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First-principles calculations based on density functional theory are employed to study and

predict the properties of boron and Mg boride nanostructures. For boron nanostructures,

two-dimensional boron sheets are found to be metallic and made of mixtures of triangles

and hexagons which benefit from the balance of two-center bonding and three-center bond-

ing. This unusual bonding in boron sheets results in a self-doping picture where adding

atoms to the hexagon centers does not change the number of bonding states but merely

increases the electron count. Boron sheets can be either flat or buckled depending on

the ratio between hexagons and triangles. Formed by stacking two identical boron sheets,

double-layered boron sheets can form interlayer bonds, and the most stable one is semicon-

ducting. Built from single-layered boron sheets, single-walled boron nanotubes have smaller

curvature energies than carbon nanotubes and undergo a metal-to-semiconductor transi-

tion once the diameter is smaller than ∼20 Å. Optimal double-walled boron nanotubes

with inter-walled bonds formed are metallic and always more stable than single-walled

ones. For Mg boride nanostructures, certain Mg boride sheets prefer to curve themselves

into nanotubes, which is explained via Mg-Mg interactions governed by the charge state

of Mg. In addition, optimal Mg boride sheet structures are explored with a genetic algo-

rithm. Phase diagrams for Mg boride sheet structures are constructed and stable phases

under boron-rich environments are identified. Curvature effects on the phase diagram of

Mg boride nanotubes are also discussed. As a natural extension to boron sheets, layered

boron crystals based on boron sheets are then presented and are shown to be stable under

high pressure. Finally, this thesis ends with an investigation of hydrogen-storage properties

of pristine and metal doped boron nanostructures.





First-Principles Investigation on Boron Nanostructures

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

Hui Tang

Dissertation Director: Sohrab Ismail-Beigi

May 2011



Copyright c� 2011 by Hui Tang
All rights reserved.

ii



Acknowledgements

First and foremost, I owe my deepest gratitude to my advisor Prof. Ismail-Beigi. For the

past six years, he has not only been an extremely supportive and considerate advisor, but

also been a super nice and funny friend to me. There’s no way I can make it without the

every week discussions we had when he patiently listened to my thoughts, and never failed

to bring up brilliant ideas. As a matter of fact, I enjoyed every minute working and talking

with him, starting from the first phone interview he made to me when I was still a college

student in China more than six years ago.

Next, I thank Prof. Stone and Prof. Henrich for carefully reading my thesis and

serving on my committee for the past six years. Thank you for consistently advising and

supporting me and my research!

I would also like to take this opportunity to thank all my friends at Yale. You guys made

my life at Yale so colorful and wonderful. Studying abroad could be hard and painful, but

I have had the best time of my life with you guys around. I do believe that whenever and

wherever I end up going for the next phase of my life, I will always cherish our friendship

and keep it in the bottom of my heart.

My thanks also go to my officemates and colleagues, Kevin Garrity, Hanghui Chen,

Xiao Pan, Alexie Kolpak and Jie Jiang. For years, I have spent more time together with

you than my family. I have learned so much from all of you, on research and personalities.

I wish you all the best with everything in life.

Finally, I would like to thank my family, although I know I can never thank them

enough. I want to thank my parents for their most selfish and deep love and support to

me, which give me the power to fight for the best in life and the mind to appreciate all the

good happening to me. Also, I thank my wife Xiaopu Sun for always being my best friend

iii



and always being there for me whenever I needed.

iv



Contents

Acknowledgements iii

1 Introduction 1

2 Methods 9

2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Maximally localized Wannier functions . . . . . . . . . . . . . . . . . . . . . 13

2.4 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Nudged elastic band method . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Boron nanostructures 21

3.1 Single-layered boron sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Bonding scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Self-doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.4 Surface buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Double-layered boron sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Single-walled boron nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Surface buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Fluctuations in buckling . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Double-walled boron nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Double-walled nanotubes from the double-Z(1/12) sheet . . . . . . . 69

v



3.4.2 Double-walled nanotubes from two A(1/9) sheets . . . . . . . . . . . 71

3.4.3 Double-walled nanotubes from two Z(1/12) sheets . . . . . . . . . . 75

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Mg boride nanostructures 82

4.1 Negative curvature energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Two-dimensional Mg boride sheets . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Mg borides based on single-layered B sheets . . . . . . . . . . . . . . 90

4.2.2 Mg borides based on double-layered B sheets . . . . . . . . . . . . . 94

4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Mg boride nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Curvature energy of stable two-dimensional phases . . . . . . . . . . 98

4.3.2 Curvature effects on phase diagrams . . . . . . . . . . . . . . . . . . 101

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Boron crystals with layered structures 106

5.1 Structure and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Stability under high pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Hydrogen storage with boron nano-materials 112

6.1 Hydrogen on boron sheets and nanotubes . . . . . . . . . . . . . . . . . . . 113

6.1.1 Physisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.2 Chemisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.3 Energy barriers for chemisorption . . . . . . . . . . . . . . . . . . . . 116

6.2 Hydrogen on metal doped boron nanostructures . . . . . . . . . . . . . . . . 117

6.2.1 Physisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.2 Chemisorption and energy barriers . . . . . . . . . . . . . . . . . . . 119

6.2.3 Stability of Ca doped boron sheets . . . . . . . . . . . . . . . . . . . 121

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusions 123

vi



A Genetic algorithm 129

A.1 Basic procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Adaptation to two-dimensional sheets and Nanotubes . . . . . . . . . . . . 133

B Notes on pseudopotentials 135

vii



List of Figures

1.1 Illustration of α rhombohedral boron which is made of interconnected B12

icosahedra. Gray balls are boron atoms. . . . . . . . . . . . . . . . . . . . . 2

1.2 Illustration of the Aufbau principle for boron clusters [9, 10]. All large boron

clusters, boron sheets and boron nanotubes were proposed to be built from

one B7 unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Illustrations of boron clusters with various geometries: (a) quasi-planar [21],

(b) tubular [24] and (c) fullerene [30]. . . . . . . . . . . . . . . . . . . . . . 4

2.1 Illustration of outer and inner energy windows when generating 4 MLWFs

for the flat triangular sheet from entangled bands. Black solid lines are bands

calculated from a planewave basis and red circles are bands calculated using

MLWFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Illustration of the nudged elastic band method [80]. The initial (I) and the

final (F) states are two local minima of the energy surface. To determine

the MEP between I and F, an initial guess of the reaction path (dashed line)

is constructed by connecting the initial and the final states. A number of

images of the system (black solid circles) are positioned along the path. The

initial path is then optimized to yield the MEP (solid line) on the energy

surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

viii



3.1 (A, B) Two examples of our boron sheets (top view). Red solid lines show

the unit cells. (C) Four boron clusters: B24(a) and B32(a) are clusters with

hexagonal holes; B24(b) and B32(b) are the double-ring clusters from refs.

[27, 29]. Gray balls are boron atoms, and gray “bonds” are drawn between

nearest neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 LDA binding energy Eb versus hexagon hole density η for single-layered

boron sheets in two extreme cases. The blue ’�’ are the calculated binding

energies for the case where hexagons are evenly distributed. The red ’�’

are the calculated binding energies for the case where hexagons form lines.

The solid curves are from polynomial fitting. The dashed line shows Eb

for the buckled triangular sheet. The two limiting cases η = 0 and η =

1/3 correspond to the flat triangular and hexagonal sheets, respectively.

Maximum Eb occurs for sheet α (η = 1/9). . . . . . . . . . . . . . . . . . . 24

3.3 Projected densities-of-states (PDOS) for four boron sheets. Projections are

onto in-plane (sum of s, px and py, solid red) and out-of-plane orbitals (pz,

dashed blue). Thick vertical solid lines show the Fermi energy EF . (We use

0.3 eV of Gaussian broadening. The vertical scale is arbitrary.) . . . . . . . 26

3.4 Three-center bonding scheme in flat triangular sheets. Left: orientation of

sp
2 hybrids. Center and right: overlapping hybrids within a triangle (D3

symmetry) yield one bonding (b) and two anti-bonding (a∗) orbitals. These

then broaden into bands due to inter-triangle interactions. . . . . . . . . . 27

3.5 Nσ/M & Nπ/M versus η. All data are extracted from ab initio plane-wave

calculations, red � for σ and blue ♦ for π states. The horizontal black

dashed line shows N/M = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 (a) Evolution of boron sheets from H(1/3) to D(2/9), A(1/9), and finally

T(0): Green ’�’ mark the centers of σ MLWFs. (b) Isosurface contour

plots of representative σ MLWFs for H(1/3), D(2/9), A(1/9) and T(0),

respectively: Red for positive, blue for negative values; other σ MLWFs are

obtained by symmetry. Red solid lines show unit cells. . . . . . . . . . . . 31

ix



3.7 Centers (marked by green ’�’) & Isosurface contour plot (red for positive,

and blue for negative values) of two sets of σ MLWFs for T(0) boron sheet:

(a) Triangular-shaped, (b) rectangular-shaped. These σ MLWFs are even

with respect to reflection in the plane of the boron sheets. Red solid lines

show the unit cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 (a) Isosurface contour plots of representative π MLWFs for H(1/3), D(2/9),

A(1/9) and T(0), respectively: Red for positive, blue for negative values;

other π MLWFs are obtained by symmetry. These π MLWFs are odd with

respect to reflection in the plane of the boron sheets. (b) Centers of π

MLWFs shown by green ’�’. Red solid lines show the unit cells. . . . . . . 33

3.9 Isosurface contour plots of MLWFs associated with Mg (red for positive

and blue for negative values), total DOS (red solid lines) and PDOS on Mg

(blue dashed lines) for (a) MgB2 bulk, (b) MgB2 sheet derived from bulk,

(c) MgB2 sheet from a G(3/10) sheet, and (d) MgB2 sheet based on an

E(1/5) sheet. The charge transfers from Mg to B are (a) 1.82 e/Mg, (b)

1.37 e/Mg, (c) 1.05 e/Mg and (d) 0.62 e/Mg. For the MgB2 sheet in (c),

two types of MLWFs associated with Mg exist: we only show one of them

while the other is similar to the one in (d). Small gray balls are boron, and

large blue green balls are Mg. Fermi levels are at zero. . . . . . . . . . . . 36

3.10 The most stable MgB2 sheets for (a) η = 1/4, (b) η = 1/13, (c) η = 1/9,

(d) η = 1/7, (e) η = 1/5, (f) η = 3/10 and (g) η = 1/3. The structure in (a)

is the best MgB2 sheet in our library. We display topviews that are rotated

slightly around the horizontal (x) axis. Small gray balls are B, large light

yellow balls are Mg lying above the boron plane, and large dark blue balls

are Mg lying below the boron plane. Red solid lines show the primitive cells. 38

3.11 Red squares show the energies (measured relative to bulk MgB2) per formula

unit of the most stable MgB2 sheets at each η versus η. The optimal MgB2

sheet structure occurs at η = 1/4 (whose image is shown in Figure 3.10(a)).

The point at η = 1/3 corresponds to the bulk-derived sheet structure. . . . 40

x



3.12 MgB2 sheet structures derived from the same F(1/4) boron sheet sublattice

but with different Mg distributions from the optimal MgB2 sheet shown

in Figure 3.10(a). These sheets are all less stable than the optimal struc-

ture. The energy differences, in meV per formula unit, are shown below

each structure. We display topviews that are rotated slightly around the

horizontal (x) axis. Small gray balls are B, large light yellow balls are Mg

lying above the boron plane, and large dark blue balls are Mg lying below

the boron plane. Red solid lines show the primitive cells. . . . . . . . . . . 41

3.13 Binding energy Eb (from LDA) versus hexagon hole density η for single-

layered boron sheets with evenly distributed hexagons. The blue ’�’ are

the binding energies of flat sheets, and the solid blue curve is a polynomial

fit. The green ’�’ are the binding energies for buckled sheets (that are

stabilized by buckling). Maximal Eb occurs for sheet α (η = 1/9) or A(1/9),

which is the most stable structure. The vertical dashed red line at η = 1/9

indicates the separation point of naturally flat and buckled single-layered

boron sheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.14 Structures of five boron sheets: (a) T(0), (b) Z(1/12), (c) A(1/9), (d) B(1/7)

and (e) C(1/6). The red solid lines show the unit cells. The preferred

buckling patterns are indicated by coloring: z coordinates increase as color

changes from green to gray to purple so that green means negative z co-

ordinates, gray shows z coordinates close to 0, and blue means positive z.

