrons from the two

La but only four half-filled dangling bonds per 3×1 unit cell, leading to significant

occupation of La states above the Si valence band.

The the stability of the somewhat unusual 8/15 ML structure is due to the re-

pulsion between La atoms in adjacent trough sites along the y direction, which was

mentioned in Sec. 6.3.1. In this structure, there is a La vacancy every third atom

along the trough, allowing the adjacent La space to move apart an additional 0.2 Å

similar to what happens in the 1/3 ML chain.
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Figure 6.4: (color online) Atomic projected density of states for a) 2/3 ML La broken
dimer structure with 0 ML added Si (see Figs. 6.5c and 6.7a), and b) 2/3 ML La
broken dimer structure with 1/6 ML added Si (see Fig. 6.7b-d).
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Figure 6.5: (color online) Top view of La structures on a stoichiometric Si surface
with a) 1/2 ML b) 8/15 ML c) 2/3 ML and d) 1.0 ML coverage. See table 6.2.

106



6.4 Non-Stoichiometric Si surfaces.

Based on our experience with Sr on Si[73, 19, 10] and Sr on Ge (see chapters 3-

5) we expect that a) Si will be mobile on the surface at typical oxide deposition

temperatures of 800K, and b) increasing La coverage will increase Sr mobility at a

given temperature. In order to get a rough estimate of the surface mobility of Si

at different La coverages, we calculate the energy barrier for a Si dimer to break on

the surface. We do these calculations in 2×2 and 2×3 units cells with different La

coverages. Due to unphysical periodic boundary conditions, this unit cell allows the

dimer to reform after breaking; however, we are only interested in getting an energy

scale for Si motion on the surface, and once the dimer is broken, the resulting Si

adatoms will be mobile at typical deposition temperatures.[67]

We find that La greatly reduces the energy required to break to Si dimer bond

(see table 6.3). In fact, La is significantly more effective in reducing the Si energy

barrier than Sr, which only lowers the Si dimer breaking barrier to 0.63 eV at 0.5

ML Sr coverage.[73] We attribute the large reduction in energy barrier to the three

electrons donated per La, which help to passivate the additional dangling bonds

present in the transition state structures. We use simple transition state theory (see

Eq. 6.1) to calculate that even at room temperature, Si will be mobile on the surface

for La coverages near 0.5 ML. This barrier lowering effect will limit the effectiveness

of low temperature La deposition in kinetically limiting Si motion, a technique which

has been successfully used to deposit Sr on Si without forming intermediate silicide

structures.[10]
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Table 6.3: Energy barriers to break a Si dimer bond (see Fig 6.1) at various La
coverages, and estimated hopping rates.
La Cov. (ML) Barrier (eV) Hop Rate 300 K (Hz) Hop Rate 800 K (Hz)

0 1.29 8× 10−10 3× 104

1/6 0.65 5× 101 3× 108

1/4 0.53 5× 103 2× 109

1/2 0.37 2× 106 2× 1010

6.4.1 Non-stoichiometric ≤ 1/3 ML .

Both Sr on Si[73, 10] and the similar Sr on Ge have structures at 1/6 ML Sr coverage

based on a 2×3 unit cell with two dimer vacancies (see Fig. 6.6a,b, and Secs. 3.5

and 5.4). This unusually stable structure for these materials inspires us to consider

a variety of La structures with unusual Si coverage or bonding. Four of the lowest

energy structures we find are in Fig 6.6, and their energies are in table 6.4; however,

none of these structures are more stable than the variety of chain structures in Sec.

6.3.1. In particular, the 1/6 ML dimer vacancy structure (Fig. 6.6a-b), which is

insulating for a Sr adatom, has too many electrons when Sr is replaced with La,

resulting in La changing to its unfavorable (+2) oxidation state. Similar structures

with lower La coverage, like Fig. 6.6c, require too many unfavorable Si bonds to be

stable.

In addition to dimer vacancy structures, we also consider a variety of structures

with modified Si dimer rows. The best of these structures is shown in Fig 6.6d, and it

is the most stable structure we find at 1/4 ML. The stability of this structure is due

to the extra space afforded by the skewed dimer rows, which allow the La to avoid

occupying nearest neighbor trough sites while maintaining favorable dimer buckling,

despite the high coverage (see discussion in Sec. 6.3.1). However, this structure is

not thermodynamically stable, as the system can lower its energy by 0.03 eV/La by

phase separating into the 1/5 and 1/3 ML chains discussed in Sec. 6.3.1 (see Fig.
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Table 6.4: Binding energies of La at various coverages with modified Si bonding
patterns.
La Coverage (ML) Si Coverage (eV) Ebind (eV) Fig.

1/12 2/3 6.64 6.6c
1/6 1/3 6.79 6.6a-b
1/4 0 6.73 6.6d

6.8a).

6.4.2 Non-stoichiometric > 1/3 ML.

As mentioned in Sec. 6.3.2, for structures with La coverage above above 1/3 ML,

even after adopting structures with broken dimers, all of the structures we find to

be thermodynamically stable lack sufficient low energy Si states to accommodate the

three valence electrons per La added to the surface. Therefore, we consider structures

with extra Si on the surface, and we find a series of structures that are significantly

lower in energy than the stoichiometric structures mentioned in Sec. 6.3.2 (see table

6.5, and also Sec. 3.9).

These new structures can be constructed by adding extra Si to the various broken

dimer structures in Fig. 6.5 b-d. As seen in Fig. 6.7 a-b, the extra Si sits above one

of the surface atoms without a dimer bond. The pz orbital of this additional Si forms

a covalent bond with the Si below it, which normally has two dangling bonds. This

bonding creates a filled bonding and an empty antibonding state, and leaves the px

and py orbitals half-filled and able to accept electrons from the La. This process can

be seen in Fig. 6.7 c and d, which shows the process of charge transfer from La to

the extra Si. When the extra Si is added to the surface, charge leaves the red areas of

Fig. 6.7c around the La+2 and moves to the blue donut-shaped region in Fig. 6.7d,

which is a combination of the px and py orbitals of the extra Si.

The same process can be seen in the projected DOS in Fig. 6.4a and b. Fig.

109



Figure 6.6: (color online) La structures with modified Si bonding patterns (see table
6.4. a-b) Side and top view of 1/6 ML La structure with two dimer vacancies c) 1/12
ML La dimer vacancy structure d) 1/4 ML La with skewed dimer rows.
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Table 6.5: Binding energies for structures with added Si on the surface.
La Coverage(ML) Si Coverage (ML) Ebind(eV ) Fig.

2/3 0 6.32 6.5a
2/3 1/6 6.62 6.7b
2/3 2/9 6.64
2/3 1/4 6.63
2/3 1/3 6.62
1 0 5.80 6.5d
1 1/4 5.98
1 1/3 6.02
1 1/2 6.13
1 2/3 6.01

6.4a shows the DOS for the structure without the extra Si, which has occupied La

valence states. Adding 1/6 ML Si to the surface results in Fig. 6.4b, which shows

less La occupation as well as the additional Si states, shown in green, which are

localized near the top of the valence band of Si. The result of this extra binding

can be seen in table 6.5, which shows that the surface can reduce its energy by more

than 0.3 eV/La by adopting these structures. We find that at 2/3 ML La coverage,

the system prefers slightly less Si than the simple electron counting argument above

would predict (2/9 ML instead of 1/3 ML), due to the unfavorable state of the Si

bonding; however, there is a wide range of structures with nearly identical energies.

6.5 Phase Diagram

We summarize our findings in the form of a zero temperature phase diagram of La

on Si. We begin by looking only at the surface with stoichiometric Si, as shown

in the top of Fig. 6.8. As the La coverage increases, the stoichiometric Si surface

progresses first through the structures discussed in Sec. 6.3.1. The stable structures

consist of chains at 1/10 ML (Fig. 6.2a), 1/5 ML (Fig. 6.2c), and 1/3 ML (Fig.

6.2d). After this point, when the surface no longer has sufficient dangling bonds to
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Figure 6.7: (color online) Side views of: a) 2/3 ML La broken dimer structure, 0 ML
Si added b) 2/3 ML La broken dimer structure 1/6 ML Si added (added Si in green)
c-d) Smoothed charge transfer plots of structure in b). When the extra Si is allowed
to interact with surface, charge leaves the red regions around the La in c) and moves
to the blue regions in around the added Si in d).
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satisfy additional La, there is a reduction in binding, as indicated by change in slope

of the phase diagram at 1/3 ML. The surface then progresses through the broken

dimer structures of Sec. 6.3.2, at 8/15 ML (Fig. 6.5 b), 3/5 ML, 2/3 ML (Fig. 6.5

c), and 1 ML (Fig. 6.5 d). While this series of surfaces seems relatively promising

for oxide deposition, unless the Si is kinetically limited, we should also consider the

structures with non-stoichiometric Si coverage.

When we allow our the Si on the surface to become mobile, which according to

our energy barrier calculations (see table 6.3) will happen at room temperature for

high La coverage, the surface phase diagram changes dramatically (see Fig. 6.8b).

At low coverage, the structures are the same; however, the phase diagram no longer

has a large change in slope at 1/3 ML, as the surface can continue to accommodate

the additional electrons at higher La coverage by adding more Si to the surface. In

fact, the 1/3 ML structure is no longer thermodynamically stable, and the surface

will begin forming silicide structures once the surface passes 1/5 ML La coverage.

In addition, there are a variety of silicide structures with coverages between 1/3 ML

and 2/3 ML which are not thermodynamically stable, but have energies only slightly

above the bottom of the phase diagram (see the empty blue squares in Fig. 6.8b).

These structures consist of dimerized surfaces with La clumped around Si added to

the surface (see Fig. 6.9 for an example). For coverages higher than 1 ML, it is likely

the surface will begin to form structures which look more like bulk silicides, like the

2 ML silicide structure discussed by Ashman et. al.[95] which consists of two layers

of La with Si ions in between.
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Figure 6.8: (color online) Zero temperature phase diagram. Top: Stoichiometric Si
surface. Bottom: All structures. The red lines connect thermodynamically stable
structures; other coverages will be a mix of the two nearest thermodynamically stable
surfaces. The green filled squares show the stoichiometric surfaces which are near
thermodynamically stability, while the blue empty squares show additional silicide
structures (see Fig. 6.9).
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Figure 6.9: (color online) Example of a structure at 0.39 ML La coverage consisting
of a high density La cluster surrounding extra surface Si on an otherwise dimerized
surface. This structure is not thermodynamically stable at zero temperature, but
has a competitive binding energy of 6.69 eV/La (compare to table 6.2).

6.6 Conclusions

We have presented a La on Si phase diagram for both fixed Si bonding (see Fig. 6.8

top) as well as for mobile surface Si (see Fig. 6.8 top). Our phase diagram (see Fig.

6.8, combined with our the results on energy barriers (see Tabs. 6.1 and 6.3) has

unfortunate implications for the viability of using La as a replacement for Sr in the

epitaxial growth of oxides on Si. In particular, the phase diagram with mobile Si

shows that the surface will begin forming silicide structures at coverages greater than

1/5 ML, even before it reaches the 1/3 ML structure which has been proposed[95] as a

template for oxide growth. If formed, these silicides will make growing an atomically-

sharp epitaxial interface without an interfacial SiO2 layer essentially impossible. One

possible way to suppress silicide formation would be to lower the temperature and

kinetically trap the Si; however, that could also be very difficult. First, any La atoms

that initially stick to a binding site on top of a dimer row (see Fig. 6.1) will become

stuck there at low temperature, preventing the formation of an orderly structure (see

table 6.1). Second, and even more worrying, it is likely that Si becomes mobile as the

La coverage increases (see table 6.3), even for room temperature deposition, making

silicide formation difficult to avoid. Therefore, in chapter 7, we consider methods for
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achieving epitaxial growth of La-containing oxides on Si without the deposition of

an initial 0.5-1.0 ML of La on the surface.
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Chapter 7

LaAlO3 on Si (001)

7.1 Introduction

As mentioned in the previous chapter, there is great scientific and technological

interest in growing complex oxides on semiconductors, and LaAlO3 is a particularly

interesting material due to possible high-K applications; however, LaAlO3 cannot be

grown on epitaxially on Si, and previous attempts to understand the interface that

forms when Si is grown on LaAlO3 have not led to growth procedure.[93, 94, 96, 97] In

analogy with the successful growth procedure for SrTiO3 on Si, the obvious method

for growing LaAlO3 on Si would begin with La deposition; however, the previous

chapter has shown that depositing La on Si will result in La silicides for coverages

above 0.2 ML, which will prevent a clean interface from forming. Another interesting

option would be to begin growth with Al.[96] Unfortunately, although Al forms

an ordered surface on Si at low temperatures, it is known to be unstable on Si

at high temperatures (although Al remains an interesting possibility for carefully

kinetically controlled growth).[98, 99, 100, 101, 102, 103, 104, 105] In order to avoid

these difficulties, LaAlO3 is sometimes grown indirectly on a buffer layer of SrO or
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SrTiO3[89, 90, 91, 92] although the interfaces are typically not stable when processed

at high temperature.

In this work, we seek to understand the difficulties associated with LaAlO3 growth

on Si, and we investigate how epitaxial growth may be achieved. In particular, we

seek to further understand the technique of using an initial Sr layer to passivate the

Si surface and prevent reactions between Si and the desired oxide, and we want to

see if this technique can be expanded to LaAlO3 growth. In addition, we want to

investigate the issues associated with achieving epitaxial growth of LaAlO3 on the Si

(001): in contrast to SrTiO3 (001), the LaAlO3 (001) surface is polar. We concentrate

on interfaces with low Sr content (i.e. without several SrO layers). In addition, while

SrTiO3 has been used as a buffer layer between LaAlO3 and Si, we wish to avoid

using Ti in order to maintain large band offsets with Si, as the relatively low energy

Ti-d states form the bottom of the SrTiO3 conduction band and lead to its small

band gap and poor band offsets with Si.[106, 107, 108, 109]

7.2 Methods

We perform first-principles density functional theory calculations using a plane wave

basis set.[20, 21] We used the PBE GGA to approximate the exchange correlation

functional.[28] We simulated the atomic potentials using a combination of norm-

conserving and ultrasoft pseudopotentials.[34, 35] In addition to the potentials de-

tailed in chapters 3 and 6, for oxygen, we use rs = rp = 1.1 Bohr and for aluminum

we use rs = rp = 1.76 Bohr. In both cases, d is local and the atoms are in neutral

ground state configurations.