Since the sheets A(1/9), B(1/7) and C(1/6) do not buckle at equilibrium,

the buckling patterns shown here are obtained by applying an isotropic

compressive strain of 5% in the x-y plane. . . . . . . . . . . . . . . . . . . 44

3.15 Kinetic (Ekin), electrostatic (Ees) and exchange-correlation (Exc) energies

versus η for flat 2D boron sheets. Energies are in the units of eV/atom. All

three energies are plotted with respect to their respective values at η = 0

(the zero of energy). The squares, circles and diamonds are the calculated

results, while the solid curves are guides to the eye. . . . . . . . . . . . . . 48

xi



3.16 Illustration of structures of double-layered boron sheets (top and sideviews)

for both (a) the η < 1/9 double-Y(1/16) sheet and (b) the η > 1/9 double

B(1/7) sheet. The red solid lines in the top views show the 2D primitive

unit cells. The green squares in the top view of (a) mark the atoms that

form interlayer bonds in a primitive cell. . . . . . . . . . . . . . . . . . . . 52

3.17 (a) Band structure of the double-Z(1/12) sheet: the Fermi level is set to zero,

which is illustrated by the blue dashed line. (b) Structure of the double-

Z(1/12) sheet (sideview & topview). Red solid lines show the unit cell and

green squares mark the atoms making interlayer bonds in one unit cell. . . 54

3.18 Curvature energies Ecurv in eV/atom of single-walled boron nanotubes made

of the A(1/9) sheet versus diameter D in Å(from LDA). Green ’�’ are for
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between two nominal sheet planes defined by boron atoms not making in-

terlayer bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Energetic, structural, and electronic data for (n, 0)- and (n, n)-type single-

walled boron nanotubes derived from sheet A(1/9) based on LDA and GGA

calculations. The table shows total energy differences δE (in meV/atom)

between flat- and buckled- surfaced cases of a nanotube, (average) nanotube
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Chapter 1

Introduction

In the past few decades, first-principles calculations based on density functional theory

(DFT) have been applied to model various systems, providing accurate results compara-

ble to the most precise experiments [1]. With neither predefined assumptions nor fitted

parameters, DFT is capable of not only describing existing materials realistically, but also

reliably predicting unknown properties of novel electronic systems. Armed with modern

computational facilities, first-principles DFT calculations can be applied to systems with

up to thousands of atoms. First-principles calculations allow us to obtain valuable in-

formation when experiments are not possible or too demanding to perform. In addition,

due to the rapidity and flexibility in modeling systems with different setups, first-principle

calculations can be great substitutes for experiments in sampling and screening candidates

to obtain the right materials. Finally, first-principles calculations provide detailed infor-

mation on the studied system which let us further explore the mechanism for interesting

properties and propel our understanding of novel physics.

Boron and boron related nanostructures are ideal systems to investigate with first-

principles calculations. As the neighbor of carbon in the periodic table, the “fifth element”

boron is on the crossing point of metals and insulators, due to which the chemical bonding

of boron tends to be extremely complicated. The observed crystalline phases of boron are

all based on B12 icosahedra which are interconnected and/or connected to other segments

[2, 3, 4, 5]. As an example, Figure 1.1 shows the structure of α rhombohedral boron.

The bonding in boron crystals is mixture of two-center bonding and three-center bonding
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Figure 1.1: Illustration of α rhombohedral boron which is made of interconnected B12

icosahedra. Gray balls are boron atoms.

[2, 5] which is also common in boron nanostructures [6]. The strength of mixed boron

bonding changes with local environment and is difficult to capture with fitted empirical

potentials or tight-binding methods. Furthermore, nanostructures of boron have very

different geometries from boron crystals, and knowledge of the crystals does not help with

our understanding of the nanostructures. Hence, modeling boron nanostructures from first-

principles calculations is the only reliable choice and has been shown to be accurate and

efficient in describing the properties of boron and boron related nanostructures [6, 7, 8].

Previous work

Boron is a fascinating element with versatile chemistry even compared to carbon and

exhibits various stable boron-based architectures [11]. In particular, boron nanostructures

are of great interest to scientists because of their unique structures and possible novel

properties. For instance, large-diameter boron nanotubes are predicted to be good one-

dimensional conductors independent of chiral indices [12, 13]; pure boron nanotubes and
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Figure 1.2: Illustration of the Aufbau principle for boron clusters [9, 10]. All large boron
clusters, boron sheets and boron nanotubes were proposed to be built from one B7 unit.

Mg doped boron nanotubes may be superconducting at quite high temperature [14]; boron-

based clusters can be used as building blocks to fabricate novel macromolecules [11].

The first research on boron clusters can be traced back to the 1990s; it was inspired

by the astonishing properties of carbon clusters, especially fullerenes [15]. Early research

work was mainly theoretical and was focused on small boron clusters with less than 20

atoms [16, 17, 18, 19, 9]. These small boron clusters were found to be buckled quasi-planar

structures with triangular motifs as the basic constructing unit. Based on this discovery, an

Aufbau principle was proposed suggesting that triangular motifs are the building block for

surfaces of stable boron nanostructures, including large two-dimensional sheets and tubular

structures [9]. These theoretical work was then further backed up by many experiments

on small boron clusters [20, 21, 22, 23, 24], and the structures of small boron clusters

were solved unambiguously. These quasi-planar boron clusters were further shown to be

aromatic in the same manner as carbon molecules [21, 25]. When it came to larger boron

clusters, the story became rather complex. Theoretical calculations proposed competitive

structures with different geometries including quasi-planar, double-layered quasi-planar,

tubular and spherical, all of which are built based on triangular motifs following the Aufbau

principle [26, 27, 28, 29]. Only one experiment reported fabrication of boron clusters with
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Figure 1.3: Illustrations of boron clusters with various geometries: (a) quasi-planar [21],
(b) tubular [24] and (c) fullerene [30].

more than 20 atoms which identified a tubular structure for B20 clusters [24]. B20 was

then seen as the transition point from planar structures to tubular ones.

Inspired by the discovery of tubular boron clusters and the Aufbau principle, several

models were proposed predicting the existence of long one-dimensional (1D) boron nan-

otubes similar to the known carbon nanotubes [31, 32, 33, 34, 10]. In 2004, the first

boron nanotubes were reported to be fabricated in experiments with mesoporous cata-

lysts by Pfefferle’s group at Yale [35] and spurred further enthusiasm for these materials.

After that, first-principles calculations were performed extensively to investigate boron

nanotubes [36, 37, 38, 39, 40]. All these works were based on a triangular sheet which has

a buckled geometry with lines of boron atoms going alternatively up and down and strong

two-center-like bonds forming along the boron lines. All single-walled boron nanotubes

made of the buckled triangular sheet are predicted to be metallic with large densities-of-

states around the Fermi level, raising the possibility of superconducting boron nanotubes.

In addition, due to surface buckling the stability of boron nanotubes is strongly dependent

on chirality as well as diameter. In particular, boron nanotubes with buckling lines lying

along the nanotubes have almost zero curvature energies [38]. Double-walled boron nan-

otubes based on triangular sheets are also investigated [41]. Strong bonds exist between

inner and outer nanotubes and stabilize double-walled boron nanotubes.

Since 2007, research on boron nanostructures was propelled by many theoretical dis-

coveries. The first one predicted the existence of boron fullerenes which are spherical and

hollow inside with surfaces composed of mixtures of pentagons, hexagons and triangles
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showing exceptional stability [30]. These boron fullerenes have structures closely related

to those of carbon fullerenes. For instance, the B80 fullerene can be constructed from

the C60 structure by filling all 20 hexagon faces with extra atoms. Following this work,

many other boron fullerenes were predicted with construction rules proposed [42, 43, 44].

Furthermore, by unzipping the B80 fullerene, a boron sheet that is more stable than the

buckled triangular sheet was discovered [12]. Separately, we predicted a class of stable 2D

boron sheets with the most stable α sheet coinciding with the previous prediction [6, 12].

These boron sheets are made of mixtures of hexagonal and triangular motifs and are always

metallic. The connection between the 2D sheets and fullerenes is clear – the most stable

α sheet [6] is the precursor for boron fullerenes similar to graphene and carbon fullerenes.

With these new boron sheets, researchers studied single-walled boron nanotubes built from

the α sheet [12, 13]. The stability of these boron nanotubes depends not on chirality but

solely on diameter, similar to carbon nanotubes. Furthermore, although α sheet is metal-

lic, boron nanotubes made of α sheet become semiconducting once the diameter is smaller

than 20 Å. This metal-to-semiconductor transition is caused by curvature induced surface

buckling.

Besides boron nanostructures, some early work predicted that stable metal boride nan-

otubes can exist in the form of isolated nanotubes and are further stabilized by forming

nanotube bundles [45, 46, 47]. These metal boride (MgB2, AlB2 and BeB2) nanotubes were

shown to be very good one-dimensional conducting systems and might possibly be super-

conducting. In fact, the possibility of superconductivity in nanostructures has always been

a fascinating subject in physics and materials science. For example, small-radius carbon

nanotubes have been shown to be superconducting at low temperatures [48, 49]. Beyond

carbon-based materials, MgB2 as a bulk crystal has attracted interest due to the discov-

ery of superconductivity near 40 K [50]. As nanomaterials, researchers have proposed that

MgB2 nanotubes, which could be fabricated by doping boron nanotubes with Mg [51], may

have higher superconducting temperatures than MgB2 bulk due to electron confinement

[45, 52]. As a result, MgB2 nanotubes were extensively studied in theory [45, 51, 52, 53, 54].

In all theoretical work, Mg boride nanostructures are based on a 2D precursor sheet ex-

tracted directly from bulk MgB2. This is problematic because the sheet is not necessarily
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the most stable sheet structure for MgB2 and MgB2 may not be the right stoichiometry for

nanostructures. In 2009, an experiment on Mg boride nanostructures showed a promising

result on superconductivity [14]. By doping boron nanotubes with small amount of Mg, re-

searchers fabricated Mg boride nanostructures showing a diamagnetic transition at as high

as 80 K, which implies a superconducting temperature much higher than the MgB2 bulk.

However, the geometry and stoichiometry of the fabricated Mg boride nanostructures are

still unknown from experiments.

Overview of this thesis

The work in my thesis is mainly dedicated to applying first-principles calculations based on

DFT to study boron and Mg boride nanostructures, including two-dimensional sheets and

one-dimensional nanotubes. Using first-principles calculations, we predict optimal struc-

tures, explain chemical bonding and explore electronic properties of these boron nanostruc-

tures with help from experiments. In addition, I present layered boron crystals based on

sheet structures which are stable under high pressure and discuss the possibility to apply

boron nanostructures to hydrogen storage.

In Chapter 2, I briefly describe theory and methods used in my research. First, I present

density functional theory and pseudopotentials which are the two bases for first-principles

calculations. Second, the scheme to generate maximally localized Wannier functions (ML-

WFs) is shown and possible applications of MLWFs are discussed. In addition, I describe

the genetic algorithm which is a minimization technique to find global minima via stochas-

tic processes. (Further details of the genetic algorithm and its generalization to 2D sheets

and 1D nanotubes are presented in Appendix A.) Finally, the nudged elastic band (NEB)

method is presented, which efficiently finds the minimal energy path for a reaction and

determines the energy barrier for the reaction.

Chapter 3 presents my research work on structures and electronic properties of boron

sheets and nanotubes. In the first part, I discuss my results on single-layered and double-

layered boron sheets. Because boron has three valence electrons but four atomic orbitals,

2D atomically-thin boron sheets are made of mixtures of triangles and hexagons, with

triangular regions as electron donors and hexagonal regions as acceptors [6]. The stability
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of boron sheets benefits from the balance of electron donors and acceptors. Due to the

existence of triangular regions, the chemical bonding in boron sheets is mixed two-center

and three-center type. With the help of MLWFs we are able to show the bonding scheme

explicitly and identify a novel self-doping behavior in boron sheets [7]. Self-doping means

that adding a boron atom to the center of a hexagon does not change the number of bonding

states, but merely increases the electron number by three, which is similar to a classic

doping phenomenon. Self-doping provides a convenient way to understand the stability of

boron sheets and helps develop a design rule to build stable boron nanostructures from

carbon nanostructures. Self-doping also constitutes an efficient scheme to search for the

optimal metal boride sheets at given stoichiometries. Furthermore, boron sheets prefer to

have flat or buckled ground state geometries determined by the hexagon-to-triangle ratio.

Boron sheets with large triangular regions prefer to become buckled [8]. This asymmetric

buckling can be well explained via an unconventional electron gas picture. Finally, double-

layered boron sheets are constructed by stacking two identical single-layered boron sheets.

Strong interlayer bonds are formed only for double-layered boron sheets built on single-

layered boron sheets with buckled ground states. The most stable double-layered boron

sheet is more stable than the single-layered one and is semiconducting with a DFT band

gap of about 0.8 eV.

In the second part of Chapter 3, I present my results on single-walled and double-walled

nanotubes. Single-walled boron nanotubes made of the α sheet have smaller curvature

energies compared to carbon nanotubes, and the curvature energy of boron nanotubes de-

pends only on diameter, similar to carbon. Although the α sheet is metallic, small-diameter

single-walled boron nanotubes can become semiconducting due to surface buckling induced

by curvature. The energy gain from surface buckling is very small, but the semiconducting

behavior of small boron nanotubes is quite stable according to the calculations of soli-

ton perturbations [8]. Finally, double-walled boron nanotubes built with three different

schemes are presented. The most stable double-walled boron nanotubes have mismatched

inner and outer nanotubes, are metallic and are always more stable than single-walled

boron nanotubes [8].
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Chapter 4 investigates Mg boride nanostructures including sheet structures and nan-

otubes. First, negative curvature energy in Mg doped boron sheets is presented. When

doped on different boron sheets, the Mg-Mg interactions are governed by the charge state

on Mg as determined by the alignment of Fermi levels between Mg and boron sheets. Due

to the interaction between Mg atoms, many Mg doped boron sheets prefer to curve into

nanotubes and have negative curvature energies, which is unique and not seen in other

systems. In addition, the structures of Mg boride sheets with various stoichiometries are

studied with genetic algorithms. The phase diagrams are then constructed and the most

stable phases under boron-rich environments are identified. Finally, curvature effects are

considered and some preliminary results on how curvature changes the phase diagrams are

described.

In Chapter 5, a new class of layered boron crystals are presented and compared to other

stable boron phases. Layered boron crystals are built up by stacking boron sheets with

additional bonds formed between layers. These new boron structures are less stable than α

rhombohedral boron at ambient condition by 0.1-0.2 eV/atom but can become competitive

in stability under high pressure and high temperature. Finally, layered boron crystals are

metallic with large densities-of-states around the Fermi levels, different from other stable

boron phases.

In Chapter 6, the possibility of using boron based nanostructures as hydrogen storage

materials is explored. Physisorption and chemisorption of hydrogen on pristine and metal

doped boron nanostructures are studied, among which physisorption of hydrogen on Ca

doped boron nanostructures gives reasonable absorption energies. However, the energy

barriers for hydrogen to be chemisorbed on Ca doped boron sheets are small and even close

to zero, and hence chemisorption can become a competing mechanism with physisorption

which jeopardizes the performance of Ca doped boron nanostructures as hydrogen storage

materials. Finally, a preliminary phase diagram for 2D Ca boride sheets is shown which

suggests that the Ca doped α sheet is unstable and thus not a promising hydrogen storage

material.
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Chapter 2

Methods

2.1 Density functional theory

In an interacting system of electrons and nuclei, all properties are in principle determined

by the many-body Hamiltonian of the system, which consists of kinetic energies of elec-

trons and nuclei, Coulomb potentials between electrons and electrons, nuclei and nuclei,

and electrons and nuclei. Due to the much smaller mass of an electron than a nucleus, the

motion of electrons can be separated from that of the nuclei with the Born-Oppenheimer

approximation (or adiabatic approximation), which assumes that electrons respond in-

stantaneously to the motion of nuclei and neglects possible coupling between electrons and

motion of nuclei (or phonons). With this adiabatic approximation, the original problem is

simplified into many interacting electrons moving in an external potential field generated

by all nuclei. However, this many-electron problem is still difficult to deal with, and one of

the most efficient and successful approximate solutions to it is based on density functional

theory (DFT) [55, 56, 57]. DFT works with the electron density instead of the many-body

wavefunctions.

DFT is based on the fact that ground-state properties of an electronic system can be

uniquely determined by its electron density [55]. An energy functional of the electron

density ρ(r) can be defined as

E[ρ(r)] =

�
drv(r)ρ(r) + F [ρ(r)], (2.1)
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where v(r) is the external field acting on the electrons, F [ρ(r)] is the expectation value of

the kinetic and electron-electron energies and is a universal functional of ρ(r). This energy

functional E[ρ(r)] is minimized by the ground state electron density n(r), and E[n(r)] is

the ground state energy. Hence, the ground state properties can be in principle solved via

the variational principle with the constraint of a fixed number of electrons.

This system of interacting electrons can be further mapped into non-interacting elec-

trons moving in an effective potential [56]. If ψi(r)’s are the single-particle wavefunctions

for the non-interacting electrons and satisfy the following constraint

ρ(r) =
N�

i=1

|ψi(r)|2, (2.2)

where the summation is over the N occupied states, the kinetic energy of non-interacting

electrons with density ρ(r) is given by

Ts = − �2
2m

�

i

�ψi|∇2|ψi�, (2.3)

where m is the mass of an electron. We decompose F [ρ(r)] into three terms

F [ρ(r)] = Ts + Eh + Exc = Ts +
1

2

�
drdr�

ρ(r)ρ(r�)

|r− r�| + Exc, (2.4)

where Eh is the Hartree energy and Exc is the exchange-correlation energy defined by

whatever is leftover in F [ρ(r)]. By minimizing the energy functional E[ρ(r)] over ψi(r)

with the constraint ρ(r) =
�

i
|ψi(r)|2, we can obtain the following Kohn-Sham equations

�
− �2
2m

∇2 + veff (r)

�
ψi(r) = �iψi(r), (2.5)

where the effective potential is

veff (r) = v(r) +

�
dr

ρ(r�)

|r− r�| +
δExc

δρ(r)
. (2.6)

The Kohn-Sham equations should be solved self-consistently due to the dependence of

veff (r) on ψi(r).
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Within the Kohn-Sham scheme, all the complexity falls into Exc which is an unknown

functional of ρ(r) for an inhomogeneous electron gas. To make the entire scheme work, we

need some approximate Exc in a computable format. The first commonly used approxi-

mation is the local density approximation (LDA) [56, 58]

Exc ≈ E
LDA

xc =

�
drρ(r)εxc(ρ(r)), (2.7)

where εxc(ρ) is the exchange-correlation energy per electron in a uniform electron gas

with density ρ. εxc(ρ) has been computed with quantum Monte Carlo simulations and

parametrized in several formats [58]. In principle, we expect that the LDA works best for

systems with slowly varying electron density and fails for very inhomogeneous cases like

atoms and surfaces. However, the LDA has been shown to be very successful in describing

various electronic systems including even very inhomogeneous ones. One reason for the

success is that LDA captures the right sum rules for the exchange-correlation hole [1].

After the LDA, further improvement to the approximation of exchange-correlation

energy leads to various generalized gradient approximations (GGAs) [59, 60]. Although

different in their detailed formats, the GGAs essentially include the magnitude of the

gradient of electron density

Exc ≈ E
GGA

xc =

�
drρ(r)εxc(ρ(r), |∇ρ(r)|), (2.8)

and thus are better at dealing with inhomogeneous systems. GGAs have shown systematic

improvement over the LDA on binding energies and have extended the application of DFT

to quantum chemistry, which requires higher computational accuracy [1].

2.2 Pseudopotentials

The pseudopotential method provides an efficient modeling of the electron-ion interaction

to assist first-principle calculations based on DFT [61, 62, 63]. Two basic approximations

are included in constructing pseudopotentials. The first one is the separation of frozen

core electrons from chemically active valence electrons. In an atom, we separate electrons

into core and valence electrons. For instance, carbon has two core electrons in the 1s state
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and four valence electrons filling the 2s and 2p states. Core electrons are tightly bound

to the nuclei with low eigen-energies and stay in the core region forming closed shells.

Core electrons are usually inert in condensed matter systems and are largely irrelevant in

determining most properties of materials. In contrast, valence electrons which are loosely

bound to the nuclei participate in forming chemical bonds with other atoms and determine

the main properties of materials. Given the inertness of core electrons, we can combine

core electrons and the nuclei to form an positive frozen core and consider only valence

electrons interacting through an effective potential with the frozen core.

With this frozen-core approximation, we only worry about valence electrons. However,

the effective potential between valence electrons and the frozen core is still Coulomb-like

and is very strong close to the core region. Because of the strong potential, wavefunctions

of valence electrons usually have rapid oscillations near the core region, which creates

difficulties for calculations. We can circumvent the problem by noticing the fact that

important properties of materials (e.g., chemical bonds) are determined by wavefunctions

in the interstitial region between atoms instead of wavefunctions near the core region.

As long as wavefunctions in the interstitial region are described accurately, properties of

materials would be modeled correctly. Hence, we can make another approximation by

replacing the real valence electron wavefunctions with pseudo-wavefunctions which are

smooth and nodeless inside the core region but agree with the true wavefunctions outside

the core. The resulting effective potentials are called pseudopotentials. Pseudopotentials

are not unique because we can vary the size of the core region and also optimize the

pseudo-wavefunctions inside the core region to create pseudopotentials that fit specific

needs.

Pseudopotentials have been a very convenient tool and have greatly facilitated DFT

calculations. On the one hand, pseudopotentials remove core electrons and allow us to

work with valence electrons only, which improves the speed of calculations compared to

all-electron calculations and thus is especially crucial for heavy elements with large num-

bers of core electrons. On the other hand, pseudopotentials artificially create smooth

nodeless wavefunctions inside the core region to replace the original wavefunctions with

nodes and fast oscillations. If the oscillations were not removed by pseudopotentials, a
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huge number of Fourier components would be needed to to expand the wavefunctions,

which results in extremely large planewave bases. Hence, pseudopotentials have allowed

us to use a planewave basis in our calculations which otherwise would be formidable to

use in any serious calculations due to the need to resolve irrelevant but rapid oscillations

of wavefunctions in the core region.

Furthermore, pseudopotentials naturally explain the chemical similarity between ele-

ments in the same group. We take C and Si as examples. C has 4 valence electrons in 2s

and 2p, and Si also has 4 valence electrons filling 3s and 3p . After pseudizing the two

elements to obtain pseudopotentials, C and Si become extremely similar: both have pseu-

dopotentials converging quickly to −4/r for large r and 4 electrons filling 1s and 2p states.

C and Si only differ in pseudopotentials near the core region. Hence, for elements in the

same group, their pseudo-atoms have the same number of electrons and pseudopotentials

with the same asymptotic behavior, which result in similar chemical properties.

2.3 Maximally localized Wannier functions

In a periodic system, electronic states are usually described with Bloch states ψnk(r)

labeled by band index n and crystal momentum k which are eigenstates of the crystalline

Hamiltonian and propagate throughout the system. Alternatively the electronic states can

be represented in terms of localized Wannier functions Wn(r−R) with band-like index n

and lattice vector R which are presumably localized functions at R. Wannier functions

are obtained via a Fourier transformation of Bloch states from k representation to R

representation spanning the same sub-space as their corresponding Bloch states.

Although used as a powerful theoretical tool, the application of Wannier functions in

numerical problems has been hindered by the arbitrariness in their definition [64]. For

an isolated band, the freedom in choosing the phases of the Bloch states can result in

Wannier functions that are different in shape, not necessarily localized and in some cases

are as extended as the Bloch states. In addition, for a group of composite bands there is

the extra freedom to mix Bloch states of different bands through a unitary transformation.

To resolve this problem, the standard method is to remove the arbitrariness of Wannier

functions via minimizing their total spreads and generate maximally localized Wannier
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functions (MLWFs) [65, 66, 67]. These MLWFs have many desired properties and have

been applied to various problems. In this section, we briefly describe the procedure to

generate MLWFs following similar notation to previous works.

Isolated bands

For an isolated band described by Bloch state ψnk(r), Wannier function Wn(r − R) or

|Rn� is defined as

|Rn� = V

(2π)3

�
dke−ik·R|ψnk�, (2.9)

where V is volume of the real-space primitive cell. Since there can be an arbitrary phase

e
iφn(k) with ψnk(r), the definition of the Wannier function is not unique.

For an isolated group of N interconnected composite bands (e.g., valence bands of an

insulator), Bloch states can be mixed via a unitary transformation in addition to the arbi-

trary phases. Multiplying by an phase factor can be also seen as a unitary transformation.

Then the generalized definition of Wannier functions is

|Rn� = V

(2π)3

�
dke−ik·R

N�

m=1

U
k
mn|ψmk�, (2.10)

where Uk is an N×N unitary matrix. Different Uk can lead to distinct Wannier functions

with different spatial shapes.

To remove the arbitrariness, maximally localized Wannier functions are generated

through minimizing the sum of quadratic spreads of Wannier functions, which is defined

as

Ω =
�

n

�(r− r̄n)
2�n =

�

n

[�r2�n − |r̄n|2], (2.11)

where r̄n = �r�n = �0n|r|0n� and �r2�n = �0n|r2|0n�. This spread functional can be

further separated into two parts

Ω = ΩI + Ω̃, (2.12)

where

ΩI =
�

n

�
�r2�n −

�

Rm

|�Rm|r|0n�|2
�
, (2.13)
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and

Ω̃ =
�

n

�

Rm �=0n

|�Rm|r|0n�|2. (2.14)

These two terms are both non-negative and ΩI is independent of changes in U
k, or gauge

invariant [65]. Hence minimizing Ω with respect to U
k is equivalent to minimizing Ω̃.

MLWFs obtained through minimizing the spread functional have turned out to be al-

ways real in character, although they could be complex by definition [64]. In practice, this

can be used as a good criterion to check if the minimization is well converged. In addition,

MLWFs are proven to be exponentially localized and can be used as localized complete

basis in linear-scaling approach and transport problems [68]. Furthermore, MLWFs pro-

vide insightful information on chemical bonding which is hard to extract from the Bloch

representation [64]. Finally, the centers of MLWFs can be interpreted as the coordinates

of electrons, which provides valuable connection to modern polarization theory [64, 69].