We perform calculations in a slab geometry, with periodic boundary conditions in

the x and y directions, and repeated slabs plus vacuum in the z direction. To avoid
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spurious electrostatic coupling between periodic slab copies across the vacuum, we

perform calculations with 8 layer Si slabs with identical atomic configurations and

geometry on both surfaces.[73]

7.2.1 Surface and Interface Thermodynamics

In order to compare the relative thermodynamic stabilities of surfaces with differing

numbers of Sr, La, O, Al, and Si, we compare the zero temperature surface free

energy per area,

F = Etot −
∑

i

Niµi (7.1)

where Etot is the total energy of the surface per unit area, Ni is the number of atoms

of species i, and µi is the chemical potential of species i (the considered species are

La, Al, O, Sr, Si). The chemical potential of a species is the energy required to take

an atom of that type from a reservoir in order to add it to the surface.

Our goal is to grow LaAlO3 on Si; therefore, we only consider interfaces where

both bulk Si and bulk LaAlO3 are stable phases. This places the following constraints

on the chemical potentials:

ESi = µSi (7.2)

ELaAlO3
= µLa + µAl + 3µO, (7.3)

the second of which allows us to eliminate µAl and only consider µLa and µO in

our phase diagrams. Here, Esi and ELaAlO3
are the energies of bulk Si and LaAlO3,

respectively. In addition, we place other limits on the chemical potentials in order to

ensure that our structures are stable versus phase separation or decomposition into
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various bulk materials. We require that

ELa > µLa (7.4)

EO2
> 2µO (7.5)

EAl > µAl = ELaAlO3
− µLa − 3µO (7.6)

EAl2O3
> 2µAl + 3µ0 = 2ELaAlO3

− 2µLa − 3µO (7.7)

ELa2O3
> 2µLa + 3µO (7.8)

ESiO2
> µSi + 2µO (7.9)

ESr > µSr (7.10)

ESrO > µSr + µO (7.11)

ESrSiO3
> µSi + µSr + 3µO (7.12)

ESrAl2O4
> µSr + 2µAl + 4µO (7.13)

These limits are apparent in the phase diagrams presented in this chapter. In

the La-O phase diagrams (e.g. Fig. 7.4), the area inside the solid red lines is where

LaAlO3 is stable with respect to La2O3, Al2O3, bulk La, bulk Al, and molecular O2.

In addition, the dotted red line marks onset of SiO2 formation. When plotting the La-

O phase diagrams which also contain Sr, we set µSr = min(ESr, ESrO−µO)−Eoffset.

Eoffset = 0 would correspond to the highest possible Sr chemical potential at a given

µO; however, we also consider lower Sr chemical potentials when considering overall

thermodynamic stability of our library of structures.
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7.3 La + Sr Template Layers

In order to grow LaAlO3 on Si without an interfacial layer of SiO2 or another silicate,

the structure at every step during the deposition must be either thermodynamically

stable or kinetically trapped. We begin by considering the stability of the initial

1-2 layers of SrO on Si, as we know that epitaxial growth of SrO on Si is possible

experimentally.[110] Then, we will consider the effects of adding adding La to the

system.

7.3.1 Initial Sr + O Layers

The known interfaces for perovskites grown epitaxially on Si have either 0.5 ML Sr

(BaO)[77] or 1.0 ML Sr (SrTiO3)[111, 55] at the interface. Growth typicically begins

with 0.5-1.5 ML Sr being deposited on a clean Si surface, and then the resulting

surface is exposed to oxygen. Here, we consider the formation of the initial Sr and

SrO layers.

From both first principles calculations and experiment, we know that 0.5 ML

Sr is thermodynamically stable on Si, and that 1.0 ML of Sr is kinetically stable

at room temperature (at high temperatures 1.0 ML of Sr forms a silicide, see Sec.

3.9).[73, 10, 6] We consider structures with 0.0-1.5 ML Sr and 0.0-2.0 ML O; some

of the thermodynamically stable configurations are shown in Fig. 7.1. The resulting

phase diagram is shown in Fig. 7.2.

We find that 0.5 ML Sr with 0.0-1.0 ML O (Figs. 7.1 b-c) are stable versus

the formation of bulk Sr, SrO, and SiO2, which can be seen from Fig. 7.2 because

a) each structure is the lowest energy structure in a region of phase space, which is

represented by a solid colored region, and b) a portion of this phase space is to the left

of both the SrO and SiO2 phase stability lines (in red), and below the stability line
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Figure 7.1: (color online) Side view of thermodynamically stable structures with Sr
(large yellow atom) + O (small red atom) on the Si(001) surface (see Fig. 7.2).
a) Bare Si surface, showing characteristic 2x1 buckled dimer reconstruction b) 0.5
ML Sr, with flat passivated dimers c) 0.5 ML Sr with 1.0 ML O d) SrO interface
structure, with 1.5 ML Sr and 2.0 ML O.

Figure 7.2: (color online) Sr-O phase diagram for structures with ≤ 1.5 ML Sr and ≤
2 ML O on an Si (001) surface (see Fig. 7.1). The solid colored areas show the lowest
energy structure at each region of phase space. The red lines show phase boundaries
of bulk SrO, SiO2, and SrSiO3; thermodynamically stable surfaces are to the left of
these lines.
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for bulk Sr, which is the black horizontal line at µSr = 0. In addition, the structures

with < 1.0 ML O are stable versus the formation of SrSiO3. The structure with 1.0

ML O (Fig. 7.1 c) is not stable versus the formation of bulk SrSiO3. It is likely

that the formation of bulk SrSiO3 will be kinetically suppressed at typical deposition

temperatures, and the surface will be able to reach 1.0 ML oxygen coverage with 0.5

ML Sr on the surface without forming bulk oxides. This surface is the building block

of many of the stable interfaces considered in this work.

We also find that the 1.5 ML SrO structure (Fig. 7.1 d), which has the same

structure as the first 1.5 ML of BaO on Si,[77] is not thermodynamically stable.

Thermodynamically, even if Si motion is kinetically limited to prevent SiO2 and

SrSiO3 formation, this structure will phase separate into bulk SrO and the 0.5 ML

Sr + 1.0 ML O structure (Fig. 7.1c) at all chemical potentials. This instability is

likely due to the rumpling in the surface layer required to accommodate the uneven

interface layer, in addition to the lattice mismatch of 5% between Si (001) and

SrO. Due to the fact that SrO can be grown in a layer-by-layer fashion on Si,[110]

it is likely that the formation of bulk SrO (as well as bulk SrSiO3 and SiO2) is

suppressed kinetically during the deposition process. However, if this structure is

heated sufficiently to allow full thermodynamic equilibrium, the epitaxial interface

will be destroyed, resulting in a combination of SrSiO3, SrO, and SiO2 on the surface,

plus regions of 0.5 ML Sr coverage (Fig 7.1b-c). This instability has been seen

experimentally, as SiO2 and SrSiO3 are formed when a SrO interface is heated above

500◦C.[110]

The stability of these Sr-O surfaces is expected, because experimentally the epi-

taxial growth of oxides on a Sr-based template layer is believed to proceed through

the formation of these initial structures. However, due to the unrealistically low µO

required to keep SiO2 from forming thermodynamically (-4.8 eV, which corresponds
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to roughly 10−150 atm at room temperature), these structures are only metastable

during typical procedures for the growth of oxides on Si.[52, 6] The fact that these

structures can be grown despite the relatively high oxygen chemical potential in

experiments the highlights the role of Sr in passivating the surface and kinetically

limiting the formation of SiO2.

7.3.2 Initial Sr + La + O Layers

Next, we investigate similar structures, but with La substituted for 1-2 Sr/2×1 area.

We begin by looking at structures without O on the surface. For 1.0-1.5 ML of

metal atoms, the surface is more stable with La bonded to the Si, as in Fig. 7.3a,

which is 0.7 eV/2× 1 lower in energy than having the Sr next to the Si. This is not

surprising, as the binding energy of an isolated La on Si is nearly 3 eV higher than

Sr, due largely to its extra valence electron (see Sec. 6.3). The strong binding of

La to Si is problematic for the creation of an ordered interface starting with a Sr-La

metallic template layer, as La is not thermodynamically stable at high coverage on Si,

and will form various La-silicides even at low temperature (see Sec 6.4.2). However,

La-silicide formation might be prevented by adding O to the system, which will allow

for the formation of an La oxide layer rather than a silicide layer.

When we add O to the La/Sr system, we find improved interface structures. For

sufficient oxygen coverage, we find that that La prefers to bind with oxygen, rather

than Si, leaving Sr closest to the Si surface. For example, for structures with 0.5 ML

Sr and 1.0 ML La, we show the lowest energy surface with increasing oxygen coverage

in Fig. 7.3 a-c. When the surface reaches 2.5 ML O (panel c), the location of the

Sr and La switches, and the structure with Sr at the interface and La at the surface

becomes more stable by 0.9 eV/2 × 1. This structure consists of a stoichiometric,

albeit highly distorted, La2O3 layer on top of an interface with 0.5 ML Sr and 1.0
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Figure 7.3: (color online) Side view of low energy Sr+La+O structures (Sr is yellow,
La is magenta, O is the small red atom). a-c) 0.5 ML Sr, 1.0 ML La, and increasing
oxygen coverage. d) 1.5 ML La and 2.5 ML O, with 0.0 ML Sr.
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ML O, which we found to be stable in Sec. 7.3.1 (see Fig. 7.1c).

These structures initially appear promising for application as the initial layers of

oxide growth, as the interfacial Sr and the La-O bonding will prevent the La from

moving to and reacting with the Si surface. Unfortunately, none of these structures

are thermodynamically stable with respect to the formation of bulk La2O3 plus a

surface with 0.5 ML Sr + O (see Fig. 7.1 c). This can be seen in Fig. 7.4, which

shows the La-O phase diagram for structures with 0.5 - 1.5 layer of metal (Sr/La)

plus oxygen under high µSr conditions. This diagram shows that throughout the

region where LaAlO3 is stable (bounded by solid red lines), none of the proposed

Sr+La+O structures are stable; instead, the surface prefers structures with only Sr

and O. All of the Sr+La+O structures with Sr at the interface are grouped in the

lower right corner of the phase diagram, due to their high O and low La content.

Reducing the Sr chemical potential does not result in any of the structures with La

becoming stable, expect for the 1.5 ML La, 2.5 ML O, 0.0 ML Sr structure in Fig.

7.3d. While this structure becomes favorable relative to a bare Si surface and La2O3,

it is still unstable relative to SiO2 formation. In addition, it will be very difficult to

form an good interface with this material, as both La and O alone are unstable on

Si.

While the thermodynamic analysis above suggests that these Sr+La+O interface

structures probably will never be useful for epitaxial oxide growth, it is possible that

they can be stabilized kinetically if the formation of bulk SrO and La2O3 can be

prevented, in the same way that the 1.5 ML SrO structure (Fig. 7.1d) is kinetically

stabilized during growth despite being thermodynamically unstable. In particular,

the structure in Fig. 7.3c is 0.6 eV/1 × 1 less stable than the 0.5 ML Sr + 1.0 ML

O surface layer and bulk La2O3. This is only 0.3 eV/1 × 1 worse than the 1.5 ML

SrO structure and bulk SrO (Fig. 7.1d).
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Figure 7.4: (color online) La-O Phase diagram for structures with La, Sr, and O.
The Sr chemical potential is set to the highest value that will not result in bulk Sr
or SrO formation at a given µO (high Sr conditions). LaAlO3 is stable in the area
between the red solid lines (which are due to La2O3, Al2O3, and bulk Al), and the
line dotted red line indicates the onset of SiO2 formation.

The extra instability of the La2O3 structure, relative to the SrO structure, is

likely due to the incompatible interface between hexagonal La2O3 and cubic Si (001).

In addition, it is possible that there is a more stable interface structure for these

materials in a larger unit cell than we are able to study computationally; therefore,

the 0.6 eV/1× 1 is an upper limit to the instability.

7.4 Interface Structures

7.4.1 Pure LaAlO3 Interface Structures

After achieving either a thermodynamically stable or kinetically stable template

layer for oxide growth (see Sec. 7.3), the next step in LaAlO3 growth is to begin

depositing LaAlO3 in a way that will result in a stable interface structure. We

begin by examining possible pure LaAlO3 interfaces (without Sr) and highlighting
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the difficulties with using them for epitaxial oxide growth.

We consider structures with a stoichiometric Si surface in a 2 × 1 unit cell with

0.5-1 ML La at the interface, in analogy with the BaO and SrTiO3 interfaces with

Si, as well as structures in a 3× 1 unit cell with 0.67 ML La at the interface, which

is the symmetry and coverage observed experimentally during the growth of Si on

LaAlO3[93, 94]. All of our structures consist of some sort of interface layer capped

with a full LaAlO3 layer, with the AlO2 plane closer to the Si, and the LaO plane on

the surface. We considered adding an additional AlO2 layer to the surface, but we

find only the LaO-termination results in low energy structures in the region of phase

space where LaAlO3 is stable.