Entangled bands

In some system (e.g., metals and conduction bands of insulators), the energy bands we

are interested in are entangled with other irrelevant energy bands. A “disentanglement”

procedure is needed to pick out the “right” energy bands before trying to obtain MLWFs

for these entangled bands using the method for isolated bands described in the previous

section. For instance, the s band of copper is mixed with the five d bands, so we need

to separate the s band from the d bands before generating MLWFs with s characteristics.

The standard procedure for disentanglement is as follows.

Assume we want to generate MLWFs from N energy bands that are entangled with

other bands. To perform the disentanglement procedure and obtain N smooth bands,

we choose an energy window (“outer window”) which includes Nk
win

eigenvalues at k and

make sure N
k
win

≥ N for any kpoints. A set of N orthonormal Bloch states is obtained at

each kpoint through the following transformation of all original eigenstates that fall in the

energy window:

|ψopt

nk � =
�

m∈Nk
win

V
k
mn|ψmk�, (2.15)
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Figure 2.1: Illustration of outer and inner energy windows when generating 4 MLWFs for
the flat triangular sheet from entangled bands. Black solid lines are bands calculated from
a planewave basis and red circles are bands calculated using MLWFs.

where V k
mn is a N

k
win

×N matrix and satisfies {V k}†V k = I. Generating MLWFs for entan-

gled bands is then a two-step procedure. First we need to choose V
k to get a reasonable

|ψopt

nk �. Once we have |ψopt

nk �, we can follow the procedure described in the previous section

to obtain MLWFs from |ψopt

nk �. Specifically, ΩI and Ω̃ are calculated with |ψopt

nk � plugged

in. From the previous section, we know that ΩI is gauge invariant and is independent of

U
k. For entangled bands, ΩI is then determined by V

k, and Ω̃ depends on both U
k and Ω̃.

To achieve minimal total spreads for Wannier functions, it is rational to minimize ΩI with

respect to matrices V k, which serves as the disentanglement procedure. Hence, a two-step

minimization procedure is needed to generate MLWFs for entangled bands – first minimize

ΩI with respect to V
k to obtain disentangled bands, then minimize Ω̃ with respect to U

k

to obtain MLWFs [66].

With the disentanglement procedure, the MLWFs obtained will not necessarily repro-

duce the original energy bands since they may span different subspaces. However, in most
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cases, at least certain portions of the energy bands should be reproduced exactly (e.g., en-

ergy bands around the Fermi level in electron transport problems). To reproduce certain

energy bands, in addition to the outer energy window, we can apply an inner energy win-

dow during the disentanglement procedure and make sure that all Bloch states inside the

inner window are used without mixing them with other states outside the inner windows

[66]. In Figure 2.1, we illustrate inner and outer energy windows with a flat triangular

boron sheet. We calculate energy bands from MLWFs [67, 70] and compare them to plane-

wave calculations. We can see that energy bands within the inner windows are reproduced

exactly with MLWFs.

Applications

In our research, we have used MLWFs to analyze the chemical bonding in boron sheets. In

two-dimensional boron sheets, the chemical bonding is mixed two-center and three-center

type which is difficult to analyze using traditional concepts and tools. MLWFs are able

to show explicitly the “positions” of electrons (or electron pairs) and provide insightful

information on the chemical bonding in boron sheets. With MLWFs we can identify

bonding patterns and observe directly the mixing of two-center and multi-center bonding

[7].

On the other hand, charge transfer has been an ill-defined quantity in first-principles

calculations because it is difficult to assign electrons to different atoms due to the fact

that atomic orbitals are no longer the eigenstates of the system Hamiltonian. The Löwdin

method has been widely used by researchers, where one projects wavefunctions onto or-

thogonalized atomic orbitals [71, 72]. However, because orthogonalized atomic orbitals

are usually not localized and tend to extend to regions far from the corresponding atoms,

the Löwdin method usually results in too small a charge transfer between atoms. Since

MLWFs are a localized orthonormal complete basis, we assign electrons to MLWFs by pro-

jecting wavefunctions to MLWFs and calculate the projected density of states on Wannier

function |0m�

Nm(E) =
�

nk

δ(E − �nk)
���ψnk|0m�

��2 (2.16)

By integrating the projected density-of-states up to the Fermi level, we can calculate the
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number of electrons associated to a Wannier function. In our Mg boride system, we can

easily assign Wannier functions to Mg and boron subsystem by inspection. We take the

number of electrons on Mg associated Wannier functions as the number of electrons on

the Mg atom and calculate the charge transfer from Mg to boron. Because MLWFs are a

localized basis, the calculated charge transfer is larger than the value from Löwdin method

and is much more reasonable, as shown in our work [7].

2.4 Genetic algorithm

Structure prediction using numerical computation is a long-standing and difficult problem

in materials science. For a given number and species of atoms, we would like to know

what is the most stable structure made of these atoms. To accomplish this, we need to

minimize the free energy of the system with respect to all atomic coordinates and unit cell

parameters. In the multi-dimensional phase space made of all structural parameters, the

free energy surface consists of “valleys” and “hills” which are connected by saddle points.

Each valley acts as a local basin of attraction, and any local minimization methods such as

conjugate gradients can only find a local minimum lying in a basin which is not necessarily

the global minimum.

To find the global minimal point instead of local, various stochastic methods have been

proposed including simulated annealing [73], basin hopping [74, 75], random searching [76]

and genetic algorithms [77, 78, 79], which allow us to find the global minimum with cer-

tain probabilities. Among these methods, genetic algorithms are rather promising due to

their fast convergence and capability to deal with systems of up to 40 atoms at present

[77, 78, 79]. Genetic algorithms were first proposed as a numerical method to find global

minima for general questions. They simulate the process of evolution which involves repro-

duction through crossover of genes from parents and mutation through random changes of

genes. In addition, they allow competition between individuals in each generation, which

guarantees “survival of the fittest”. When adapted to predicting the optimal structure

with first-principles calculations, the basic procedure of the genetic algorithm is as follows.

First, starting with a set of randomly generated structures, we relax each structure to the

corresponding local minimum using standard techniques in first-principles calculations.
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Figure 2.2: Illustration of the nudged elastic band method [80]. The initial (I) and the
final (F) states are two local minima of the energy surface. To determine the MEP between
I and F, an initial guess of the reaction path (dashed line) is constructed by connecting
the initial and the final states. A number of images of the system (black solid circles) are
positioned along the path. The initial path is then optimized to yield the MEP (solid line)
on the energy surface.

Second, we choose a certain number of lowest-energy structures after relaxation (discard-

ing the remaining ones) and use these as parents to randomly generate offspring through

crossover and mutation. Then these new structures are passed on to compete in the next

generation by relaxing them to local minima and comparing their total energies. Finally,

the above process is iterated until convergence criteria are satisfied or a maximum num-

ber of iterations (generations) is reached. The genetic algorithm can be easily adapted to

studying two-dimensional sheet structures and one-dimensional nanotubes. Further details

of genetic algorithms are in Appendix A.

2.5 Nudged elastic band method

In condensed matter physics, it is important to find the minimum energy path (MEP) for

a system going from one configuration to another. The highest energy point in the path

then determines the energy barrier for the transition. This point is a saddle point which

is maximal along one direction but is minimal along all others. Usually multiple maxima

can exist in the MEP and hence the overall shape of MEP must be well estimated to

obtain the energy barrier. Various methods have been proposed to find the MEP among

which the nudged elastic band (NEB) method is the most robust and efficient one to date

[81, 82, 83, 84].

The idea behind NEB is quite simple. A number of images (or replicas) of the system
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are generated between the initial and the final configurations to create a guess of the

reaction path (see Figure 2.2). Each image is a replication of the system with different

atomic coordinates. Usually these initial images are generated via linearly interpolating the

atomic coordinates from the initial configuration to the final one. To generate a continuous

reaction path, these images are connected with elastic springs. While holding the initial

and the final configurations fixed, the intermediate images are optimized to generate the

MEP.

Two different types of forces exist on each image: forces from the elastic springs and

real forces from the atomic interactions within the image. The elastic forces are defined to

be tangential to the path, while real forces can be along any direction. To avoid images

collapsing to local minima (the initial or the final state), the projection of the real forces

tangential to the path is zeroed out. Suppose we have N+1 images Ri (i = 0, ..., N) with

R0 and RN being the initial state and the final states, respectively. These images are

connected with elastic springs with elastic constant K and zero initial length. The force

on image i is given by

Fi = Fs

i −∇E(Ri)|⊥, (2.17)

where Fs

i
is the spring force given by

Fs

i = K(|Ri+1 −Ri|− |Ri −Ri−1|)τ̂i, (2.18)

with τ̂i being the unit tangent vector for image i, and −∇E(Ri)|⊥ is the real force per-

pendicular to τ̂i

−∇E(Ri)|⊥ = −∇E(Ri)− (−∇E(Ri) · τ̂i) τ̂i (2.19)

With forces given by Equation (2.17), a standard minimization technique can be used to

optimize the intermediate N -1 images and obtain the MEP.
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Chapter 3

Boron nanostructures

As the neighbor of carbon in the periodic table, we had expected that nanostructures of

boron might resemble carbon. However, because boron has only three valence electrons

instead of four and is electron deficient, it is impossible for boron to make regular covalent

bonding like carbon. Instead boron prefers three-center or even multi-center bonding

due to electron deficiency. Hence boron nanostructures tend to have complex geometries

which are unique for boron and are not observed in any other materials. In this chapter,

we present geometries of boron nanostructures and describe their bonding and electronic

properties.

3.1 Single-layered boron sheets

3.1.1 Structures

We start with discussing the structures of two-dimensional boron sheets we discovered. We

define the binding energy as

Eb = Eat − Esheet, (3.1)

where Eat is the energy of an isolated spin-polarized boron atom and Esheet is the energy

per atom of a sheet. With our definition, Eb is always positive and larger Eb corresponds

to a more stable structure. Table 3.1 shows binding energy and geometrical data of our

most stable boron sheet (α sheet in Figure 3.1) along with three other boron sheets: the

flat triangular sheet, the buckled triangular sheet and the hexagonal sheet [36, 38, 39]. The
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Table 3.1: Binding energies Eb (in eV/atom) and geometric parameters (in Å) of four
boron sheets: the flat and buckled triangular sheets, the hexagonal sheet, and one of our
sheets (α in Figure 3.1). dflat is the bond length of the flat triangular sheet. dσ and d

diag

are the bond lengths of the buckled triangular sheet, dσ is between atoms with the same z,
while d

diag is between atoms with different z. ∆z is the buckling height. dhex is the bond
length for the hexagonal sheet. dnew gives the bond length range of sheet α.

Flat triangular Buckled triangular
Eb d

flat
Eb d

σ
d
diag ∆z

LDA 6.58 1.68 6.74 1.59 1.80 0.81
previous LDA[38] 6.76 1.69 6.94 1.60 1.82 0.82
previous LDA[36] 6.53 - 6.79 - - -

GGA 5.79 1.70 6.00 1.60 1.86 0.88
previous GGA[39] 5.48 1.71 5.70 1.61 1.89 -

Hexagonal Sheet α
Eb d

hex
Eb d

new

LDA 5.82 1.65 6.86 1.64-1.67
GGA 5.25 1.67 6.11 1.66-1.69

previous GGA[39] 4.96 1.68 - -

hexagonal sheet is unstable with respect to in-plane shearing distortion, so we obtain the

tabulated values by maintaining hexagonal symmetry while optimizing the bond length.

Our calculations on triangular and hexagonal sheets agree very well with previous work

[36, 38, 39]. The buckled triangular sheet is more stable than the flat one by 0.16 eV/atom

due to the former structure forming stronger σ bonds along the buckled direction [38].

We also can reproduce previous results on boron nanotubes made from triangular sheets

[36, 38].

Figure 3.1 shows two examples of our boron sheets which are more stable than the

buckled triangular sheet by 0.12 (α sheet) and 0.08 (β sheet) eV/atom, respectively. These

boron sheets are metallic and are composed of mixtures of hexagons and triangles. Sheet α

is the most stable structure in our library. With a flat triangular sheet as a template, these

boron sheets can be constructed by removing atoms from the template. Each removed atom

produces a hexagonal hole generating a mixture of hexagons and triangles. We define a

“hexagon hole density” as

η =
No. of hexagon holes

No. of atoms in the original triangular sheet
. (3.2)
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Figure 3.1: (A, B) Two examples of our boron sheets (top view). Red solid lines show the
unit cells. (C) Four boron clusters: B24(a) and B32(a) are clusters with hexagonal holes;
B24(b) and B32(b) are the double-ring clusters from refs. [27, 29]. Gray balls are boron
atoms, and gray “bonds” are drawn between nearest neighbors.

In brief, η is the fraction of atoms removed from a triangular sheet that yields a desired

sheet. The triangular sheet has η=0, the hexagonal sheet has η=1/3, and sheets α and β

have η of 1/9 and 1/7, respectively. From now on, we name boron sheets using a capital

letter followed by the η value. T(0) is flat triangular, H(1/3) is hexagonal (i.e. graphitic),

A(1/9) is the most stable α sheet, and B(1/7) is β sheet.