The resulting phase diagram is in Fig. 7.5, and some of the low energy struc-

tures are detailed in Fig. 7.6. The low energy structures in the region of LaAlO3

stability have either a 2×1 reconstruction and with 0.5 ML La and 0-1.5 ML O at

the interface (see Fig. 7.6b-d), or a 3×1 structure pictured in Fig. 7.6a, without O

at the interface.[93] While these are the lowest energy structures from the class we

investigated, none of them are thermodynamically stable; all of them will lower their

energy by decomposing into a bare Si surface and bulk oxides or metals. This is con-

sistent with the three-dimensional growth observed for Si on LaAlO3.[93] Therefore,

none of these structures appear to be suitable for oxide growth on Si.

Part of the instability of the interfaces considered in Fig. 7.6 is due to the fact

that all of them have too many electrons at the interface layer, resulting in electrons

occupying both high energy La valence states and the Si conduction band. This

can be seen by looking at the top two panels in Fig. 7.7, which show the projected

density of states (DOS) for the interface atoms in Figs. 7.6b-c (the 3×1 structure

has a similar DOS as well). The Fermi level of both structures is in the Si conduction

band, and both structures have partially occupied La states at the interface. Each
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Figure 7.5: (color online) La-O Phase diagram for interface structures with La, Al,
and O, and a stoichiometric Si surface (see Fig. 7.6). Structures are labeled by
their interface symmetry and stoichiometry. The region between the solid red lines
is where LaAlO3 is thermodynamically stable, and SiO2 is stable to the right of the
red dotted line.

structure has 1 La per 2×1 area at the interface, which contributes three valence

electrons, but only two half-filled Si dangling bonds to accept electrons, resulting in

an excess of electrons. In addition, the structure in Fig. 7.6c has an additional 1

ML of oxygen at the interface; however, somewhat counter-intuitively, the number of

oxygen bound to surface Si does not affect the electron counting at the interface.[94]

This is due to the fact that each O binds to a dangling half-filled Si bond. This creates

a low energy bonding state, which is filled, and high energy anti-bonding state, which

remains empty. Therefore, the oxygen, which would normally accept two electrons,

instead passivates the Si dangling bond and can only accept one electron, which is

the same number as the original half-filled dangling Si bond.

While changing the amount of oxygen at the interface has no effect on the electron

counting, it is possible to add holes to the system by substituting Al for Si, as Al has

one fewer electron but similar sp3 bonding.[94] While controlling the substitution of
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Figure 7.6: (color online) Side view of LaAlO3 interfaces plus 1 ML LaAlO3. a) 3×1
structure with 0.67 ML La at the interface. b-d) 2×1 structures with 0.5 ML La and
increasing O coverage. Al is in dark blue.
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Figure 7.7: (color online) Atomic projected density of states (DOS) of the interface
atoms (and bulk Si) of LaAlO3 interface structures. Top: DOS for Fig. 7.6b. Center:
Fig. 7.6c. Bottom: Fig. 7.8b
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Al for Si without forming unwanted silicides at the interface during deposition of

LaAlO3 on Si would be very difficult experimentally, we consider the effects of Al

substitution on our structures with 1 ML LaAlO3.

By allowing Al substitution, we find that the structure in Fig. 7.8a becomes one

of the low energy structures in the region where LaAlO3 is stable, and other similar

structures, like Fig. 7.8b-c become low energy structures in high Al regions of phase

space. As expected, the substitution of 0.5 ML Al for 0.5 ML Si reduces the Fermi

level at the interface, which can be seen by comparing the Fermi level of the bottom

panel of Fig. 7.7 to the other two panels. Al substitution reduces Fermi level to

below the bottom of the silicon conduction band; however, we find that the interface

is still metallic, as the interfacial Al and La bands cross. While these interfaces with

Al substitution are the lowest energy structures in parts of phase space, like the

structures considered above, none of these structures is thermodynamically stable,

and the system will lower its energy by decomposing into bulk oxides and a bare Si

surface rather than form these structures.

7.4.2 Sr + LaAlO3 Interface Structures

Due to the fact that Sr is already necessary to passivate a Si surface, as explained in

Sec. 7.3, it is natural to consider whether the substitution of Sr for La in an LaAlO3

film can be used to improve the stability of its interface with Si. The first possible

benefit of Sr incorporation into the interface would be to add holes to the system,

in analogy with how Al for Si substitution improves film stability (see Sec. 7.4.2).

A second benefit of Sr would be to provide a mechanism to compensate the polar

surface of LaO-terminated LaAlO3.

Along the (001) direction, each atomic plane of LaAlO3 is charged (i.e. it is

polar). In particular, in the ionic limit, each LaO plane donates one electron per
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Figure 7.8: (color online) Side view of low energy interface structures with Al sub-
stituted for Si, and 1 ML LaAlO3. a) 2×1 structure with 0.5 ML La, 0.5 ML Al,
and 1.0 ML O. b) 2×1 structure with 0.5 ML La, 0.5 ML Al, and 0.0 ML O. c) 3×1
structure with 0.67 ML La, 0.67 ML Al, and 0.0 ML O.
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Figure 7.9: (color online) 3 layers of LaAlO3 on an SrO substrate with a 2×1 unit
cell. a) No intermixing. Both the LaO surface layer and AlO2 interface layer are
charged, leading to a polar field through the film. b) By intermixing 0.5 ML Sr and
La, the charge distribution becomes symmetric, which cancels the long range polar
field and reduces the energy of the structure by 1.0 eV/2×1 area.

1×1 area, and each AlO2 plane accepts one electron. For a stoichiometric LaAlO3

film terminated on one side by an LaO plane, and the other side by an AlO2 plane,

this creates an electric field through the film. Because the energy associated with

this field scales with film thickness, continuing oxide growth will require either an

electronic or atomic reconstruction at each surface to cancel the field (see Fig. 7.9a).

For growth on an SrO substrate, one way achieve this cancellation and stabilize the

surface would be to substitute Sr for La at both the surface and interface (see Fig.

7.9b). Finding structures with the 0.5 ML Sr at the surface and interface as LaAlO3

growth proceeds should improve crystal quality and stability.

Keeping in mind the need for both interface and surface stability, we again search

for films in 2×1 and 3×1 unit cells, but with Sr substituted for La. In Fig. 7.10,

we show the resulting phase diagram under high Sr conditions (Eoffset = 0.25 eV).

Several of the structures which are the lowest energy structures in a region of phase
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space where LaAlO3 is stable are shown in Fig. 7.11.

Unlike all of the interface structures considered in section 7.4.1, the structures in

Figs. 7.11a-c are more stable than forming bulk oxides plus a bare Si surface. The

1×1 SrTiO3-like[111, 55] interface in Fig. 7.11c is also stable against SiO2 and SrSiO3

formation; however, as discussed in Sec. 7.3.1, the oxygen chemical potential required

to achieve this is unrealistically low. The related structure in 7.11d is also stable

against SiO2 formation; however, it will decompose into SrAl2O4 thermodynamically.

The stability of the structures in Figs. 7.11a-d suggests that these structures are

excellent candidates for growth of an epitaxial interface of LaAlO3 on Si. In principle,

these interfaces will still decompose into the 0.5 ML Sr surface structures (see Fig.

7.1a-b) and bulk oxides. However, they are all as stable or more stable than the

1.5 ML SrO structure, which can be grown experimentally, and the best LaAlO3

interfaces with Sr incorporated are more than 0.6 eV/1×1 eV more stable than the

best interfaces without Sr.

In addition to being thermodynamically stable, the interfaces of Fig. 7.11b-c can

accommodate additional LaAlO3 layers without creating a polar field (see Fig. 7.9).

In order to do avoid a polar field, the additional LaAlO3 layers must be incorporated

into the middle of the slab, as demonstrated in our proposed interface structures in

Fig. 7.12, while a layer with 0.5 ML Sr, 0.5 ML La, and 1.0 ML O remains on the

surface. As discussed above, the 0.5 ML Sr will compensate for the normally polar

LaO-terminated surface and provide a flat, neutral surface to continue layer-by-layer

LaAlO3 growth. This can be seen in Fig. 7.13, which shows the atomic projected

DOS for the 2×1 interface structure in Fig. 7.12a. The Fermi level is in the band

gap of both Si and LaAlO3, the film is insulating throughout, and the polar field is

canceled.
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Figure 7.10: (color online) La-O phase diagram of LaAlO3+Sr interfaces, under high
Sr conditions (0.25 eV below maximum µSr). Structures are labeled by O at interface
and total Sr content, or La at the interface if they have no Sr. Some of the low energy
structures are shown in Fig. 7.11.

7.5 Proposal for Epitaxial Growth

Based on our calculations, the following example growth procedures should result in

epitaxial growth of LaAlO3 on a minimal SrO buffer layer.

Growth Procedure for 2×1 O-rich interface (Fig. 7.12a), starting with a clean Si

(001) substrate:

1. Deposit 0.5 ML Sr at high temperature (500◦C).

2. At low temperature (25◦C), deposit 1.0 ML Sr + O to get 1.5 ML SrO (Fig.

7.1d).

3. Still at low temperature (25◦C), deposit 1.0 ML LaAlO3, then anneal at a

moderate temperature to get to Fig. 7.11b.

4. Continue depositing LaAlO3 at high enough temperature to allow 0.5 ML Sr

to remain mobile and on the surface.

Growth Procedure for 1×1 O-poor interface (Fig. 7.12b), starting with a clean
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Figure 7.11: (color online) Side view of low energy interface structures with Sr. a)
2×1 0.5 ML Sr and 1.0 ML O at interface b) 2×1 with extra AO atomic plane, 1.5
ML Sr, c-d) 1×1 SrTiO3-like interfaces, with 1.0 and 1.5 ML Sr
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Figure 7.12: (color online) Side view of two proposed interface structures, as well as
the formal ionic charge per 2×1 layer. a) 2×1 BaO-like interface b) 1×1 SrTiO3-like
interface.
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Figure 7.13: (color online) Atomic projected density of states (DOS) for structure in
Fig. 7.12a. The top panel shows the interface layer (and bulk Si), the center panel
shows the LaAlO3 layer, and the lower panel shows the surface atoms.

Si (001) substrate:

1. Deposit 0.5 ML Sr at high temperature (500◦C).

2. At low temperature (25◦C), expose to oxygen and deposit 1.0 ML La to reach

Fig. 7.3b or c.

3. Deposit 1.0 ML Al and 0.5 ML Sr and anneal at moderate temperature to

reach 7.11c.

4. Continue depositing LaAlO3 at high enough temperature to allow 0.5 ML Sr

to remain mobile and on the surface.

In both procedures, it is important initially to carefully control growth kinetics

in order to get to the stable structures in Fig. 7.11 without creating SiO2, silicides,

or unwanted three-dimensional oxides, and then raise the temperature to ensure Sr

incorporation into the interface and surface, which can compensate for the polar field

(see Fig. 7.9).
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7.6 Summary

First, we investigated the initial 0.5-1.5 ML of SrO on Si. We find that the 1.5 ML SrO

on Si structure will decompose into 0.5 ML Sr on Si plus bulk SrO thermodynamically,

but can be stabilized kinetically. We find that similar structures containing La can

also be stabilized with sufficient oxygen, and act as precursors for the growth of

LaAlO3. We find that interfaces with only LaAlO3 are not thermodynamically stable,

but by incorportating Sr into the interfaces, we can both add holes to the interface

and cancel the polar field, which should allow for the epitaxial growth of LaAlO3 on

Si with an insulating interface. Using the results of our thermodynamic analysis of

the surface structures, we propose growth procedures for two possible interfaces for

LaAlO3 on Si.
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Chapter 8

Ferroelectric Surface Chemistry

Due to a large, persistent response to electric fields, ferroelectric substrates offer a

unique opportunity to tune the properties of a surface via an external field, poten-

tially providing an avenue for advanced surface chemistry. By using an electric field

to change the polarization direction of a ferroelectric substrate, one can potentially

reversibly modify the surface Fermi level, atomic geometry, or even stoichiometry,

all of which can alter the performance of the surface in applications.[13, 14] This

extra control over surface chemistry could potentially allow one to bind and release

molecules from the surface or to turn reaction pathways on and off, enabling a new

level of control over surface catalysis.[112, 113]

Despite the promise of this approach, relatively little work has been done to un-

derstand the effects of polarization on the surface chemistry of ferroelectrics, and

in particular on the binding of molecules to ferroelectric surfaces. Yun, et al. per-

formed a temperature programmed desorption (TPD) study of a variety of molecules

on positively and negatively-poled LiNbO3 (0001) and found significant differences

in desorption peak temperatures as well as pre-exponential factors.[114, 115] In ad-

dition, Vohs et al. investigated small molecule adsorption on LiNbO3, BaTiO3 and
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lead-zirconate titante, finding that adsorption rates are affected by the substrate po-

larization, but that adsorption energies are instead dominated by the concentration

of defect sites on the surface.[116, 117, 118, 119, 120]

In complementary work, Wang et. al. demonstrated that it is also possible to

switch the polarization of thin film ferroelectrics by changing the oxygen environment

in order to favor one surface over the other.[121] They grew 10 nm PbTiO3 thin

films and varied the oxygen pressure from 10−7 to 101 Torr at temperatures between

550 and 950 K. By monitoring the lattice constant, they showed that low oxygen

pressure results in an oxygen vacancy-related surface reconstruction that stabilizes a

negative polarization, while the surface observed under high oxygen pressure favors

a positively-poled film.

Kolpak et al. used first principles density functional theory to investigate the

effect of polarization on the adsorption of molecules to a Pt layer supported by

PbTiO3.[14] They find that binding energies and geometries as well as molecular

dissociation energies are affected by polarization, and that these affects are strongest

for a single monolayer of Pt covering the PbTiO3 substrate. In addition, several ex-

perimental works on ferroelectric-supported metals, including BaTiO3-supported Ni

and LiNbO3-supported Cu and Au, observed changes in catalytic activity correlated

with the ferroelectric-paraelectric transition.[122, 123, 124, 125]

In this work, we use first principles density functional theory to investigate the

effects of polarization on the (001) surface of PbTiO3. We investigate the conse-

quences of changing polarization on stoichiometric surfaces and we determine the

thermodynamically stable (non-stoichiometric) surface structures as a function of

the film polarization. We then consider the adsorption of CO2 and H2O to both

stoichiometric and non-stoichiometric surfaces.

We focus our efforts on surfaces which may improve CO2 and H2O catalysis
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because reactions involving these molecules are technologically important, especially

to climate change. CO2, which is produced by burning hydrocarbons, is a greenhouse

gas which may contribute to global warming, and finding a way to use or capture

CO2 is a major technological goal.[126, 127] In addition, finding an efficient way

to splitting H2O into H2 and and O2 would be a important step towards replacing

hydrocarbons with H2 in energy applications.[128]

Finally, in addition to looking at the PbTiO3 surface itself, we also consider

the effects of adding a single epitaxial surface layer of several different materials in

order to combine the high polarization of PbTiO3 with a material that has superior

catalytic properties. Unfortunately, many of the transition metals commonly used as

catalysts are not thermodynamically stable as monolayer films on PbTiO3. However,

we find several alkali earth metals and metallic oxides which are stable on PbTiO3

and may have enhanced catalytic properties.

This chapter is organized as follows: 8.1. Introduction, 8.2. Methods, 8.3. Stoi-

chiometric Surfaces, 8.4. Non-Stoichiometric Surfaces, 8.5. Epitaxial Catalytic Lay-

ers, 8.6. Conclusions.

8.1 Methods

Our calculations are based on first-principles density functional theory calculations

using a plane wave basis set.[20, 21] We use the PW91 GGA to approximate the

exchange correlation function,[33] and ultrasoft pseudopotentials to eliminate core

electrons[35, 129].

We perform calculations in a slab geometry, with the (001) surface of PbTiO3

perpendicular to the z direction (see Fig. 8.11). We use a dipole correction to

eliminate spurious electrostatic coupling between periodic copies in the z direction.
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Figure 8.1: (Color online) Schematic of simulation cell, shown for a negatively-poled
PbO-terminated surface with 0.5 ML CO2. We use a slab geometry in the z direction,
with vacuum above the surface and a Pt electrode on the opposite side of the PbTiO3.
The O−O bonds show octahedral cages around Ti.

In order to simulate thick slabs of PbTiO3, our unit cell consists of 3.5-4 unit cells

of PbTiO3, with 3 layers of Pt serving as a bottom electrode to provide an electron

reservoir (see Fig. 8.1). We find that adding additional PbTiO3 or Pt layers has no

effect on CO2 binding energies to within 0.01 eV.

We only consider polarization in the z direction, perpendicular to the surface. We

fix our in-plane lattice constant to that of SrTiO3, as that is known experimentally to

fix the polarization to lie in the z direction.[130] In order to simulate the polarization

of a thicker slab than we can easily calculate, we fix the second and third atomic

planes of PbTiO3 from the bottom to their bulk values (the rest of the PbTiO3 and

Pt can relax). We find that this method is sufficient to describe the surface of a thick

polarized PbTiO3 slab (see Fig. 8.2), despite the fact that a stoichiometric polarized

slab with less than 10 unit cells of PbTiO3 and is higher energy than the equivalent
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Figure 8.2: (Color online) Average absolute value of Ti-O z-displacement in each
layer for positively-poled and negatively-poled TiO2-terminated surfaces. We com-
pare slabs with 3.5 unit cells (blue squares) and 5.5 unit cells (red circles) of PbTiO3,
and find similar surface geometry.

paraelectric slab.

When searching the phase space of atomic reconstructions, the possible recon-

structions we consider are 0.5-2 ML adsorbed O and 0.5-1 ML O vacancies. In

addition, for the PbO terminated surface, we consider Pb-vacancies, and for the

TiO2-terminated surface, we consider Ti vacancies. These calculations are all done

in a c(2×2) unit cell, which allows for octahedral rotations and tilting. After using

these initial calculations to get a rough idea of the phase space, we also considered

larger unit cells and reconstructions for relevant surfaces (see, for example, the 4×1

reconstruction in Fig. 8.11). After determining the most stable surface for each

polarization direction, we investigate CO2 and H2O binding sites by starting our

relaxations with the molecules in several orientations (including disassociated) near

each of the exposed atoms on the surface.
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Figure 8.3: (Color online) Projected density of states (DOS) for the TiO2-terminated
paraelectric surface. The energy is relative the Fermi level. The top panel shows the
DOS for the surface atoms, and the bottom panel shows DOS for bulk atoms.

8.2 Stoichiometric Surfaces

We begin by examining the electronic structure of stoichiometric TiO2-terminated

PbTiO3. For the paraelectric surface, we find that the surface states are similar to

the bulk-like region in the interior of the film, albeit with a reduced band gap due

to the lower coordination number of surface atoms (see Fig. 8.3). In contrast, both

the positively-poled and negatively-poled surfaces undergo electronic reconstructions

in order to cancel the depolarizing field arising from the polarization charge (σ =

+P · ẑ, see schematic in Fig. 8.4). When limited to a stoichiometric surface, this

is the only possible charge compensation mechanism; however, we consider atomic

reconstructions in the following section.

On the positively-poled surface, electrons move from the bottom electrode to the

unoccupied d-states on the surface Ti, which form the bottom of the conduction band
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Figure 8.4: (Color online) Schematic of electronic reconstructions. For both the
positively-poled (left) and negatively-poled (right) surfaces, the polarization creates
a surface charge (σ) which results in a long range depolarization field (EDepol). In
order to reduce this field, either electrons (positive surface) or holes (negative surface)
transfer from the electrode to normally unoccupied surface states, modifying surface
chemistry.

Figure 8.5: (Color online) Integrated local density of states (DOS) for a) positively-
poled and b) negatively-poled TiO2-terminated surface. The positive surface (a) is
integrated from the top of the conduction band to the Fermi level, and shows electrons
in the Ti d-orbitals on the surface. The negative surface (b) is integrated from the
Fermi level to the top of the valence band, and shows holes in the pxy-orbitals on the
surface O. Atomic colors are the same as Fig. 8.1.
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Figure 8.6: (Color online) Projected density of states (DOS) for the TiO2-terminated
positively-poled surface. The energy is relative the Fermi level. The top panel shows
the DOS for the surface atoms, and the bottom panel shows DOS for bulk atoms.
Electrons screen the surface charge by moving into the Ti conduction band states,
as seen in the top panel (see also Fig. 8.5 a).

(see Figs. 8.6 and 8.5 a). This charge transfer screens the positive surface charge,

σ, and for a thick film will eliminate the depolarizing field across the PbTiO3. The

negatively-poled surface has a similar electronic reconstruction; however, in this case,

holes must move from the bottom electrode to the surface oxygen p-states, which

form the top of the valence band, in order to screen the negative surface charge (see

Figs. 8.7 and 8.5 b). This transfer of charges on both surfaces reduces the long range

depolarization field and stabilizes the ferroelectric distortion for thick films.

We note that the positively-poled surface has a minor reconstruction, where half

of the surface oxygen atoms are raised above the surface Ti, instead of below it like

they would be in the bulk (see Fig. 8.5a). This alternating of the surface O results

in the surface layer having almost no net Ti-O displacement along the z direction, as
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Figure 8.7: (Color online) Projected density of states (DOS) for the TiO2-terminated
negatively-poled surface. The energy is relative the Fermi level. The top panel shows
the DOS for the surface atoms, and the bottom panel shows DOS for bulk atoms.
Holes screen the surface charge by moving into the O valence band states, as seen in
the top panel (see also Fig. 8.5 b).
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Figure 8.8: (Color online) Top: Binding geometry for 0.5 ML CO2 on a stoichio-
metric TiO2-terminated surface for a) positive, b) paraelectric, and c) negative po-
larizations. Bottom: Charge transfer plots for the surfaces in a-c. The background
colors show how electrons rearrange when the CO2 and the surface are allowed to
interact; electrons move from red regions into blue regions. The positive surface (d)
shows a transfer of electrons from surface Ti to the dissociated CO and O, while the
paraelectric (e) and negative (f) surfaces show covalent bond formation.
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Table 8.1: Binding energy of 0.5 ML CO2 on stoichiometric TiO2-terminated surface.
See Fig. 8.8.
Polarization Geometry Binding Energy (eV)
Paraelectric (CO3)2− 1.0
Negative (CO3)2− 0.3
Positive Disassociated 2.4

the two types of surface O have large but opposite displacements in the z direction

(see Fig. 8.2). However, this reconstruction is only 0.06 eV/1×1 lower in energy

than a more bulk-like configuration with both O below the surface Ti.

The polarization-induced electronic reconstruction has a large effect on both the

CO2 binding mode and binding energy (see Table 8.1 and Fig. 8.8). In the para-

electric case, the CO2 forms a covalent bond with an O2− on the surface, forming

a carbonate (CO3)2−, as shown in Fig. 8.8b. The electrons on the carbonate anion

are localized between the carbon atom and a surface oxygen; additional interactions

between the oxygen p states in the CO2 and surface Ti also occur, as illustrated by

the charge density plot in Fig 8.8e. This carbonate bonding geometry and covalent

bond formation is a typical binding mode for CO2 to an oxide surface,[131] in this

case resulting in a moderate binding energy of 1.0 eV (see Table 8.1). The negatively-

poled surface also forms a carbonate (see Fig. 8.8 c and f); however, the binding

energy is reduced relative to the paraelectric case (see Table 8.1), due to holes on

the negatively-poled surface which are forced to move to the normally closed shell

(CO3)2−, reducing its formation energy.

In contrast to the paraelectric and negatively-poled cases, CO2 adsorption on

the surface of the positively poled-film leads to dissociation and formation of CO

and atomic O, both of which bind to surface Ti cations, as illustrated in Fig. 8.8c.

This bonding mode is primarily a charge transfer interaction driven by the screening

electrons in the Ti conduction band states at the surface (see Fig. 8.5a); these
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electrons lower their energy by transferring to the antibonding C-O π state of CO2,

weakening a C-O bond and thus leading to dissociation. The charge transfer is clearly

observed in Fig. 8.8d, which shows electrons leaving the red regions around the Ti

and moving to the blue regions around the adsorbed O and CO. The dissociative

adsorption of CO2 on the positively poled surface is exothermic by 2.4 eV, which is

significantly more favorable than the carbonate binding mode seen on the paraelectric

and negatively-poled surfaces (see Table 8.1).

These calculations suggest that a switchable stoichiometric TiO2-terminated PbTiO3

surface would be very useful for CO2 catalysis. First, the positively-poled surface

could be used to bind and dissociate the CO2 molecule. Then, the the polarization

could be flipped, and the negatively-poled surface would release the products. How-

ever, this strong binding of the CO2 to the positively-poled surface is partially due

to the unstable state the surface is in prior to the interaction with the molecule.

Instead, it is likely that the surface will reconstruct in order to reduce the number of

electrons in the conduction band, possibly interfering with this promising result.[132]

We investigate the effect of such atomic reconstructions in the following section.

8.3 Non-Stoichiometric Surfaces

8.3.1 Surface Thermodynamics

In order to compare the relative thermodynamic stabilities of non-stoichiometric

PbTiO3 surfaces, we compare the zero temperature surface free energy per area

Fsurf(µPb, µT i, µ0) = ETot −NPbµPb −NT iµT i −NOµO (8.1)
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Table 8.2: DFT formation energies and experimental ∆fH0 of various compounds.
DFT formation energies are relative to bulk crystals at zero temperature for all
elements except O, which is relative to a isolated atomic O2 molecule. We also
report the atomization energy of O2, which is 6.64 eV in DFT, as compared to 5.23
in experiment.[133]
Compound DFT Formation Energy (eV) Experimental ∆fH0

PbO -2.59 -2.27 [134]
TiO2 -9.85 -9.73 [134]

PbTiO3 -12.77 -12.42 [135]
SrO -5.87 -6.14 [134]
RuO2 -2.85
Rb2O -3.09

where ETot is the total energy of the surface per unit area, Ni is the number of atoms

of species i, and µi is the chemical potential of species i (the possible species are Pb,

Ti, and O). The chemical potential of a species is the energy required to take an

atom of that type from a reservoir and add it to the surface. We assume that bulk

PbTiO3 is stable in our system; therefore, the relevant region of phase space is that

in which PbTiO3 is stable with respect to the formation of compounds like PbO and

TiO2 (see Table 8.2). We use DFT to calculate the formation energy of these bulk

compounds.

Our first requirement is that PbTiO3 be in equilibrium with our reservoirs, which

means adding or subtracting a full unit cell of PbTiO3 from the surface does not

change the surface free energy. This places the constraint that

EPbT iO3
= µPb + µT i + 3µO, (8.2)

which allows us to eliminate µT i and only consider the two dimensional phase space

(µO, µPb). In addition, we require that our surfaces are stable with respect to the

formation of bulk Pb, Ti, TiO2, and PbO, which adds the following constraints:
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µPb ≤ EPb (8.3)

µT i = EPbT iO3
− µPb − 3µO ≤ ET i (8.4)

µPb + µO ≤ EPbO (8.5)

µT i + 2µO = EPbT iO3
− µPb − µO ≤ ET iO2

. (8.6)

In addition to the above limits, we require that the oxygen chemical potential cor-

responds to a gas with a temperature and pressure that is achievable under typical

experimental conditions. This places the additional limit that

µO ≤
1

2
EO2

. (8.7)

Any thermodynamically stable surface must have the lowest free energy at a

given set of (µO, µPb) which is allowed by the above constraints. The allowed region

of phase space corresponds to the area inside the red lines in the phase diagrams

shown in Figs. 8.9, 8.10, and 8.12. In order to improve comparison with experiment,

we also apply a correction to the formation energy of an O2 molecule from two O

atoms, which is well known to be overestimated in GGA,[136] by referencing µ0 to

the energy of atomic oxygen in DFT plus one half of the experimental formation

energy of O2, rather than the DFT formation energy. This correction has no effect

on the relative stability of structures in DFT, but improves the comparison with

experimental oxygen chemical potentials.
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8.3.2 Bare Surfaces

We use the methods in section 8.3.1 to find the most stable stoichiometry and ge-

ometry of the surface throughout the range of chemical potentials in which PbTiO3

is stable. In agreement with previous work,[137] we find that the surface is always

PbO-terminated; however, by expanding our phase space to include atomic recon-

structions, we find that the stoichiometry of the top-most PbO layer changes in

response to the polarization in order to compensate the surface charge and eliminate

the depolarization field.