A priori, the energies of these sheets can depend on both η and the pattern of hexagons.

This results in a huge phase space of hexagonal patterns for a given η. It turns out

that η is the major factor determining the stability of boron sheets and Eb has relatively

small variations with the pattern of hexagons, especially for stable boron sheets. We have

discovered that the most stable structures occur when the hexagons are distributed as

evenly as possible at fixed η. Figure 3.2 shows the LDA binding energies Eb versus η

for this class of structures. Eb reaches a maximum of 6.86 eV/atom at η=1/9, which

corresponds to the α sheet. In addition, we have investigated the other extreme where

hexagons form lines whose binding energies are also shown in Figure 3.2. For the linearly

aligned hexagons, the most stable structure occurs at η = 1/7 (sheet β), which is 0.03

eV/atom less stable than the α sheet. Although sheets with hexagon lines are more stable
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Figure 3.2: LDA binding energy Eb versus hexagon hole density η for single-layered boron
sheets in two extreme cases. The blue ’�’ are the calculated binding energies for the case
where hexagons are evenly distributed. The red ’�’ are the calculated binding energies
for the case where hexagons form lines. The solid curves are from polynomial fitting. The
dashed line shows Eb for the buckled triangular sheet. The two limiting cases η = 0 and
η = 1/3 correspond to the flat triangular and hexagonal sheets, respectively. Maximum
Eb occurs for sheet α (η = 1/9).

for η ≥ 1/5, boron sheets with evenly distributed hexagons are more favorable for η close to

1/9. In this work, since we concentrate primarily on the most stable boron nanostructures,

we will be primarily interested in studying the properties of boron sheets with evenly

distributed hexagons.

These findings on boron sheets have important ramifications for boron clusters. The

α sheet can be considered as the precursor of B80 fullerene [30] just like graphene is the

precursor of carbon fullerenes. We also have studied some clusters composed of mixtures

of triangles and hexagons. Figure 3.1 shows the double-ring structures for B24 and B32

[27, 29] along with clusters constructed by us. The new B24 cluster with a hexagon hole

is less favorable by 0.08 eV/atom, while the B32 is more favorable by 0.03 eV/atom than

the corresponding double-ring. The stability of our sheets, of B80, and our clusters with

hexagonal holes suggests that, for boron systems with more than 20-30 atoms, the Aufbau

principle [9] breaks down and a more general structural rule is required.
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3.1.2 Bonding scheme

To explain the stability of these sheets, we now consider the nature of their electronic

bonding. Generally, in-plane bonds formed from overlapping sp
2 hybrids are stronger than

out-of-plane π-bonds derived from pz orbitals, so a structure that optimally fills in-plane

bonding states should be most preferable. Guided by this principle, Figure 3.3 shows

projected densities-of-states (PDOS) for five boron sheets with separate in-plane (the sum

of s, px and py) and out-of-plane (pz) projections.

We begin with the hexagonal sheet, a textbook sp
2 bonded system. All sp2 hybrids are

oriented along nearest neighbor vectors so that overlapping hybrids produce canonical two-

center bonds. A large splitting ensues between in-plane bonding and anti-bonding states.

The pz orbitals form their own manifold of bonding and anti-bonding states. The pz PDOS

vanishes at the transition point between the two. In the case of graphene, the four valence

electrons per atom completely fill the sp
2 and the pz bonding states, leading to a highly

stable structure. However, a boron atom has only three valence electrons. As shown in

Figure 3.3, some of the strong in-plane sp
2 bonding states are unoccupied, explaining the

instability of this sheet. For our discussion below, this sheet is highly prone to accepting

electrons to increase its stability should they be available from another source.

Next, we consider the flat triangular sheet. Each atom has six nearest neighbors but

only three valence electrons. No two-center bonding scheme leads to a proper description.

Previous work has noted qualitatively that a three-center bonding scheme exists here [38].

We now present a detailed model of the three-center bonding with crucial implications for

the stability of our new sheets. Figure 3.4 shows a choice of orientations for the sp2 hybrids

where three hybrids overlap within an equilateral triangle formed by three neighboring

atoms. For an isolated triangle, we have a simple 3×3 tight-binding problem with D3

symmetry. Its eigenstates are dictated by group theory: one low-energy symmetric bonding

orbital b and two degenerate high-energy anti-bonding orbitals a∗. (This is “closed” three-

center bonding; details on this and other types of bonds are found in standard references

[85].) These orbitals then broaden into bands due to inter-triangle couplings. Separately,

the pz orbitals also broaden into a single band (not shown). In Figure 3.3, the in-plane

PDOS becomes zero at the energy separating in-plane bonding and anti-bonding states.
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Figure 3.3: Projected densities-of-states (PDOS) for four boron sheets. Projections are
onto in-plane (sum of s, px and py, solid red) and out-of-plane orbitals (pz, dashed blue).
Thick vertical solid lines show the Fermi energy EF . (We use 0.3 eV of Gaussian broad-
ening. The vertical scale is arbitrary.)
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Figure 3.4: Three-center bonding scheme in flat triangular sheets. Left: orientation of sp2

hybrids. Center and right: overlapping hybrids within a triangle (D3 symmetry) yield one
bonding (b) and two anti-bonding (a∗) orbitals. These then broaden into bands due to
inter-triangle interactions.

Ideally this sheet would be most stable if: (i) two electrons per atom would completely fill

the b-derived in-plane bonding bands, (ii) the anti-bonding a
∗-derived bands were empty,

and (iii) the remaining electron per atom would half fill the low-energy (bonding) portion

of the pz-derived band. This would mean that the EF would be at the zero point of the

in-plane PDOS in Figure 3.3. Clearly, this picture is a valid zeroth-order description.

However, EF lies slightly above the ideal position and makes some electrons occupy in-

plane anti-bonding states. In other words, this sheet prefers to donate these high-energy

electrons, which has critical implications below. (Although we seem to break symmetry

by making half of the triangles filled and half empty, filling the entire b-derived in-plane

bonding band makes all hybrids equally occupied. This restores full in-plane symmetry:

i.e., the two possible initial orientations of hybrids give the same final state.)

The flat triangular sheet, however, buckles under small perturbations along z [36].

The buckling mixes in-plane and out-of-plane states and can be thought of as a symmetry

reducing distortion that enhances binding. As shown in Figure 3.3, some states move below

EF as indicated by the small peak immediately below EF .

Finally, we turn to the new structures. The above discussion has shown that the

hexagonal sheet should be able to lower its energy by accepting electrons, while the flat

triangular structure has a surplus of electrons in anti-bonding states. From a doping

perspective, the three-center flat triangular regions should act as donors while the two-

center hexagonal regions act as acceptors. Thus if the system is able to turn into a mixture

of these two phases in the right proportion, it should benefit from the added stability of

both subsystems. Specifically, the hexagon-triangle mixture with the highest stability
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should place EF precisely at the zero-point of in-plane PDOS, filling all available in-plane

bonding states and none of the anti-bonding ones. The remaining electrons should fill the

low-energy pz-derived states, leading to a metallic system. These expectations are born

out clearly in Figure 3.3 as well as by the energetic stability of the structures (Figure 3.2).

In fact, the most stable sheet α satisfies this condition precisely, while the less stable sheet

β has a slight shift of EF from the ideal position.

3.1.3 Self-doping

From our analysis of the bonding in boron sheets, we know that boron atoms in the

triangular regions act like electron donors. In this section, we will show explicitly how the

doping works and discuss its consequences and applications.

Previously, we discovered that the α sheet, or the A(1/9) sheet, is most stable due to

the optimal filling of σ bonds: electrons fill all in-plane bonding σ states while leaving

all in-plane anti-bonding σ
∗ states empty, and any remaining electrons partially fill out-

of-plane π states [6]. The fact that σ bonds are stronger than π bonds explains why the

best structures are determined by optimal filling of the in-plane manifold. Following this

philosophy, we count the number of in-plane and out-of-plane states for many boron sheets

to identify trends.

We begin with a large M -atom T(0) sheet and gradually remove atoms: each removal

leaves behind a hexagonal hole. For each structure obtained, we calculate the densities-of-

states (DOS) projected onto in-plane and out-of-plane states; mathematically, this means

projection onto even and odd parity states with respect to reflection in the sheet plane. We

identify the separation energy Esep of in-plane bonding σ and anti-bonding σ
∗ states as the

energy where the in-plane DOS has a zero (we have checked the validity of this criterion

in a few cases by manually plotting wave functions and checking their character in detail).

By integrating the in-plane DOS Dσ(�) and out-of-plane DOS Dπ(�), we calculate (i) Nσ

– the number of in-plane σ bonding states with energy below Esep

Nσ =

�
Esep

−∞
d�Dσ(�), (3.3)

28



and (ii) Nπ – the number of out-of-plane π states with energy below Esep

Nπ =

�
Esep

−∞
d�Dπ(�) . (3.4)

The number of electrons is given by integrating the total DOS up to the Fermi energy EF :

Ne = 2

�
EF

−∞
d� [Dσ(�) +Dπ(�)] = 3M(1− η) . (3.5)

where the factor of two accounts for spin and the form 3M(1−η) comes from the fact that

each boron atom has 3 valence electrons and removing atoms from the original T(0) sheet

reduces the number of atoms by a proportion of η (which is justified by the definition of

η).

A configuration should be optimal if electrons fill all the in-plane bonding states and

leave all the in-plane anti-bonding states empty, with partial occupancy of the π manifold.

This simply means EF = Esep or equivalently

2(Nσ +Nπ) = Ne = 3M(1− η) , (3.6)

Note that Equation (3.6) is a constraint on the sheet structure (i.e. the η value) and will

hold only for particular sheets that are highly stable.

Based on first principles calculations, we have discovered that Nσ and Nπ are smooth

functions of η. Figure 3.5 shows the behavior of Nσ and Nπ versus η for a large collection

of boron sheets. As we can see, Nσ/M is precisely unity for all η, and Nπ/M always hovers

around 1/3. When plugging Nσ = M and Nπ = M/3 into Equation (3.6), we find the

simpler relation

2(M +M/3) = 3M(1− η) . (3.7)

The solution to this equation is η = 1/9 which is precisely the η value for the most stable

A(1/9) or α sheet.

The results shown in Figure 3.5 are surprising: the number of in-plane bonds remains

constant even as we add or remove boron atoms from the boron sheet. Since the inter-

atomic distances are essentially fixed when η changes [6], adding or removing atoms directly
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Figure 3.5: Nσ/M & Nπ/M versus η. All data are extracted from ab initio plane-wave
calculations, red � for σ and blue ♦ for π states. The horizontal black dashed line shows
N/M = 1/3.

changes the areal density of boron atoms. Naively, we would have expected a higher areal

density of atoms to result in a higher density of bonding states. We discuss the reason for

this behavior next.

Chemical bonding from Wannier functions

By investigating the chemical bonding in 2D boron sheets using maximally localized Wan-

nier functions (MLWFs) [65, 66, 67], we can explain the surprising results on constant

number of bonds. We consider the evolution of MLWFs when boron sheets change from

hexagonal to triangular. For example, Figure 3.6(a) shows how a six-atom unit-cell of

H(1/3) evolves under addition of boron atoms into mixed-phase D(2/9), A(1/9), and fi-

nally T(0). As per Figure 3.5 and detailed analysis of the band structures, all four sheets

are found to have 9 σ bonding bands. For each sheet, we calculate MLWFs for the lowest

12 bands and obtain 9 in-plane (σ) and 3 out-of-plane (π) MLWFs. We reproduce the 9 σ

bonding bands in each case by imposing an inner window [66].

For in-plane states, each sheet has one or two unique types of σ MLWFs due to symme-

try (the others are obtained by symmetry operations). We show representative σ MLWFs
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Figure 3.6: (a) Evolution of boron sheets from H(1/3) to D(2/9), A(1/9), and finally T(0):
Green ’�’ mark the centers of σ MLWFs. (b) Isosurface contour plots of representative
σ MLWFs for H(1/3), D(2/9), A(1/9) and T(0), respectively: Red for positive, blue for
negative values; other σ MLWFs are obtained by symmetry. Red solid lines show unit
cells.

for each sheet in Figure 3.6(b). Sheet H(1/3) has 9 identical MLWFs localized in the

middle of two adjacent atoms, i.e. two-center bonding. At the other extreme, sheet T(0)

is three-center bonded [6], and we find that it can be described using two different sets

of MLWFs: (i) triangular-shaped σ MLWFs centered in the centers of triangles indicating

explicitly three-center bonding as shown in Figure 3.7(a), or (ii) σ MLWFs shown in Figure

3.6(b) and Figure 3.7(b) which are centered between adjacent atoms and symmetrically

spread to triangles on both sides. These two sets of MLWFs span the same subspace, gen-

erate identical band structures, and thus describe the same physics of three-center bonding.
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Figure 3.7: Centers (marked by green ’�’) & Isosurface contour plot (red for positive, and
blue for negative values) of two sets of σ MLWFs for T(0) boron sheet: (a) Triangular-
shaped, (b) rectangular-shaped. These σ MLWFs are even with respect to reflection in the
plane of the boron sheets. Red solid lines show the unit cells.