We begin by looking at the paraelectric surface. Fig. 8.9 shows that except for

regions of very high oxygen chemical potential, which causes O2 molecules adsorb to

the surface, the paraelectric surface is terminated by a stoichiometric charge neutral

PbO layer, as expected for a system with no polarization-induced surface charge.

We find that the system does have a c(2× 2) reconstruction due to TiO6 octahedral

rotations in the second atomic layer, consistent with experiment.[138]

The situation is very different for the polarized surfaces, as neither the negatively-

poled nor the positively-poled surfaces are terminated by a stoichiometric PbO layer

for any chemical potentials. For the negatively-poled surface, this can be seen in Fig.

8.10, which shows that neither stoichiometric termination is ever the lowest energy

structure at any combination of Pb and O chemical potentials. Instead of forming a

stoichiometric termination, which requires an electronic reconstruction to cancel the

depolarizing field (see section 8.2 and Figs. 8.4, 8.5b and 8.7), the system undergoes

an atomic reconstruction. Specifically, over a wide range of µO, the system forms

oxygen vacancies on the surface. These oxygen vacancies act as positively charged

defects which serve to cancel the depolarizing field through the substrate in the same

way that the stoichiometric negatively-poled surface accumulates holes. Equivalently,
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Figure 8.9: (Color online) Phase diagram of the paraelectric surface as a function of
µO and µPb. Each colored region is the thermodynamically stable structure for those
chemical potentials. The physically allowed region is inside the red lines. The only
stable structure in the majority of phase space is the stoichiometric PbO termination.

the oxygen vacancies can be viewed as electron donors, with the donated electrons

filling in the holes caused by the depolarization field.

Over most of the relevant range of chemical potentials, the negatively poled sur-

face has 0.5 ML oxygen vacancies (see the large light green region in the center of

8.10). Of the structures we have tried (2×1, c(2×2), 4×1, c(4×2) and 2×2), the

lowest energy configuration is for the vacancies to arrange themselves into a 4×1

pattern as shown in Fig. 8.11. This pattern allows the three Pb2+ with surface

O neighbors to break symmetry and decrease their distance from two of the O by

0.4-0.5 Å. Also, the surface Pb with no surface O neighbors moves towards the bulk,

decreasing its distance to its second layer O neighbors by 0.2 Å. Relative to the

c(2×2) reconstruction, where each Pb also breaks symmetry, but only has only one

close O neighbor, this reconstruction is 0.2 eV/u.c. more stable. The reconstruc-

tion is consistent with the experimental observation of a 4×1 reconstruction on the
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Figure 8.10: (Color online) Phase diagram of negatively poled surface as a function
of µO and µPb. Each colored region is the thermodynamically stable structure for
those chemical potentials. The physically allowed region is inside the red lines.
Stable structures are all PbO terminated, and have 0.75 ML O vacancies, 0.5 ML O
vacancies (see Fig. 8.11), and 1.0 ML adsorbed O (at very high µO).

Figure 8.11: ]
(Color online) Atomic structure of negatively-poled PbO terminated surface with 0.5
ML vacancies arranged into a 4×1 reconstruction. This structure corresponds to the
green region in the center of Fig. 8.10.
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Figure 8.12: (Color online) Phase diagram of the positively-poled surface as a func-
tion of µO and µPb. Each colored region is the thermodynamically stable structure
for those chemical potentials. The physically allowed region is inside the red lines.
Stable structures are all PbO terminated, and have 0.5 ML adsorbed O (see Fig.
8.13a and b), 0.5 ML Pb vacancies (see Fig. 8.13c), and 1 ML adsorbed O2 (at very
high µO).

negatively-poled surface.[121]

The positively-poled surface is similar to the negatively-poled surface in that

the stoichiometric surface is never thermodynamically stable (see Fig. 8.12). This

surface, which prior to reconstruction would have extra electrons in the conduction

band (see Figs. 8.4, 8.5a, 8.6), reconstructs to have either extra O adsorbed on

the surface (high µO, high µPb), or Pb vacancies (low µO, low µPb) (see Fig. 8.13).

The extra O atoms act as an electron acceptors and the Pb vacancies act as hole

donors, both of which reduce the number of electrons in the conduction band while

still compensating the depolarization field. The surface with extra oxygen (see Fig.

8.13a-b) has an interesting reconstruction, where each Pb atom moves 0.5 unit cell

in the y direction, which reduces its distance to the surface O while maintaining a

large displacement in the z direction.
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Figure 8.13: (Color online) Selected thermodynamically stable structures for the
positively-poled surface. a) and b) are two views of the PbO surface with 0.5 ML
adsorbed oxygen, which corresponds to the dark green triangular region in the upper
part of Fig. 8.12. The Pb atoms have left their bulk positions and moved half a unit
cell in the y direction, which results in an shorter Pb-O distance which is closer to
bulk PbO. The adsorbed O is between two Pb. c) Shows the PbO surface with 0.5
ML Pb vacancies, which corresponds to the orange region in Fig. 8.12

Table 8.3: Binding energy of 0.5 ML CO2 to thermodynamically stable surfaces.
Polarization Termination Stoich (ML) Binding Geom. Fig. Ebind(eV)
Positive PbO +0.5 O Physi. 8.14a 0.13
Positive PbO -0.5 Pb (CO3)2− 8.14b 0.66
Negative PbO -0.5 O (CO3)2− 8.14c 0.50

Paraelectric PbO 0 (CO3)2− 8.14d 0.29

8.3.3 CO2 binding

Armed with knowledge of how polarization effects surface geometry and stoichiom-

etry, we investigate the effect of these changes on surface chemistry and reactivity.

Specifically, we will again look at CO2 binding to the surface. We consider the bind-

ing of CO2 to the four surfaces which are stable in large regions of phase space. The

results are summarized in Table 8.3.

Allowing atomic reconstructions generally reduces the largest CO2 binding en-

ergies (compare Tables 8.1 and 8.3). In particular, the very large binding en-

ergy associated with the charge transfer binding mode of the the positively poled

TiO2-terminated surface does not occur on either of the thermodynamically stable
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positively-poled surfaces. On the stoichiometric surface, this binding mechanism is

driven by the electrons in high energy Ti d-states, and because the atomic recon-

structions eliminate these high energy electrons, the related binding mode is also

suppressed.

While most of the surfaces demonstrate the typical carbonate binding geometry,

with the CO2 forming a covalent bond with one of the exposed oxygen atoms (see

Fig. 8.14), there is still significant variation in the binding energy with polarization.

In particular, the positively-poled surface demonstrates the importance of atomic

geometry and stoichiometry to molecular binding. The positively-poled surface with

adsorbed oxygen, which occurs for surfaces with high µO and high µPb (see Figs.

8.12 and 8.13a,b), has no chemisorption mode for CO2 binding because the unusual

positions of the surface Pb and adsorbed oxygen prevent carbonate formation. On

the other hand, the positively-poled surface with Pb vacancies has enough room for

the CO2 to displace a surface Pb atom and reach a stable binding site (compare Fig.

8.14 a and b).

Table 8.3 suggests the possibility of using thermodynamically stable PbTiO3 sur-

faces to bind and release CO2 by switching the polarization. In particular, in the

part of the phase diagram with high µO and high µPb, switching the polarization will

cycle between the negatively-poled surface with 0.5 ML oxygen vacancies , which

forms a covalent bond with CO2 (Fig. 8.14c), and the positively-poled surface with

0.5 ML added oxygen , which binds CO2 only via weaker physisorption (see Fig.

8.14a). However, while these differences in binding with polarization are interesting

as a proof of principle, the low total magnitude of the binding limits potential ap-

plications. In particular, attempting to use this surface for to bind and release CO2

will require a sensitive control of relatively low temperatures of about 180 K.[139]

Therefore, in section 8.4, we consider other materials in the hope of finding a larger
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Figure 8.14: (Color online) Binding of 0.5 ML CO2 to selected thermodynamically
stable surfaces (see Table 8.3). a) Physisorption to positively-poled surface with 0.5
ML O. b) Carbonate bonding to positively-poled surface with 0.5 ML Pb vacancies.
c) Carbonate bonding to negatively-poled surface with 0.5 ML oxygen vacancies. d)
Carbonate bonding to stoichiometric PbO-terminated paraelectric surface.

effect.

8.3.4 H2O Binding

In addition to CO2 binding, we also consider the binding of gas phase H2O molecules

to the thermodynamically stable PbTiO3 surfaces. Like CO2, both the binding en-

ergy and binding mode of H2O depend on the polarization direction and oxygen

coverage. The results are summarized in Table 8.4.

The paraelectric PbO-terminated surface has two competitive H2O binding modes.

The most favorable binding mode for this surface has an H2O molecule forming a

hydrogen bond to a surface oxygen atom, with a binding energy of 0.76 eV (see Fig.

8.15 a). The H-O bond length for the hydrogen bond is 1.6 Å, as opposed to a co-

valent bond distance of 1.0 Å. The other binding mode, which is 0.20 eV less stable,
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Table 8.4: Binding energy of 0.5 ML H2O to several surfaces using both a disas-
sociated geometry and a hydrogen-bonded geometry. The top three surfaces are
thermodynamically stable, the bottom two are included for comparison.
Polarization Termination Stoich. Disassociated H-Bond Fig.

(ML) Binding (eV) Binding (eV)
Paraelectric PbO 0 0.56 0.76 8.15a,b
Positive PbO +0.5 O 0.76 0.49 8.15c
Negative PbO -0.5 O 1.14 0.20 8.15d
Positive PbO 0 0.04 0.18
Negative PbO 0 1.05 0.64

Figure 8.15: (Color online) Binding of 0.5 ML H2O to selected thermodynamically
stable surfaces (see Table 8.4). H is in green (other colors the same as Fig. 8.1). a)
Hydrogen bonding to paraelectric surface. b) Disassociated bonding to paraelectric
surface. c) Disassociated bonding to positively-poled surface with 0.5 ML adsorbed
oxygen. d) Disassociated bonding to negatively-poled surface with 0.5 ML oxygen
vacancies.
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again has two covalent H-O bonds plus a hydrogen bond; however, in this case, the

H2O dissociates and the H atom binds covalently to a surface oxygen (see Fig. 8.15

b).

In contrast to the paraelectric surface, the thermodynamically stable negatively-

poled surface with 0.5 ML oxygen vacancies shows a strong preference for the dis-

sociated binding geometry (see Fig. 8.15 d and Table 8.4). Like the dissociated

binding mode on the paraelectric surface, the dissociated H again bonds to a surface

O, forming an OH. However, instead of forming a hydrogen bond with the surface,

the remaining OH fills in the oxygen vacancy site. The end result is the same as a

stoichiometric PbO-terminated surface with a additional 1 ML atomic H bonded to

the surface oxygen. The change from O2− + H2O → 2 (OH)− results in a strong

binding energy of 1.14 eV.

Interestingly, the low energy binding mode of H2O to the thermodynamically

stable positively-poled surface with 0.5 ML adsorbed O is very similar to the binding

mode of the negatively-poled surface (see Fig. 8.15 c). Again, the H2O dissociates,

and the H bonds to the extra surface O atom. The (OH)− then fills in the empty

O adsorption site, between two Pb atoms, resulting in a surface with a 1x1 recon-

struction and 1 ML adsorbed (OH)−. Much like the negatively-poled surface, the

end result is O2− + H2O → 2 (OH)−, which results in a more stable system and a

binding energy of 0.76 eV. The difference between the two polarizations is that the

negatively-poled surface has 1 ML less oxygen than the positively-poled surface, due

to the differing surface charges.

These surfaces are potentially useful because they show that a) one can dissociate

H2O into OH by switching between a paraelectric surface and either polarized surface,

and b) one can change the binding energy of the dissociated H2O by flipping the

polarization; however, more work must be done in order to understand how these
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changes will affect practical catalytic reactions.

8.4 Epitaxial Catalytic Layers on PbTiO3

While our results for CO2 adsorption on PbTiO3 are very interesting as a proof of

principle, we attempt to improve the surface’s catalytic properties. In particular, we

would like a surface that a) is thermodynamically stable, b) has strong CO2 binding

for at least one polarization, and c) shows a large change in binding energy with

polarization. Preferably, this material will be metallic, so that the Fermi level on the

surface can change with polarization, altering the binding energy, without changing

the stoichiometry of the surface.

Most of the typical transition metals used for catalytic applications are not ther-

modynamically stable on a PbTiO3 surface. These transition metals have large

cohesive energies, and prefer to aggregate into bulk-like clusters on the surface. For

instance, on the TiO2-terminated surface, a monolayer of Pt is unstable with respect

to the formation of bulk Pt by 0.6 eV/Pt for the positively-poled surface and 1.2

eV/Pt for a negatively-poled surface. We consider two possible solutions: a) SrRuO3,

a metallic oxide with a perovskite structure that matches PbTiO3, and b) Rb, an

Alkali metal with relatively low cohesive energy.