We use group (ii) because it shows the most consistent evolution with η below. The two

intermediate sheets D(2/9) and A(1/9) each have two types of σ MLWFs. For D(2/9), the

first type is similar to that of H(1/3) as it is centered between a B-B pair in a hexagonal

environment, while the other is asymmetric and spreads towards the neighboring triangu-

lar region, i.e. mixing of two- and three-center character. For A(1/9), the first type is in

a triangular environment and resembles that of T(0), while the other is asymmetric in the

same manner as D(2/9).

After looking at the figures, the main observation is that despite large changes of sheet

structure and atomic areal density, the same number of σ MLWFs are basically centered

at the same sites as in H(1/3) while showing minor shifts in some cases. Thus, during the

evolution of the sheet from hexagonal to triangular, the basic in-plane bonding pattern

and number of bonds of the hexagonal system is retained with some minor perturbations

in shape and position. (We have checked that these results are general and not restricted

to the sheets discussed here.)

Turning to out-of-plane states, due to symmetry the three π MLWFs of a given sheet

are identical and can be transformed into each other by simple translation and rotation.

We show the representative π MLWFs for each sheet in Figure 3.8(a). For H(1/3), two sets
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Figure 3.8: (a) Isosurface contour plots of representative π MLWFs for H(1/3), D(2/9),
A(1/9) and T(0), respectively: Red for positive, blue for negative values; other π MLWFs
are obtained by symmetry. These π MLWFs are odd with respect to reflection in the plane
of the boron sheets. (b) Centers of π MLWFs shown by green ’�’. Red solid lines show
the unit cells.
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of π MLWFs can be obtained depending on the choice of initial guess. These two sets of

π MLWFs reproduce the same band structure, span the same subspace and thus describe

the same physics. We label them H(1/3)(i) and H(1/3)(ii) in Figure 3.8. The π MLWF in

H(1/3)(i) is peanut-like and centered in the middle of the B-B line connecting two boron

atoms. On the other hand, H(1/3)(ii) is centered on a boron atom and spreads to its three

nearest neighbors. For the other extreme, the sheet T(0), π MLWF is centered on a boron

atom and spreads to its six nearest neighbors. The π MLWFs of the two mixed-phase

sheets (D(2/9) and A(1/9)) differ from each other. For D(2/9), the MLWF is centered

on a boron atom and spreads to four nearest neighbors, while for A(1/9), the MLWF is

centered in the middle of a B-B pair and spreads to these two boron atoms and two other

boron atoms in the two neighboring triangular regions. When looking at the centers of

these π MLWFs, as shown in Figure 3.8(b), we discover that π MLWFs evolve with the

structures of boron sheets in almost the same way as σ MLWFs. As we can see, sheets

D(2/9) and T(0) have π MLWFs centered on the same sites as H(1/3)(ii), which are on

every other atom of the H(1/3)’s lattice. On the other hand, sheet A(1/9) has π MLWFs

centered on the same sites as H(1/3)(i), which are on every other B-B bonds of the H(1/3)’s

lattice. Although we do not have all sheets sharing the same π MLWF centers like we have

for σ MLWFs, we do have the bonding patterns of three sheets, D(2/9), A(1/9) and T(0),

originating from the same parent system H(1/3). In details, the π manifolds of D(2/9) and

T(0) originate from H(1/3)(ii), and that of A(1/9) originates from H(1/3)(i).

Self-doping and a general design rule

The above analysis leads to the following picture for boron sheets: adding a boron atom to

fill a hexagonal hole in a 2D boron sheet does not change the number of bonding states but

simply causes the three valence electrons of the added atom to be released into the lattice.

In other words, adding a boron is equivalent to doping the original boron system with three

more valence electrons. We call this unusual situation self-doping. Since 2D boron sheets

are precursors of atomically thin boron nanotubes and fullerenes, self-doping is generally

useful and applicable. For example, self-doping provides a general design rule for stable

boron nanostructures. If we start with a stable graphene-derived carbon nanostructure

with Z atoms containing many hexagon motifs, we could contemplate replacing all carbon
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with boron. However, to make a stable structure, we would need to add boron atoms since

boron has only three valence electrons compared to carbon’s four, and we need an extra

electron per atom (Z extra electrons in total) to fill the bonding states. The solution is

simple: if we fill the hexagon center sites with additional Z/3 boron atoms, they will each

donate three electrons (exactly Z electrons in total) without changing the bonding states,

making the structure iso-electronic to the original carbon system, and thus stabilize the

final boron structure. This design rule explains the fact that the A(1/9) sheet and the

stable B80 fullerene [30] can be derived from graphene and the C60 fullerene by filling

hexagonal holes with extra atoms. Moreover, it explains why stable B80+8k (k ≥ 0, k �= 1)

fullerenes can be built from the corresponding C60+6k (k ≥ 0, k �= 1) fullerenes [42]. Finally,

our design rule also sheds light on the recently discovered new families of stable boron

fullerenes [43, 44].

Self-doping applied in metal borides

Beyond pure boron nanostructures, self-doping provides a powerful tool for gaining a

zeroth-order view of metal boride systems. In metal boride structures, we expect that

the boron-boron bonding is much stronger than the metal-boron or metal-metal bond-

ing. Furthermore, we expect the metal atoms to donate electrons to the boron subsystem.

Therefore, a stable metal boride 2D sheet should have optimally filled boron bonds as a

starting point.

Consider a MeBx system where Me is a metal atom. Assuming that each metal atom

donates y electrons to the boron subsystem and does not otherwise perturb the electronic

structure, each boron atom now has on average (3 + y/x) electrons and the total number

of electrons for the boron subsystem is now

Ne = (3 + y/x)M(1− η) . (3.8)

As discussed in previous sections, optimal filling of the boron subsystem means EF = Esep

or equivalently 2(Nσ + Nπ) = Ne. Since we assume the electronic structure of the boron

subsystem remains fixed after doping, we still assume that Nσ = M and Nπ = M/3.

Therefore, to achieve the MeBx system with optimal stability, the following constraint
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Figure 3.9: Isosurface contour plots of MLWFs associated with Mg (red for positive and
blue for negative values), total DOS (red solid lines) and PDOS on Mg (blue dashed lines)
for (a) MgB2 bulk, (b) MgB2 sheet derived from bulk, (c) MgB2 sheet from a G(3/10)
sheet, and (d) MgB2 sheet based on an E(1/5) sheet. The charge transfers from Mg to B
are (a) 1.82 e/Mg, (b) 1.37 e/Mg, (c) 1.05 e/Mg and (d) 0.62 e/Mg. For the MgB2 sheet
in (c), two types of MLWFs associated with Mg exist: we only show one of them while the
other is similar to the one in (d). Small gray balls are boron, and large blue green balls
are Mg. Fermi levels are at zero.
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should be satisfied:

2(M +M/3) = (3 + y/x)M(1− ηoptimal). (3.9)

The solution is

ηoptimal =
1 + 3y/x

9 + 3y/x
. (3.10)

Therefore, if we can estimate the charge transfer y, we estimate the optimal η for any

x and thus greatly narrow down the search space for the most stable 2D metal boride

structures.

Unfortunately, charge transfer is not easy to calculate precisely because there is no

unique way to assign electrons to atoms. One popular way is to calculate Löwdin charges

by projecting electronic states to orthogonalized atomic orbitals [71, 72]. However, Löwdin

orbitals form an incomplete basis with long-ranged tails, and this method may lead to

unreasonable charge transfer results. For instance, in bulk MgB2, one rational way to

explain its stability is that each Mg atom donates all its two valence electrons to the boron

honeycomb lattice, making the boron lattice iso-electronic to graphene and stabilizing

the structure. Following this explanation, which is consistent with our method based on

the self-doping picture, we expect the charge transfer from Mg to boron to be essentially

complete and close to 2 electrons per Mg. However, our Löwdin analysis gives only 0.76

e/Mg charge transfer. Therefore, in order to apply self-doping in metal boride systems, a

new scheme that gives more reasonable charge transfer is necessary.

Here we propose to compute charge transfer by projecting wavefunctions onto MLWFs:

these are an exponentially decaying, maximally localized, orthogonal and complete basis

[65, 66, 67]. For Mg-B systems, we found it easy to assign MLWFs to Mg or B atoms

by simple visual inspection. For bulk MgB2, we calculate MLWFs for the 6 lowest bands,

obtaining 5 MLWFs for B which are similar to those of H(1/3), and 1 MLWF around

Mg (see Figure 3.9(a)). Projecting the DOS onto these MLWFs and integrating up to the

Fermi energy gives a very reasonable charge transfer of 1.82 e/Mg, or approximately Mg2+.

Therefore, we believe that the MLWF-based charge transfer gives sensible values for our

self-doping method and we use it to calculate charge transfer below.

Again, we would like to emphasize that, formally, charge transfer is an ill-determined
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Figure 3.10: The most stable MgB2 sheets for (a) η = 1/4, (b) η = 1/13, (c) η = 1/9, (d)
η = 1/7, (e) η = 1/5, (f) η = 3/10 and (g) η = 1/3. The structure in (a) is the best MgB2

sheet in our library. We display topviews that are rotated slightly around the horizontal
(x) axis. Small gray balls are B, large light yellow balls are Mg lying above the boron
plane, and large dark blue balls are Mg lying below the boron plane. Red solid lines show
the primitive cells.

quantity depending on details of how it is defined and calculated. However, our main

use of charge transfer will be to make zeroth-order estimates of ηoptimal in Eq. (3.10) in

order to describe the basic properties of stable metal borides. For such an application,

we believe that as long as the charge transfer can be reasonably defined — such as in our

case involving a metal atom that is chemically expected to donate electrons to the boron

subsystem — the overall approach will be useful.
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We illustrate this approach based on self-doping for 2D atomically thin MgB2 sheets.

(Enlarging the project to other MgBx stoichiometries is a future project.) Figure 3.9 shows

three MgB2 sheets: Figure 3.9(b) is the bulk-derived sheet structure with Mg on H(1/3),

Figure 3.9(c) is based on a G(3/10) boron sheet, and Figure 3.9(d) is built from an E(1/5)

boron sheet. These MgB2 sheets are illustrated in Figures 3.10(e)-(g). The MLWF charge

transfers are 1.37, 1.05 and 0.62 e/Mg, respectively, which are quite different from and

clearly smaller than 1.82 e/Mg (the bulk MgB2 value). This already suggests that the

MgB2 sheet structure derived from bulk will not be the most stable.

Furthermore, we notice that the charge transfers of three MgB2 sheets are different from

each other. Hence, the charge transfer y and the optimal η are interdependent quantities:

rigorously, Equation (3.10) should be solved self-consistently in y and x. However, since

the method is approximate and we wish to present a zeroth order view, we note that,

very crudely, y hovers around unity. Using a guess of y=1 in Equation (3.10) yields

ηoptimal=5/21, which suggests that Mg placed on η ≈ 1/4 boron sheets should create the

most stable MgB2 sheets.

To test this method, we construct many MgB2 sheets by putting Mg on different boron

sheets with a range of η. Figure 3.11 shows the energies of the best MgB2 sheets we found

for each η, and Figure 3.10 shows their atomic geometries. The optimal MgB2 sheet we

have found, shown in Figure 3.10(a), occurs at η = 1/4 and is obtained by doping Mg on

an F(1/4) boron sheet. This particular MgB2 sheet is 0.72 eV/MgB2 more stable than the

bulk-derived one (η=1/3), which is a significant energy difference. We believe that this

sheet is a better precursor for MgB2 nanotubes.

During the above search process, we found the following rules-of-thumb to hold when

generating stable MgB2 sheets. While we are not able to present a proof, we believe they

should be generally applicable to other stoichiometries. In order to make the lowest energy

structure, one should: (a) to whatever extent possible, put Mg on the hexagon sites (above

or below the boron sheet), (b) fill both sites above and below the hexagon if needed, (c)

put any remaining Mg in the triangular regions. Only a very small number of our most

stable MgB2 sheets do not obey these rules, e.g., the sheet in Figure 3.10(d).

To exemplify these rules, for the fixed boron sublattice of sheet F(1/4) we constructed
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Figure 3.11: Red squares show the energies (measured relative to bulk MgB2) per formula
unit of the most stable MgB2 sheets at each η versus η. The optimal MgB2 sheet structure
occurs at η = 1/4 (whose image is shown in Figure 3.10(a)). The point at η = 1/3
corresponds to the bulk-derived sheet structure.

a few variants of the optimal MgB2 sheet (Figure 3.10(a)) where only the distribution of

Mg atoms among hexagon sites was varied. These MgB2 sheets, which are shown in Figure

3.12, are all less stable than the optimal one but only by at most 20 meV/MgB2. Thus

while a search over possible Mg arrangements is needed to find the true ground state, this

part of the search does not contribute greatly to the total energy as long as all Mg atoms

occupy hexagon sites. In summary, the combination of the optimal η from Eq. (3.10)

and the above rules for the best Mg placement greatly narrow down the search space for

optimal metal boride nanostructures.