We first considered adding a single layer of RuO2 to a PbO terminated surface, but

this turns out to be unstable with respect to the formation of bulk RuO2. However,

adding a full layer of SrRuO3 to a TiO2-terminated substrate, with the RuO2 layer

on the surface, is stable for all three polarizations. Unfortunately, this surface does

not have particularly interesting CO2 binding properties, as the binding energy is

relatively weak and varies only 0.1 eV between positive and negative polarization (see

Table 8.5 and Fig. 8.17a). However, the change in oxygen binding is much larger, on
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Figure 8.16: (Color online) Possible method for reversibly binding CO2 to a SrRuO3

(or SrO) monolayer on PbTiO3. Step 1: The CO2 is bound to the negatively-poled
surface, which is stable at low O2 pressure. Step 2: Flip the polarization. The CO2

has a similar binding energy for either polarization; however, the positively-poled
stoichiometric surface is not thermodynamically stable for experimentally realizable
oxygen chemical potentials. Step 3: The system reaches thermodynamic equilibrium,
and oxygen replaces the CO2. To get back to the initial configuration, simply flip
the polarization back.

the order of 1 eV, and it is likely the positively-poled surface will be covered in excess

oxygen, eliminating all CO2 binding sites. This suggests that it would be possible

to bind CO2 with the negatively poled surface, and then release it by flipping the

polarization, causing oxygen to replace the CO2 (see Fig. 8.16).

We also consider adding a single layer of SrO to a TiO2-terminated PbTiO3

substrate, without a RuO2 layer. This configuration is thermodynamically stable

with respect to SrO formation, and promisingly, CO2 binds strongly to this surface.

All three polarizations bind in the (CO3)2− geometry and have a binding energy

above 1.3 eV (see Table 8.5 and Fig. 8.17b). However, the binding of O to this

surface is very strong, especially for the positively-poled surface, and it is again

likely the positively-poled surface will be covered in oxygen. Therefore, this surface

is also a candidate for the cycle proposed in Fig. 8.16.

Finally, we tried adding 0.5 ML Rb to the PbTiO3 surface, in a c(2×2) configura-
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Figure 8.17: (Color online) Binding of 0.5 ML CO2 to selected surfaces. Ru is in
dark green, Sr is in orange, Rb is in pink (other colors the same as Fig. 8.1). a)
Positively-poled SrRuO3 surface. b) Paraelectric SrO surface c) Negatively-poled
surface with 0.5 ML Rb.

tion. The Rb was stable with respect to the formation of bulk Rb on both stoichio-

metric terminations of the PbTiO3 surface for all three polarizations; however, the

positively-poled surface strongly prefers to oxidize, and form a layer of rubidium ox-

ide on the surface. We focus our attention on the TiO2-terminated negatively-poled

and paraelectric surfaces with 0.5 ML Rb, which our calculations predict will be sta-

ble under realistic conditions. We find that the addition of Rb increases the binding

of CO2 to these surfaces (see Fig. 8.17c). While both polarizations bind the CO2 in

a (CO3)2− geometry regardless of the presence of the Rb, the extra interaction with

the Rb increases the binding of CO2 by 1.2 eV for the negatively-poled surface and

0.8 eV on the paraelectric surface, making Rb an interesting candidate for increased

CO2 binding (see Table 8.5 as compared with Table 8.1).

8.5 Conclusions

We have examined the effects of polarization on the electronic structure, stoichiom-

etry, geometry, and reactivity of the PbTiO3 surface. We find that polarization has

the largest effect on the stoichiometric TiO2-terminated surface. This surface dis-

plays an electronic reconstruction, with electrons or holes moving to compensate the

polarization-induced surface charge. These electrons and holes have a large effect on
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Table 8.5: Binding Energy of 0.5 ML CO2 to various surfaces. The positively-poled
surfaces in all three cases will bind oxygen instead of CO2 for realistic oxygen chemical
potentials; results are included for comparison purposes.
Termination Monolayer Polarization Binding Energy (eV) Fig.

TiO2 SrRuO3 Positive 0.64 8.17 a
TiO2 SrRuO3 Negative 0.74
TiO2 SrRuO3 Paraelectric 0.68
TiO2 SrO Positive 1.34
TiO2 SrO Negative 1.61
TiO2 SrO Paraelectric 1.48 8.17 b
TiO2 Rb Positive 2.27
TiO2 Rb Negative 1.35 8.17 c
TiO2 Rb Paraelectric 1.80

CO2 binding geometry and energy.

Polarization also greatly affects the thermodynamic stability of various surface

stoichiometries and geometries. The surface always prefers to screen the depolariza-

tion field with atomic reconstructions rather than electronic reconstructions. These

atomic reconstructions also affect both CO2 and H2O binding by changing both the

binding energy and the availability of binding sites.

These results also have a variety of potential applications. If the stoichiometric

TiO2-terminated surface can be stabilized, the positively-poled surface would be very

interesting as a way to disassociate CO2. More realistically, the thermodynamically

stable PbO-terminated surfaces also display differences in binding energies of CO2

and H2O. However, more work must be done to increase the magnitude of binding for

CO2 and to learn how to take advantage of the dissociation of H2O when the surface

becomes polarized. Finally, by engineering the PbTiO3 by adding monolayers of

other oxides to the surface, it is possible to both increase the binding of CO2 to the

surface and also achieve differences in binding with polarization. In particular, the

variation of oxygen coverage with polarization provides a method for controlling the

availability of CO2 binding sites.
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Chapter 9

Resonant Phonon Coupling

9.1 Introduction

Advancements in crystal growth techniques such as molecular beam epitaxy (MBE)

and pulsed laser deposition (PLD) now enable control of interfaces between complex

oxides at an atomic scale, resulting in an unprecedented ability to use interface effects

to probe and modify material properties. While this freedom has commonly been

used to modify the static properties of a material (e.g. strain engineering[140]),

rarely has the direct dynamic coupling between atoms at an interface been used to

modulate the electronic properties of one of the materials.

In this work, we investigate the resonant coupling of phonons across an epi-

taxial interface between a La1−xSrxMnO3 (LSMO) thin film and a SrTiO3 (STO)

substrate. LSMO, a colossal mangetoresitive (CMR) manganite, has a very strong

interplay between its atomic structure and transport properties.[17, 18] Mobile elec-

trons in LSMO are largely confined to localized Mn-d orbitals, and hop between

these orbitals via overlap with neighboring oxygen atoms; therefore, the electronic

structure and transport properties of LSMO are strongly influenced by changes in

168



the Mn-O bond length and bond angle. This strong dependence on atomic structure

has been exploited previously to control CMR films via strain as well as coherent

photoexcitation of a vibrational mode.[141, 142]

We seek to modify the atomic structure at the interface by coupling the motion

of MnO6 octahedral cages through the interface to TiO6 octahedral cages in the STO

substrate. In particular, we take advantage of the phonon-softening phase transition

at Tc=108 K in STO (see Fig. 9.1). Above the phase transition temperature, STO

is a cubic perovskite, but below Tc, the octahedral cages of STO become frozen in a

antiferrodistortive pattern (AFD), resulting in a tetragonal distortion of the unit cell

and non-zero average octahedral rotation angle. At temperatures just above and just

below the phase transition, the phonon frequencies corresponding to rotations of the

octahedral cage (Γ25 (111))[143, 144] approach zero, and therefore the occupation of

this mode and the correlation length associated with it diverge. In order to investigate

the coupling of this phonon mode across the interface and into an LSMO thin film,

our experimental colleagues have grown LSMO thin films on STO and performed

transport measurements.[145] They find a large cusp in the resistivity of the LSMO

near the STO phase transition, in addition to a decreased magnetic moment, both

of which are attributed to phonon coupling across the interface.

In order to confirm and clarify the proposed explanation of the experimental

results, we use first principles theory to understand this interface at the atomic scale.

First, we use supercell calculations to directly observe octahedral coupling across the

interface. In addition, we build a first principles based model of atomic motion at the

interface between LSMO and STO, and then perform finite temperature Monte Carlo

sampling to investigate the effects of temperature on atomic motion at the interface.

We show that the phonon mode with diverging correlation length extends from STO

into LSMO, with a decay length in agreement with experimental measurements of the
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Figure 9.1: (Color online) Phonon softening in STO. a) Atomic displacements asso-
ciated with the Γ25 octahedra rotation phonon mode. The octahedra rotate around
the x axis in this example. z is the direction normal to the substrate-film interface.
b) Energy of the phonon mode, showing the softening around the STO transition
temperature.[144] Lines are a guide to the eye. Below the structural phase transition
the mode splits due to the breaking of cubic symmetry. A and D indicate the mode’s
polarization, normal to the tetragonal axis and parallel to it, respectively.
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resistivity changes. In addition, we rule out static structural changes at the interface

as the driving force for the observed resistivity cusp, confirming our explanation that

the increased resistance near Tc is due to dynamic phonon coupling.

9.2 Experiments

We briefly describe the key parts of the experiments of our collaborators, Y. Segal,

C. A. F. Vaz, J. D. Hoffman, F. J. Walker, and C. H. Ahn, which are presented

in more detail elsewhere.[146] They grow thin films of La0.53Sr0.47MnO3 by molec-

ular beam epitaxy on TiO2-terminated STO (001) substrates. Then, they overlay

the ferroelectric PbZr0.2Ti0.8O3 (PZT), which is used to provide gate modulation of

the number and distribution of charge carriers in the LSMO, although the phonon

coupling effects are seen without the PZT layer. The LSMO is coherently strained

to the STO, resulting in an A-type antiferromagnetic (AFM) metallic state (which

is not seen in bulk LSMO, but is consistent with previous experiments).[140, 141]

Using X-ray diffraction, they confirm that the films are under tensile strain, with c/a

= 0.975.[141]

The major results of the experiments are presented in Fig. 9.2. Panel a shows

the resistivity for a 11 u.c. La0.53Sr0.47MnO3 film, as well as the magnetization for

a 15 u.c. film. The resistivity plot shows a metal-insulator transition at 250 K,

which is typical of LSMO, and also the resistivity peak at 108 K, which is correlated

with the phonon softening transition in STO. Panel b, which is for a thicker 12

u.c. film, demonstrates that the cusp at 108 K is still present but diminished in a

thicker film, confirming that the cusp is an interface effect (see also Ref. [147], which

shows a much smaller effect for a thick film). Finally, panel c shows the effect of the

polarization state of the PZT on the resistivity. When the PZT is in the depletion
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Figure 9.2: (Color online) Experimental results showing enhanced phonon-scattering.
a) Left axes: Resistivity of 11 u.c. La0.53Sr0.47MnO3 film showing a strong cusp at
108 K. The PZT layer is in the depletion state. Right axis: Magnetic moment of a 15
u.c. La0.55Sr0.45MnO3 film. The moment is measured along the [100] direction under
an applied magnetic field of 1kOe. A dip in the moment is observed, overlapping
the temperature range of the resistivity cusp (emphasized by gray box). The dashed
line is a linear interpolation between the edges of the dip region. b) Resistivity of a
12 u.c. La0.53Sr0.47MnO3 film in the depletion state. c) The resistivity of the 11 u.c.
film for the two polarization states of the PZT.
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state, charge carriers (holes) are pushed towards the STO-LSMO interface, which

increases the size the resistivity cusp. Conversely, in the accumulation state, holes

are removed from the interface, which reduces the size of the cusp.[15] These results

are also consistent with the increase in resistivity being confined to a few layers

near the interface, rather than being dispersed throughout the film, as the effect is

maximal when carriers are confined near the interface.

9.3 Zero Temperature Structures

9.3.1 Methods

In order to understand the microscopic origin of the coupling between LSMO and

STO at the STO phase transition temperature, we perform first principles density

functional theory[20, 21] calculations using the spin-polarized PBE GGA functional[28]

and ultrasoft pseudopotentials.[35] For Mn, we include semicore 3s23p6 projectors,

in addition to valence projectors for the following valence configuration: 4s23d34p0.

Cutoff radii are rs = rp = rd = 1.4 Bohr, with a non-local core correction radius

of 0.5 Bohr,[81] which we find to be necessary to converge differences in magnetic

ordering.[148] Other pseudopotentials are described in the chapter 6. Regarding the

La pseudopotential, we note that while the behavior of the LSMO is qualitatively the

same for any reasonable choice of pseudopotential, the energy of octahedral rotations

depends surprisingly sensitively (up to 20%) on the details of the La pseudopotential,

and in particular the description of the f states. We carefully consider the logarith-

mic derivatives when generating the pseudopotentials, and choose rlocal = 3.0 Bohr,

as well as add a second projector to the f channel in our La pseudopotential in order

to improve its description. Removing the f states entirely, as is sometimes done, in-

creases the stability of octahedral rotations relative to tetragonal LSMO, and tends
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to worsen the description of LaMnO3.[149]

For computational ease, we represent La0.5Sr0.5MnO3 by using the virtual crystal

approximation to create an atom which is a 50%/50% mixture of La and Sr[150,

151]. We find an upper bound to the error in this approximation by calculating

the ground state octahedral rotations of several ordered supercells of La0.5Sr0.5MnO3

with separate La and Sr atoms. We find that the virtual crystal approximation

captures the average behavior of these supercell calculations well, with errors of less

than 2◦ in rotation angle and 35 meV (less for more disordered supercells) in the

energy difference between the undistorted tetragonal and fully relaxed phases.

9.3.2 Bulk Strained LSMO

We begin by examining the ground state of bulk LSMO which has been epitaxially

strained along the x and y directions to the theoretical STO lattice constant. This

puts the LSMO under tensile strain and results in a c lattice constant 0.961 times

the STO lattice constant, in good agreement with experiment. At this strain, we

find that the system has an A-type AFM metallic state, in agreement with both

experiment and previous theory,[141, 152] but the difference between ferromagnetic

and antiferromagnetic ordering is only 14 meV/Mn. We also note that the magnetic

ordering has only a small effect on the amplitude and energy of octahedral rotations.

For example, relaxing the pseudo-cubic tetragonal structure lowers the energy of the

ferromagnetic (FM) system by 68 meV/Mn, versus 53 meV/Mn for the AFM system.

Also, the lowest energy rotation pattern is the same for either magnetization, and

the rotation angles are very similar.

Bulk strained A-type AFM LSMO favors antiferrodistortive (AFD) octahedral

rotations around both the x and y axes (around the x = y or x = −y line in the

xy plane), which lowers the energy of the system by 53 meV/Mn. When limited to
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rotation around either the x or y axis, the amplitude of rotations is 8◦; however, the

system can lower its energy by an additional 3 meV/Mn by instead rotating around

both x and y by 6◦ (see Fig. 9.4). While also lower in energy than the undistorted

tetragonal phase, rotations around the z axis are much less favorable energetically

and the ground state structure has no z rotation. Both the energy and magnitude of

the AFD rotations in LSMO are much larger than in STO, which has an rotation an-

gle of 5.1◦ in GGA, and an energy lowering of 7 meV/Ti relative to the cubic phase. It

is known that approximations based on the local density approximation (LDA) over-

estimate the equilibrium rotation angle of the oxygen octahedra in STO, which is only

2.1◦ experimentally,[153, 154] and in addition LDA incorrectly predicts a ferroelectric

ground state for STO, at least when treating the atomic positions classically.[155]

It is believed that both of these differences are related to quantum fluctuations in

the oxygen position, as a full quantum statistical mechanics treatment of the low

energy excitations of STO shows that the ferroelectric transition is suppressed down

to <5 K, correctly predicting STO to be an incipient ferroelectric.[155, 153, 156] We

artificially eliminate the ferroelectric state in our calculations by imposing symmetry

along the z direction, as the ferroelectric state is not relevant at temperatures near

the AFD phase transition at 108 K.

9.3.3 Supercell Calculations

In order to study how the LSMO octahedral rotations couple to the weaker rotations

in STO, we perform supercell calculations of 4 layers of STO and 6 layers of LSMO in

the z direction, with a
√
2×

√
2 cell in the xy plane to accommodate AFD rotations.

We fix the in-plane lattice constant to the theoretical lattice constant of STO. We

consider both the TiO2-La0.5Sr0.5O interface as well as the SrO-MnO2 interface, and

we find that the resulting octahedral rotations are qualitatively the same. In Fig. 9.3
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we show results for an averaged interface, with a virtual Sr0.25La0.75 layer of atoms

at the interface, which results in a stoichiometric and symmetric La0.5Sr0.5MnO3 film

in our supercell.

In our calculations, we find that the AFD pattern of octahedral rotations is

always continued through the interface, confirming the coupling between the STO

and LSMO octahedra. As discussed in Sec. 9.3.2, the octahedral rotations of LSMO

have a deeper energy well than the rotations of STO; therefore, the preference of

LSMO for simultaneous rotations around the x and y axes forces the lowest energy

interface to have both LSMO and STO rotated around the x and y axis, with little z

rotation. Both the LSMO and STO rotation angles approach bulk-like values away

from the interface and the average of their bulk values near the interface. This xy

orientation for the interface octahedra is consistent with strong phonon coupling

between the two materials. This is due to the fact that octahedral rotations around

the x or y axis are propagated by first nearest neighbor oxygen motion across the

interface. This is in contrast to rotations around the z axis, perpendicular to the

interface, which are propagated between TiO2 and/or MnO2 layers in the z direction

only by weaker second nearest neighbor oxygen interactions.

In order to look at how distortions in the STO propagate into the LSMO, we fix

the center SrO layer and the surrounding two TiO2 layers of STO in our supercells

to have AFD distortions with θx = 2.5-10◦ and θy = θz = 0◦, and we see how these

distortions propagate through the interface and into the LSMO (see Fig. 9.3). We

find that larger x axis rotations in the STO result in larger x axis rotations and

smaller y axis rotations in the interfacial LSMO layers; however, the LSMO returns

to its bulk rotation angles with a decay length of 1-2 unit cells. This rapid decay

of the interfacial octahedral rotations away from the interface is consistent with the

localized interface effect observed in experiment.
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Figure 9.3: (Color online). Top: Side view of interface geometry, with octahedral
oxygen cages drawn. z-direction is to the right. STO is on the left, LSMO on the
right. The two TiO2 layers and one SrO layer to the left are fixed to 5◦ x-axis
rotation (out of page), the rest are free. Middle and bottom: average x-axis and
y-axis octahedral rotations for 2.5-10◦ fixed STO. The data in middle and bottom
panels line up with ball and stick model above.
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9.4 Finite Temperature Calculations

9.4.1 Model of Octahedral Rotations

Having confirmed the coupling between STO and LSMO octahedra at zero temper-

ature, we construct an ab initio classical model of octahedral rotations that we can

use to calculate the effects of temperature on the atomic structure and vibrations at

the interface. Our model consists of a Taylor expansion of the energy in terms of

distortions of the cubic (STO) or tetragonal (LSMO) high temperature structures.

Our degrees of freedom the are oxygen positions (in all three spatial directions) as

well as a local strain variable that allows for changes in the size of the unit cell. The

strain degrees of freedom are necessary to properly capture the AFD phase transition

of STO.[155, 153] The form our expansion is:

E =
∑

ij

∑

uv

Kiujvxiuxjv + γiuvx
2
iux

2
jv +

∑

αβ

kαβsαsβ + δiuαsαx
2
iu (9.1)

where i and j run over the oxygen degrees of freedom unit cells, u and v run over

the x,y, and z coordinates, and α and β run over the stress degrees of freedom. xiu

is an oxygen displacement from its undistorted position, Kijuv is a harmonic spring

constant between two oxygen displacements, γiuv is a local anharmonic (4th order)

interaction between oxygen displacements oxygen displacements on the same atom,

sα is a strain degree of freedom, kαβ is a harmonic interaction between strain degrees

of freedom, and δiuα is the lowest order interaction between oxygen displacement and

strain.

The local strain degrees of freedom sα correspond to the difference between the

length of the unit cell and its equilibrium (cubic) length. Because we keep track of

the differences between unit cells, our calculations implicitly include a homogeneous
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strain degree of freedom, i.e. the size of the unit cell can change. We do not allow

for changes in angle between our lattice vectors, which is consistent with experiment.

Also, we do not include interactions between the LSMO oxygen degrees of freedom

and the strain, which allows us to only use SrTiO3 elastic constants and keep the

size of the unit cell fixed to SrTiO3, like it is in experiment, where the LSMO is

strained to a much larger SrTiO3 substrate. Our treatment of strain also ignores the

anharmonic terms which must be included for a true rotationally invariant description

of the strain[157]. These terms, like the anharmonic oxygen interactions, would cause

phonons in this model to have a finite lifetime.

All of the coupling constants are fit from bulk first principles calculations of

STO and LSMO. The bulk LSMO is strained in the x and y directions to the STO

lattice constant, and allowed to relax in the z direction. Kijuv is fit from DFT

perturbation theory,[37, 38] and the rest of the parameters are least squares fits to

bulk calculations with finite oxygen and unit cell displacement. For example, Fig.

9.4 shows the rotation of LSMO octahedra around the x and x+y axes, which allows

us to fit γij.

For interactions between oxygens across the LSMO/STO interface, we average

the Kijuv for bulk LSMO and STO. In order to test this approximation, we calculate

spring constants at the Bloch wave vector k=Γ in reciprocal space for a 4 layer

supercell (2 layers STO, 2 layers LSMO), and compare to the prediction of our

model. We find reasonable agreement; the large matrix elements at the interface are

usually within 10% of the average of the bulk materials. We also tested alternate

approximations for the spring constants at the interface (e.g. we used STO spring

constants at the interface), and we find that the results of our finite temperature

calculations are not very sensitive to this approximation.
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Figure 9.4: (Color online) Energy difference between tetragonal LSMO and LSMO
with rigidly rotated octahedra, showing half of the double-well structure. The sym-
bols show the first principles results, and the lines show the fit of our classical energy
model (see Eq. 9.1). Each curve is a one parameter fit, as the harmonic part of the
model not fit but given by perturbation theory calculations. Rotations around the
x + y axes by 6◦ each are slightly more favorable than rotations just around x or
y. (The energy can be lowered by another 10 meV if the octahedra are not forced
to rotate rigidly, because the tetragonal unit cell breaks symmetry between different
oxygen.)
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9.4.2 Monte Carlo Sampling

Using our model for octahedral rotations, we calculate the properties of the LSMO

STO interface at finite temperature by sampling the partition function by using

classical Monte Carlo techniques and the Metropolis algorithm.[48, 49] We use an

ordered starting configuration for the oxygen, with the oxygen arranged into a low

energy AFD pattern, and allow for thermalization before sampling. Rather than

using completely random trial steps, we choose our new configurations based our

knowledge of the energy landscape in order to improve our the acceptance rate for

trial steps and accelerate the calculation. Starting from configuration +qj , a new

configuration +qi is chosen according to the discrete time Langevin equation which is

also the equation for classical Brownian motion:

+qi = +qj + τ(−β∇E(+qi) +

√

2

τ
+g) (9.2)

where β is the inverse temperature, τ is a time step, and +g is a random Gaussian

distributed vector with zero mean and unit variance along each axis with probability

density in d dimensions

P (g) = (2π)−d/2 exp(−g2/2). (9.3)

This choice leads to a proposal probability for a step from i to j equal to

c(ij) = C exp

(

−(+qi − +qj + βτ∇E(+qj))2

4τ

)

(9.4)

as per Sec. 2.5, where C is a normalization constant.

We actually use three separate time steps τ in Eq. 9.2: one for stress degrees of
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freedom, one for oxygen motion in the direction of the nearest neighbor Ti or Mn

(the hard or stiff direction) and one for all other oxygen motion (the easy directions).

This allows us to adjust each time step separately to accept 50% of trial moves, which

gives us the best performance in terms of sampling the phase space with the fewest

number of iterations. Trial steps are accepted with a probability of a(ij) according

to the generalized Metropolis criteria, which preserves detailed balance:[50]

a(ij) = min
[

1,
c(ji)

c(ij)
exp(− β(Ei −Ej))

]

(9.5)

c(ji)/c(ij) = exp
(

−
1

4τ
[(+qj − +qi + βτ∇E(+qi))

2 −

(+qi − +qj + βτ∇E(+qj))
2]
)

, (9.6)

We perform our Monte Carlo sampling in a 10× 10× 100 perovskite supercell which

has 60 layers of STO and 40 layers on LSMO along the z direction, and periodic

boundary conditions in all three directions. The periodic boundary conditions along

the z direction allow us to avoid dealing with a surface which our model is not

designed to handle correctly. We find that using a larger unit cell in the x and

y directions makes our computed phase transition sharper but has little effect on

either the qualitative behavior of the system or the critical temperature of STO, Tc,

which we find to be 110 K. This compares surprisingly well with the experimental

value of 108 K, given that we have ignored both quantum fluctuations as well as the

ferroelectric modes of STO.[156]

9.4.3 Effect of Temperature on Interface Structure

Using our model of octahedral rotations, we can analyze the effects of temperature

on the average rotation angles. Results are presented in Fig. 9.5 as well as table 9.1.

At low temperatures (T = 0.3Tc) (see Fig. 9.5a), the STO far from the interface
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Figure 9.5: (Color online) Mean rotation angle versus layer number for four temper-
atures: a) 0.3 Tc b) 0.8 Tc c) Tc d) 1.2 Tc. The layers with number ≤ 60 are SrTiO3,
and ≤ 61 are LSMO.

is very close to being in its ground-state configuration, which consists of octahedral

rotations of 5.1◦ around the y axis, and no average rotation in the other directions.

The LSMO is also in its ground state, which consists of rotations around both the x

and y axes. Near the interface, the TiO6 octahedral in the STO are forced to line up

with the MnO6 octahedra in the LSMO, as we saw in our supercell calculations (see

Fig. 9.3). In the STO, this causes the x component of the STO rotations to increase

dramatically near the interface, with a fairly slow decay into the STO bulk. In the

LSMO, the broken symmetry of the STO causes the y rotations to increase and the

x rotations to decrease; however, this effect decays rapidly away from the interface,

as we also saw in our supercell calculations.

At temperatures approaching Tc (see Fig. 9.5b), the interface looks similar to the
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Table 9.1: LSMO rotation angles and the resulting conductivities normalized to the
xx or yy the conductivity of tetragonal (unrotated) LSMO (σT , for θx = θy = 0).
Rotation angles θx and θy are calculated for the LSMO layer at the interface with
STO by Monte Carlo. Below the STO phase transition temperature, the STO breaks
symmetry, resulting in different θx and θy values; however, the resulting change is
conductivity is very small.
T/Tc θx θy σxx/σT σyy/σT σzz/σT

0.8 5.73 5.21 0.91 0.89 0.18
1.0 5.34 5.34 0.89 0.89 0.18
1.2 5.20 5.20 0.90 0.90 0.19

low temperature interface (Fig. 9.5a). In the bulk-like regions, the mean rotation

angles of both materials have decreased slightly, due to increased vibrational free

energy favoring the cubic phase. At the interface, there is a decrease in symmetry

breaking, which is due to the lower difference in free energy of the STO between

x and x + y rotations. At the critical temperature (see Fig. 9.5c), the symmetry

breaking at the interface is essentially gone (the remaining symmetry breaking is

due to the computational difficulty in sampling the full partition function near the

critical temperature, where the barrier to switch states is very high). However, there

is only a small change in the mean rotation angle for LSMO, even at the interface,

as compared to T = 0.8Tc (see Fig. 9.5b-c and table 9.1). This relatively small

change in the LSMO rotation angle is due to the fact that the octahedral rotations

in LSMO are much stronger than STO, leading the LSMO rotations to dominate

the STO at the interface. For temperatures above the critical temperature (see Fig.