3.1.4 Surface buckling

Unlike graphene, not all 2D atomically thin boron sheets are completely flat. Instead, for

many boron sheets, the atoms prefer to move out of the nominal sheet plane and form

corrugated surfaces. This phenomenon is generally named ’buckling’ in the literature.

Buckling is quite common in boron nanostructures. All quasi-planar boron clusters studied
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Figure 3.12: MgB2 sheet structures derived from the same F(1/4) boron sheet sublattice
but with different Mg distributions from the optimal MgB2 sheet shown in Figure 3.10(a).
These sheets are all less stable than the optimal structure. The energy differences, in meV
per formula unit, are shown below each structure. We display topviews that are rotated
slightly around the horizontal (x) axis. Small gray balls are B, large light yellow balls are
Mg lying above the boron plane, and large dark blue balls are Mg lying below the boron
plane. Red solid lines show the primitive cells.

in both theory and experiments have buckled surfaces [16, 17, 18, 19, 9, 20, 21, 22, 23,

24]. For 2D boron sheets made of triangles and hexagons, the ground-state configurations

may be either buckled or flat depending on the hexagon-to-triangle ratio (see below). In

addition, small-diameter nanotubes have buckled surfaces [12, 13] although their precursor,

sheet A(1/9), prefers to stay flat. Finally, buckling is closely related to the formation of
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Figure 3.13: Binding energy Eb (from LDA) versus hexagon hole density η for single-layered
boron sheets with evenly distributed hexagons. The blue ’�’ are the binding energies of
flat sheets, and the solid blue curve is a polynomial fit. The green ’�’ are the binding
energies for buckled sheets (that are stabilized by buckling). Maximal Eb occurs for sheet
α (η = 1/9) or A(1/9), which is the most stable structure. The vertical dashed red line at
η = 1/9 indicates the separation point of naturally flat and buckled single-layered boron
sheets.

interlayer bonds in double-layered boron sheets as we discuss in Sec. 3.2. For these reasons,

investigating the buckling of boron sheets is helpful for understanding the basic properties

of boron nanostructures.

We have performed a large number of calculations on 2D single-layered boron sheets

where we start with flat configurations, create perturbations in the form of buckling of

the surfaces, and allow for full relaxations. We summarize the key results here. First, for

sheets with η > 1/5, which in their flat form are already highly unstable compared to the

optimal sheets with η ≈ 1/9 (see Figure 3.13), we find large vertical buckling amplitudes

along the out-of-plane (z) direction and complex resulting final structures. However, even

after relaxation, these structures are still quite unstable energetically, so we ignore them

in what follows. Second, for sheets with η < 1/5, some sheets buckle vertically along the

out-of-plane z direction while some do not and remain flat. More precisely, among boron

sheets with evenly distributed hexagons and for 0 < η < 1/5, we find that whether the
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ground state is buckled or flat depends only on the hexagon hole density η. The buckling

behavior is asymmetric with respect to η: sheets with η < 1/9 prefer to buckle while those

with η ≥ 1/9 remain flat. The energetic changes due to buckling are shown in Figure 3.13.

The increase in stability due to buckling is at most 0.16 eV/atom for the triangular T(0)

sheet and decreases to zero as η = 1/9 is approached. The separation point occurs at

η = 1/9, which coincides with the optimal sheet structure A(1/9). Therefore, when we

account for the buckling effect, the left side (η < 1/9) of the binding energy curve becomes

somewhat flatter as shown in Figure 3.13.

It has been known that the triangular sheet T(0) [see Figure 3.14(a)] can buckle in many

different ways and get trapped in various local minima, but the two-atom-cell buckling

pattern leads to the most stable structure of the buckled triangular sheet [36, 38, 37, 39,

40, 6]. However, for other sheets with 0 < η < 1/9, we find that they generally prefer to

become buckled in some specific manner. These buckling patterns are determined by the

eigenvectors of the unstable phonon modes with imaginary frequencies of the corresponding

flat sheets. For instance, the η = 1/12 sheet Z(1/12) shown in Figure 3.14(b) has two

different buckling patterns determined by its two imaginary phonon modes. One of these

patterns is shown in Figure 3.14(b) as indicated by coloring. The stabilization of the

buckled Z(1/12) sheet is actually quite small and is only 0.01 eV/atom.

On the other hand, the optimal A(1/9) and other sheets with 1/9 < η < 1/5 [e.g.,

sheets B(1/7) and C(1/6) in Figure 3.14] have only stable real phonon frequencies and

thus stay flat. In order to see whether these sheets prefer to buckle when compressed,

which is typical when they are bent or curved to form part of a nanotube, we studied these

flat sheets under isotropic compression in the x-y plane and checked to see if any phonon

mode became unstable. Not surprisingly, we found that under sufficient compression, every

sheet will develop one or more imaginary phonon frequencies and will buckle. For example,

sheet B(1/7) has an imaginary phonon frequency when compressed by 5%. The buckling

patterns of compressed sheets A(1/9), B(1/7) and E(1/6) are shown in Figure 3.14 by

coloring.
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Figure 3.14: Structures of five boron sheets: (a) T(0), (b) Z(1/12), (c) A(1/9), (d) B(1/7)
and (e) C(1/6). The red solid lines show the unit cells. The preferred buckling patterns
are indicated by coloring: z coordinates increase as color changes from green to gray to
purple so that green means negative z coordinates, gray shows z coordinates close to 0,
and blue means positive z. Since the sheets A(1/9), B(1/7) and C(1/6) do not buckle
at equilibrium, the buckling patterns shown here are obtained by applying an isotropic
compressive strain of 5% in the x-y plane.
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Origin of buckling: σ-π mixing?

What is the origin of this common tendency for 2D boron structures to buckle? An obvious

first guess is that perhaps the buckling is driven by mixing of in-plane σ and out-of-plane

π states. For a flat 2D structure, all electronic states have either even or odd parity with

respect to the reflection in the plane which correspond to in-plane (σ) and out-of-plane

(π) states, respectively. Once a 2D structure becomes buckled, the original reflection

symmetry is lost, and in a perturbative picture the resulting electronic states are mixtures

of the original in-plane and out-of-plane states. If important mixing happens around the

Fermi level, bonding combinations of σ and π states could be pushed below the Fermi level,

leading to increased stability. (This picture is analogous in many ways to the stabilization

resulting from a Peierls distortion.) In other words, in this scenario the band energy would

decrease sufficiently to overcome the increase in elastic energy and thus make buckling

preferable.

Following this idea, the fact that sheet A(1/9) is flat can be rationalized via a simple

argument: no mixing between in-plane and out-of-plane states exists around the Fermi

energy because the Fermi level lies in an energy gap for the in-plane states [6]. Thus there

is no energy gain to compensate the increase of elastic energy. However, this explanation

is already problematic because it does not provide a reason for the clear asymmetry in

buckling behavior around η = 1/9. All sheets with η above and below 1/9 have in-plane

and out-of-plane states coexisting at the Fermi energies, so that we would have expected

that sheets on both sides of η = 1/9 would buckle, in disagreement with the ab initio

results.

A more careful examination shows that in fact the entire picture is quantitatively

incorrect. (A better explanation is provided in the next section.) To quantitatively examine

whether the behavior of the band energy can explain the buckling, we divide the total

energy Etot into two parts, the band energy Eband and the remainder as a “repulsive” term

Erep:

Etot = Eband + Erep, (3.11)
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where

Eband =

�
EF

−∞
D(E)E dE, (3.12)

where D(E) is the electronic density-of-states and EF is the Fermi energy, and we compute

this energy directly from the first principles results. The repulsive energy, Erep = Etot −

Eband, is defined and computed exactly as this difference from ab initio calculations. (To

make Erep always positive, we have defined the repulsive energy of an isolated boron atom

to be zero, then Erep and Etot for all boron sheets are scaled accordingly.) As expected

from simple tight-binding theory, Erep is generically positive and in a tight-binding picture

would be given by a sum over repulsive pair interactions [86]:

Erep ≈
�

Ri,Rj

V (|Ri −Rj |), (3.13)

where V (|Ri−Rj |) is a short-range repulsive interaction between two nuclei at Ri and Rj .

(However, we emphasize that we do not use this approximate form but instead compute

Etot, Eband, and Erep directly from the first principles results.)

When computing the band energy, it is clear that any shifts in EF will modify the

computed value. It is well known that standard periodic supercell calculations have an

arbitrary, and difficult to compute, energy shift stemming from the long-range Coulomb

interaction. Therefore, to get reliable Eband energies, we must measure EF with respect to

the vacuum level. This is accomplished by performing a series of calculations with differing

supercell sizes L along the z direction; the behavior of EF versus L for large L is essentially

linear in L
−1. In this way, we can extrapolate to L = ∞ and find absolute EF and thus

Eband energies.

In the σ-π mixing picture described above, the band energy Eband should decrease

upon buckling as hybridization around EF pushes states below EF . In Table 3.2, we

show the calculated band energies and repulsive energies of five sheets spanning a range

of η values when they are flat and slightly buckled (according to their preferred buckling

patterns), respectively. We can see that all sheets except sheet C(1/6) have their band

energies increase and repulsive energies decrease due to buckling, while sheet C(1/6), which

naturally does not prefer to buckle, has the opposite behavior. These results are clearly
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Table 3.2: Band energies (Eband), repulsive energies (Erep) and total energies (Etot) of five
boron sheets T(0), Z(1/12), A(1/9), B(1/7), and C(1/6), respectively, for flat and buckled
cases (from LDA). For the flat sheets, the energies are in eV/atom. For the buckled sheets,
the percentage change from the flat energy is reported to highlight the direction of the
energy change (’+’ for increase and ’-’ for decrease’). The buckling height is fixed at 0.16
Å in all cases.

Flat Buckled
Sheet Eband Erep Etot δEband δErep δEtot

T(0) -37.82 8.50 -29.32 +0.89 -4.31 -0.10
Z(1/12) -37.21 7.68 -29.54 +1.19 -5.81 -0.01
A(1/9) -36.21 6.61 -29.59 +0.59 -3.18 +0.01
B(1/7) -35.07 5.52 -29.55 +0.92 -5.00 +0.02
C(1/6) -33.89 4.38 -29.51 -0.02 +0.68 +0.01

opposite to the expectations from the σ-π mixing picture. In other words, splitting the

total energy into band and repulsive energies has not helped us understand the origin of

the buckling.

Kinetic energy: The driving force for buckling

As the chemical bonding picture based on σ-π hybridization fails to explain the buckling,

we turn to a different physical picture. We instead view these 2D metallic boron sheets

as a realization of (a possibly non-standard) 2D electron gas. Namely, we should consider

breaking up the total energy into terms that are most natural for an electron gas analysis:

the kinetic energy, the (classical) electrostatic energy of interaction among all charges,

and the exchange-correlation energy due to the quantum behavior of the electrons. Inter-

estingly, even though 2D boron sheets show significant covalent bonding character, this

picture turns out to work well: the kinetic term is dominant, as expected for a medium-

to-high density electron gas, and its variations largely dictate the buckling. Therefore, we

write the total energy Etot as

Etot = Ekin + Exc + Ees, (3.14)

where Ekin is the total electronic Kohn-Sham kinetic energy, Exc is the exchange-correlation

energy (here evaluated within the LDA or GGA), and Ees is the sum of all remaining

energies. Ees physically represents the sum of all classical electrostatic interactions among
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Figure 3.15: Kinetic (Ekin), electrostatic (Ees) and exchange-correlation (Exc) energies
versus η for flat 2D boron sheets. Energies are in the units of eV/atom. All three energies
are plotted with respect to their respective values at η = 0 (the zero of energy). The
squares, circles and diamonds are the calculated results, while the solid curves are guides
to the eye.

charges: electron-electron, electron-ion, and ion-ion. (The nonlocal electron-ion interaction

from the pseudopotential is thus included in Ees as this term is designed to reproduce the

interactions of the valence electrons with the nucleus in an all-electron framework.)

Separately, it is helpful to have a measure of the average electron density in the system

in order to correlate with usual notions of electron gas behavior. Unfortunately, there is no

obvious unique a priori way to define an average electron density for an arbitrary material

system with a spatially varying electron density. Therefore, we resort to a very simple

definition which uses the density itself as the weighing function:

n̄ =

�
(n(r))2dr�
n(r)dr

. (3.15)

This simple measure averages the density in the spatial regions where the electrons spend

the most time. Therefore, it is slightly biased to large values by the relatively large values

of the electron density close to each boron atom and does not only measure the electron
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Table 3.3: Kinetic energy (Ekin), electrostatic energy (Ees), exchange-correlation energy
(Exc), total energy (Etot), and the average electron density n̄ of five boron sheets T(0),
Z(1/12), A(1/9), B(1/7), and C(1/6), respectively, for flat, artificially buckled and fully
relaxed cases (from LDA). For flat sheets, energies are in eV/atom and n̄ is in units of
10−2e/Bohr3. For buckled and fully relaxed sheets, we show percentage changes of the
energies and n̄ compared to the flat values (’+’ for increase, ’-’ for decrease). The buckling
height is fixed at 0.16 Å in all artificially buckled sheets.