9.5d), there is again little change in the LSMO. The nonzero average AFD distortion

in STO above Tc is due to the LSMO breaking the symmetry between +x and −x

(and also +y and −y) at the interface; without the LSMO, the bulk STO rotation

angles would be zero.
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9.4.4 How Structural Changes Modulate Conductivity

We consider two mechanisms whereby the phase transition in STO could increase

the resistance in LSMO: a static change in interface structure or a phonon-driven

change in electron scattering (a change in the relaxation time τ). First we look at

whether the static structural changes in the LMSO at the interface around Tc (see

Sec. 9.4.3) account for the observed resistance cusp, assuming the τ is constant.

In the next section, we consider the influence of a dynamic phonon coupling which

would modify τ .

We calculate the conductivity for bulk strained LSMO using the standard semi-

classical formula for conductivity under the relaxation time approximation[25]:

σij ∝ τ
∑

n

∫

d3k vni (k)v
n
j (k)(−f ′(εn(k)) (9.7)

where σij is the conductivity tensor, vni (k) =
∂εn(k)
∂ki

, the derivative of the band energy,

is the electron velocity in effective mass theory, f ′(x) is the derivative of the Fermi

function, and τ is the relaxation time, which is assumed to be constant.

We implement this expression numerically by first computing a real-space tight-

binding Hamiltonian, Hmn(R) in the maximally localized Wannier function [46] basis

which reproduces the Mn-d bands near the Fermi level. Using this real-space Hamil-

tonian, we can then take a Fourier transform and calculate εn(k) and vni (k) on a fine

mesh in reciprocal space:

H(k) =
∑

R

H(R)eik·R (9.8)

H(k)ψnk = εn(k)ψnk (9.9)

vni (k) =
∂εn(k)

∂ki
= ψ†

nk

∂H(k)

∂ki
ψnk (9.10)
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∂H(k)

∂ki
= i

∑

R

RiH(R)eik·R (9.11)

In addition to being a computationally inexpensive method to interpolate the band

structure on a very find k-space mesh (32 k-points along each direction in reciprocal

space are required to converge σij), our Wannier function formalism allows us take

the derivative ∂εn(k)
∂ki

analytically (see Eq. 9.11), which simplifies our calculations.

We calculate conductivities for several different rotation angles above and below

Tc; the results are summarized in table 9.1. We find that the differences in conductiv-

ity due to interfacial structure changes near the STO phase transition are too small

to explain the observed conductivity changes (see Fig. 9.2). In order to understand

this result microscopically, we compute Mn-O-Mn overlaps and hopping matrix el-

ements, and we find that they change only by 1-2 % due to the static structural

changes, explaining the lack of change in the conductivity.

Separately, the symmetry breaking caused by the STO phase transition is present

for all temperatures below the phase transition and increases for lower temperatures

(see Fig. 9.5a,b); however, the resistivity cusp seen experimentally is present only

for temperatures close to Tc (both above and below Tc). Therefore, both the small

size of the change in resistivity at T = Tc as well as persistence of the change at all

temperatures below Tc rule out static structural changes as the cause of the resistivity

cusp; therefore, we now consider the effect of electron-phonon scattering.

9.4.5 Correlations and Phonons

In this section, we investigate the second mechanism for changes in LSMO resistivity,

which is a change in τ , the relaxation time, due to increased electron-phonon scatter-

ing near the phase transition. In order to examine the penetration of STO phonon

modes into the LSMO, we use our finite temperature sampling of the interface to
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Figure 9.6: (Color online) Correlation of layers near the interface with bulk STO
layers at T = Tc. At the phase transition, the correlation length in the STO diverges,
and correlations decay into the LSMO. Inset: At T = 1.3 Tc, correlations no longer
extend significantly into the LSMO. See Fig. 9.7 for full temperature variation of
interface region.

calculate the correlation Cij =< xixj > − < xi >< xj > between oxygen octahedra

in different layers along the z direction. Near the STO phase transition (at Tc =

110 K in the model), when the correlation length in STO diverges, we find that the

LSMO near the interface becomes correlated with bulk STO (see Fig. 9.6). The

fact that correlations extend from bulk STO into the LSMO indicates that phonon

modes associated with the AFD rotation in STO, which have frequencies approach-

ing zero as T → Tc, extend into the LSMO with a decay length of 2.2 unit cells,

which we get by fitting to an exponential. In Fig. 9.7, we again show the correlation

of interface layers with bulk STO, but here we plot the correlation as a function of

temperature, which highlights the fact that this correlation is only present near the

phase transition.

While non-linear terms will become increasingly important near the Tc, exper-

imentally, phonons can be measured very close to the phase transition[143, 144].

Therefore, we assume that at any given temperature, the free energy can be expanded
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Figure 9.7: (Color online) Correlation of the two STO layers and two LSMO layers
closest to the interface with bulk STO as a function of temperature. See Fig. 9.6 for
spatial variation across the interface region.

around its equilibrium structure with an effective harmonic description F (T ) =

1
2x

†Keff(T )x, and that the eigenvalues of Keff(T ), which are proportional to the

effective phonon frequencies squared, are all real and positive. Then, we can relate

these eigenvalues to the correlation matrix, Cij, which we can calculate at finite

temperature with Monte Carlo sampling:

C =
1

Z

∫

dx xx† exp(−βx†Keffx/2) (9.12)

= Vdiag(
1

βmω2
)V† (9.13)

where V and ω are the eigenvectors and vibrational frequencies of Keff(T ), m is the

mass of oxygen, Z is the partition function, and β is the inverse temperature. Eq.

9.13 shows that the eigenvectors of Cij are the same as the eigenvectors of Keff(T ),

and the eigenvalues of Cij are inversely related to the square of the vibrational

frequencies. Using this relationship we simply diagonalize our calculated Cij matrix

and find the mode with the highest eigenvalue, which therefore has longest correlation
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Figure 9.8: (Color online) Energy (h̄ω) of the lowest energy mode in the interface
system as a function of temperature. Compare to Fig. 9.1, which shows experimental
results for diverging phonon modes in STO.

length and lowest frequency in our system (see Fig. 9.8). Due to the size of the

matrices involved, we take advantage of the Bloch character of our supercell and

only consider modes of Cij with the appropriate wave-vector to correspond to an

AFD mode. The frequency of this mode clearly approaches zero at Tc = 110 K;

however, it remains finite due to the limited size of our simulation cell.

We look at the spatial extent of this mode in the z direction at T = Tc in Fig.

9.9. First, we note that the mode alternates in sign for both x and z rotations (y

rotations are very similar to x and are not shown), indicating that it is an AFD

mode. Second, while the mode is predominantly localized in the STO, the rotations

in the x direction decay exponentially into the LSMO, with a decay length of 2.3

unit cells, which we calculate by fitting an exponential to the absolute value of the

eigenvector as it decays into the LSMO.

This mode will have diverging phonon occupation as T → Tc, resulting in greatly

increased scattering of electrons in the LSMO layers close to the interface. The
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Figure 9.9: (Color online) Spatial profile of the eigenvector with the lowest frequency
near the interface at T = Tc. The eigenvectors of x (and y, not shown) octahedral
rotations extend from STO across the interface and into the the LSMO.

scattering will be proportional to ne−2z/λ, where n is the Boson occupation number

for the diverging mode, λ is the decay length of the mode amplitude, and z is the

distance from the interface (the factor of 2 is due to squaring the eigenvector).[158]

This decay length can be fit to the experimental resistivity measurements with the

following form:[159]

σ =
∑

z∈layers

(ρbase + cne−2z/λ)−1 (9.14)

where ρbase is the unperturbed LSMO resistivity, fit by passing a smooth line below

the cusp, and c is a constant related to the electron-phonon matrix element, which is

also fit to the data. This form fits the observed resistivity cusp well (see Fig. 9.10),

with a decay length of 1.8 unit cells, in good agreement with the theoretical decay

length of 2.3 unit cells.

The large resistivity cusp observed experimentally requires a strong electron-

phonon coupling, because as we have shown, the phonon modes decay within 1-3

layers of the interface. This strong electron-phonon coupling seems to be related to
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Figure 9.10: (Color online) Resistivity of an 11 u.c. film of La0.53Sr0.47MnO3 as a
function of temperature, for several out-of-plane magnetic values, with the PZT layer
in the depletion state. Black dashed lines are interpolations excluding the cusp, and
red dashed lines are fits to phonon coupling (see Eq. 9.14).

the A-type AFM ordering near x=0.5 doping, as the resistivity cusp is much smaller

for dopings of x=0.2, where the LSMO is ferromagnetic.[15] Also, the size of the

resistivity cusp is reduced by a strong out-of-plane magnetic field (see Fig. 9.10),

which tends to favor a ferromagnetic alignment of spins in the z direction. However,

the specific mechanism relating the phonons, magnetic ordering, and conductivity is

still unclear.

9.5 Summary

We use first principles calculations to analyze the atomic behavior of the interface be-

tween LSMO and STO, which has a large increase in resistivity at the phase transition

temperature of the STO substrate related to octahedral rotations. Using supercell

calculations, we find these octahedral rotations couple from the STO into the LSMO.

We build a classical model of oxygen motion at the interface which we use to analyze
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the finite temperature behavior of the interface. We find that static changes in inter-

face structure are too small to explain the resistivity changes; however, at the STO

phase transition, phonon modes with diverging occupation decay significantly into

the LSMO. These phonon modes will result in increased electron-phonon scattering

near the STO phase transition, explaining the experimental observations.

Our results provide insight into the nature of conduction at the LSMO interface.

They show that the interfacial layers of the film contribute to the conduction, and

that the two-dimensional conduction in thin films with 50% doping is especially

sensitive to electron-phonon scattering.
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Chapter 10

Conclusions and Outlook

I have presented the results of a series of first principles calculations and models for

a variety of surfaces and interfaces. A brief summary of the results and possibilities

for future research on each of the topics I have investigated follows.

10.1 Epitaxial Oxide Growth on Semiconductors

I have presented investigations of Sr on both Ge and Si substrates and have found

results in agreement with experimental RHEED, XRD, and STM measurements. At

high deposition temperatures, both systems form non-stoichiometric Ge/Si structures

at low Sr coverage. In addition, I have looked at the phase diagram of La on Si, and

found that the surface will form silicides for La coverages above 0.2 ML, and that

this will hinder oxide growth. Finally, using my knowledge of the surface structures,

I looked at the initial SrO-Si interface, and then proposed a method for growing

LaAlO3 on Si.

One possible extension of this work would be to investigate the precise series of

growth steps which are used to grow SrTiO3 epitaxially on Si. One method for grow-

ing SrTiO3 films on Sr+Si surfaces is to start depositing SrO layers at low tempera-
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ture first, and then deposit Ti on top[160], after which the film is annealed at a care-

fully controlled temperature to crystallize the SrTiO3 while avoiding SiO2 and TiSi2

formation.[160, 161, 162] In other growth procedures, the SrO and TiO2 layers are co-

deposited or alternated, but similar precise temperature control is necessary.[110, 52]

Understanding the kinetics of this reaction may help in growth optimization as well

as inform the search for growth procedures for other oxides. Understanding the

growth kinetics of my proposed LaAlO3 structures would also help predict a precise

combination of temperatures and deposition orders which would result in good in-

terfaces (or show that there is no temperature window where epitaxial interfaces are

possible).

10.2 Ferroelectric Surfaces

I have calculated the dependence of the surface stoichiometry of PbTiO3 on polar-

ization, and I have also investigated how these changes in the surface modify the

surface chemistry.

While I have made an attempt to find a surface layer to cap the PbTiO3 surface

that will enable useful polarization-dependent chemistry, thus far the results have

been mixed. In particular, the materials I have looked at thus far, like the bare

PbTiO3 surface, tend to change oxygen stoichiometry with polarization. While this

stoichiometry change can also modify the binding of small molecules to the surface,

it would be desirable to find a material that has surface chemistry that changes

with polarization without changing stoichiometry, which will make the system less

dependent on the thermodynamics and kinetics of oxygen adsorption/desorption.

One possible solution to this problem would be to find a metallic perovskite which

is stable on either PbTiO3 or another ferroelectric and which has more interesting
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surface chemistry than SrRuO3. Another method would be to find a way to add

a more traditional transition metal catalyst to the surface in a thermodynamically

stable manner. It may be necessary to consider other ferroelectrics, like BaTiO3,

which have a smaller polarization than PbTiO3, and therefore may have a surface

that is easier to engineer, while still producing interesting effects.

In a related area, more work can be done on the understanding thin film chemical

sensing applications for ferroelectric surfaces.[121] Whereas I have tried to simulate

thick PbTiO3 substrates, these applications involve at thin film effects where the

presence or absence of a particular adsorbate will change the relative surface energy

of different polarizations, which can then drive a change in the polarization state of

the thin film.

10.3 Interface Phonon Coupling

I have created a first principles model of octahedral rotations at the interface between

LSMO and SrTiO3 and used it to analyze the coupling of these rotations from SrTiO3

into LSMO at the SrTiO3 phase transition temperature.

There are several possibilities for improving my model of octahedral rotations.

Some improvements which would improve the quantitative accuracy of the model

include explicit calculation of the real space spring constants and anharmonic terms

for the at the interface between SrTiO3 and LSMO (eliminating an approximation of

my model), and also improving the fitting of anharmonic terms in the bulk to better

reproduce the ground state phonon frequencies. In addition, the model could be

improved by including the full range of atomic motions, including the ferroelectric

distortions in SrTiO3 and by moving to a quantum description of the statistical

mechanics, which is important for SrTiO3[155, 153, 156].
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A more advanced topic would be to calculate electron-phonon matrix elements in

LSMO and use the eigenvectors and eigenvalues of the correlation matrix to calculate

the change in conductivity in the LSMO film, which would then provide a more direct

comparison between theory and experiment. One difficulty in this computation is the

inadequacy of current electronic structure methods to quantitatively (and sometimes

qualitatively) describe the electronic structure and conduction in LSMO, a strongly

correlated material. In addition, there are many unexplained features of the LSMO

interface, such as the ’dead layer’ effect[163, 164], as well as questions about the bulk

conductivity, which would have to be answered before such a calculation could be

reliable.
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