Flat
Sheet Ekin Ees Exc Etot n̄

T(0) 57.34 -104.22 -30.12 -77.00 8.85
Z(1/12) 56.17 -103.49 -29.90 -77.22 8.74
A(1/9) 55.79 -103.25 -29.81 -77.27 8.71
B(1/7) 55.16 -102.76 -29.63 -77.23 8.59
C(1/6) 54.50 -102.22 -29.47 -77.19 8.47

Buckled
Sheet δEkin δEes δExc δEtot δn̄

T(0) -1.62 +0.65 +0.74 -0.10 -2.49
Z(1/12) -0.80 +0.33 +0.35 -0.01 -1.14
A(1/9) -0.27 +0.11 +0.12 +0.01 -0.46
B(1/7) -1.34 +0.57 +0.69 +0.02 -2.33
C(1/6) -0.78 +0.31 +0.43 +0.01 -1.42

Fully relaxed
Sheet δEkin δEes δExc δEtot δn̄

T(0) -4.10 +1.74 +1.31 -0.20 -3.73
Z(1/12) -0.44 +0.19 +0.13 -0.01 -0.42
A(1/9) - - - - -
B(1/7) - - - - -
C(1/6) - - - - -

density of the delocalized mobile electrons. However, for our purposes, it is a reasonable

definition in which it shows monotonic behavior versus η (see below).

We first investigate how Ekin, Exc and Ees behave for flat sheets. Figure 3.15 shows

Ekin, Exc, Ees versus η for a large set of flat 2D boron sheets. We can see that Ekin, Exc

and Ees all change smoothly and monotonically with η, or equivalently with 1-η. Because

the nearest-neighbor distances in the different boron sheets are almost identical [6], for

these flat sheets 1-η also changes monotonically with the average electron density n̄ as

shown in Table 3.3. Hence, Ekin, Exc and Ees all change monotonically with n̄ as one

would expect for an electron gas.

We now turn to the buckling effect for these sheets. Table 3.3 shows how Ekin, Exc and
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Ees change when each sheet buckles. For the five sheets investigated, Ekin always decreases

and Exc and Ees always increase due to buckling. For those sheets that prefer to buckle,

sheets T(0) and Z(1/12) in Table 3.3, the decrease in Ekin dominates over the other two

energy increases. Therefore, the buckling is driven by kinetic energy lowering, and that

kinetic energy lowering wins over the increase of Ees + Exc for η < 1/9. In addition, we

see that n̄ is decreased by buckling, and lowering of density is consistent with lowering

of kinetic energy (a smaller Fermi momentum or Fermi energy) and higher Ees and Exc

(larger average charge separation). Intuitively, if we view the sheet as a continuous film,

then surface buckling can be expected to increase the surface area which then rationalizes

the decrease in electron density: the same number of electrons are spread over a sheet

with increased surface area due to the corrugation. However, since there is no rigorous

definition of surface area at the discrete atomic scale, this picture serves primarily as an

aide to understanding and visualization.

What we have found is that buckling reduces the electron density, which in turn lowers

the kinetic energy and thus drives the buckling. The kinetic energy is larger and more

dominant for higher electron densities (smaller η) so that those sheets will have a stronger

tendency to buckle. Most importantly, this picture naturally explains the asymmetry in

the buckling behavior about η = 1/9. Since buckling reduces n̄, and n̄ and 1 − η are

in monotonic relation, decreasing n̄ effectively increases η. Because the binding energy

versus η (see Figure 3.2) has a maximum at η = 1/9, sheets with η < 1/9 can increase

their stability by buckling, while those with η > 1/9 would decrease their stability if they

buckled.

The above results clearly show that it is the lowering of the kinetic energy that drives

the initial stages of buckling in boron sheets. We may wonder if this finding is more

general. After all, for the small buckling amplitudes used above, it can be argued that

the geometry and chemical bonding modes barely change, but in the final fully buckled

structure this may not be the case. For example, the fully buckled triangular sheet has

strong two-center-type bonding and the bond length along that direction are significantly

reduced [36, 37], pointing to basic changes in bonding topology and possibly a decrease in

surface area in the intuitive picture above. However, our results show that even in fully
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relaxed buckled sheets, the kinetic energy is still the energetic driving force: Table 3.3

shows that for the triangular T(0) and the Z(1/12) sheets, the kinetic energy and average

electron density are always lowered compared to their flat counterparts — and this holds

for other sheets we have investigated. Furthermore, as we will show in Sec. 3.3.2, the

same kinetic energy reduction holds for buckled single-walled boron nanotubes as well.

Therefore, we believe that kinetic energy reduction is most probably the key driving force

that drives the buckling of boron sheets and nanotubes.

3.2 Double-layered boron sheets

For boron nanostructures, strong interlayer bonds can be formed between two planar or

quasi-planar parts stacking perpendicular to the nominal structure plane [29, 41]. Due to

these interlayer bonds, multi-layered boron sheets can be more energetically favorable than

the most stable single-layered boron sheet A(1/9) (see below). When creating boron nanos-

tructures such as nanotubes by folding, wrapping, or cutting boron sheets, it is possible

that multi-layered boron sheets will be the parent structures under certain growth condi-

tions. Therefore, studying multi-layered boron sheets, where the simplest cases are those

of double-layered sheets, can be relevant to understanding experimentally grown structures

as well as to helping us understand the general properties for boron nanostructures.

Below, we find that the knowledge we have gained concerning the buckling of single-

layered boron sheets is invaluable in clarifying and rationalizing the tendencies for buckling

and formation of interlayer bonds in double-layered systems. In this work, we limit our-

selves to double-layered sheets, which already create a large class of systems to study and

analyze. Our primary aim is to obtain a basic understanding of the buckling and bonding

behavior of boron sheets when they are in close proximity. An extension of these results

to multi-layered structures is beyond the scope of the present work.

In this work, the naming system for boron sheets has been using a letter followed

by the η value to designate a single-layered sheet. For double-layered boron sheets dis-

cussed mainly in this section, we name a sheet using the word ’double’ followed by the

name of the corresponding precursor single-layered sheet. For instance, double-B(1/7)

refers to a double-layered boron sheet made from stacking two identical B(1/7) sheets [see
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Figure 3.16: Illustration of structures of double-layered boron sheets (top and sideviews)
for both (a) the η < 1/9 double-Y(1/16) sheet and (b) the η > 1/9 double B(1/7) sheet.
The red solid lines in the top views show the 2D primitive unit cells. The green squares in
the top view of (a) mark the atoms that form interlayer bonds in a primitive cell.

Figure 3.16(b)].

To study double-layered boron sheets, we proceed in the following manner: we take

two (primitive cell) copies of a particular 2D boron sheet and place the two copies some

initial distance apart (≈ 3 Å). We then create some random perturbations of all atomic

positions and perform a full relaxation. After following this procedure for a large number

of such double-layered structures, we discover that a pair of sheets with η < 1/9 tends to

make strong interlayer bonds. On the other hand, two sheets with η >= 1/9 do not: the
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Table 3.4: Energetic and geometric properties of five double-layered boron sheets con-
structed from pairs of T(0), Y(1/16), Z(1/12), A(1/9) and B(1/7) sheets (from LDA). The
first three double-layer sheets form interlayer bonds while the other two do not. Ebond

(in eV/atom) is the reduction in energy (i.e. binding energy) of the double-layer sheet
compared to the two separate constituent single-layer sheets. dbond (in Å) is the interlayer
bond length. Nbond is the number of interlayer bonds per atom formed between the two
sheets. ∆Eα (in eV/atom) is the energy of the double-layer system compared to the op-
timal single-layered A(1/9) (α) sheet. dinter (in Å) is the distance between two nominal
sheet planes defined by boron atoms not making interlayer bonds.

Sheets η Ebond dbond Nbond ∆Eα dinter

T(0) 0 -0.30 1.70 1/8 -0.03 3.37
Y(1/16) 1/16 -0.24 1.70 4/30 -0.12 3.33
Z(1/12) 1/12 -0.19 1.69 3/22 -0.135 3.23
A(1/9) 1/9 -0.02 - 0 -0.02 3.49
B(1/7) 1/7 -0.03 - 0 +0.01 3.60

two single-layered sheets stay quite flat, are weakly bound, and stay apart at a relatively

large distance of typically 3.5 to 3.6 Å. (This separation likely correlates with weak van

der Waals interactions which are not correctly captured by LDA or GGA calculations;

however, our main point is that the interactions are quite weak and no interlayer bonds

are formed, which we believe is a robust result even if van der Waals interactions were

included correctly.) Two typical examples are shown in Figure 3.16. When interlayer

bonds form, the interlayer bond length is about 1.7 Å which is quite typical of the lengths

in 2D boron structures.

The above behavior is simply explained from the buckling behavior of single-layered

boron sheets: a pair of sheets will form interlayer bonds only when each sheet alone prefers

to buckle in the first place (i.e., both sheets have η < 1/9). The main requirement is

to properly align the sheets so that the geometry allows the buckling atoms to make

interlayer bonds with each other. As a simple further test of the relation between buckling

and formation of interlayer bonds, we know that the optimally stable A(1/9) sheet does

not normally buckle but can be forced to buckle when under compression. Therefore,

we put 1% of isotropic compression in the xy plane on a pair of A(1/9) sheets in close

proximity and find that the sheets buckle, that they form interlayer bonds of about 1.7 Å

in length, and that the bonding pattern is the one dictated by the buckling pattern of the

single-layered sheet under compression (see Figure 3.14).
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Figure 3.17: (a) Band structure of the double-Z(1/12) sheet: the Fermi level is set to zero,
which is illustrated by the blue dashed line. (b) Structure of the double-Z(1/12) sheet
(sideview & topview). Red solid lines show the unit cell and green squares mark the atoms
making interlayer bonds in one unit cell.

Table 3.4 shows a subset of our ab initio results for double-layered boron sheets built

from pairs of T(0), Y(1/16), Z(1/12), A(1/9) and B(1/7) sheets. The first three double-

layered sheets, made from T(0), Y(1/16) and Z(1/12), form interlayer bonds with the bond

lengths close to 1.7 Å and thus strongly stabilize (i.e. bind) the double-layer system. The

energy reduction due to the interlayer bonding, Ebond in the Table, is significant and gets
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larger for smaller η since more interlayer bonds form. As a result, we find that the most

stable double-layered sheet in our library occurs at η = 1/12 for the double-Z(1/12) case.

This double-layered system is 0.135 eV/atom more stable than the optimal single-layered

A(1/9) sheet and is thus the most stable sheet structure we have found to date. Figure 3.17

shows the atomic structure and the electronic band structure of the double-Z(1/12) sheet.

In contrast to the single-layered sheets which are all metallic, the double-Z(1/12) sheet is

semiconducting with a reasonably large LDA band gap of 0.8 eV. Speaking figuratively,

the formation of the interlayer bonds has created bonding and anti-bonding combinations

of the states that used to be at the Fermi level, pushed them above and below EF , and

thus created a semiconducting system. Due to this stability, boron nanotubes could in

fact originate from this double-Z(1/12) sheet. However, depending on growth conditions

during experiment, it might be possible that either single or double layered tubes will

be preferred, thus making the nanotubes either metallic or semiconducting. Some of the

aspects addressable from first principles are discussed in the following sections.

3.3 Single-walled boron nanotubes

We now turn to single-walled nanotubes made from single-layered 2D boron sheets, and

we investigate primarily their curvature energies and surface buckling. We name a boron

nanotube (single-walled or double-walled) following the established standard for carbon

nanotubes: an (n,m) nanotube has its chiral vector Ch = n× a1 +m× a2, where a1 and

a2 are the two primitive lattice vectors of the corresponding sheet structure [87]. We take

the extended direction of the nanotube to be along the z direction. The curvature energy

of a nanotube, Ecurv, is defined as

Ecurv = Etube − Esheet, (3.16)

where Etube is the energy per atom of that nanotube, and Esheet is the energy per atom

of the corresponding sheet structure. Therefore, Ecurv is the energy cost of rolling up the

sheet into a tubular structure.

A priori, the number of possible structures for single-walled nanotubes is enormous.

However, we know that the A(1/9) sheet is the most stable 2D single-layered boron sheet,
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so that for large diameter nanotubes with vanishing curvature, we are assured that the

surface structure of the most stable single-walled nanotubes will be that of the A(1/9)

structure. Based on this fact, we simply constrain all the single-walled nanotubes we

study to be built from the A(1/9) structure regardless of diameter. In principle, one can

investigate the question of whether single-walled nanotubes made from sheets other than

A(1/9) might be stabilized due to curvature effects for small diameters, but this question

is beyond the scope of our present work.

The optimal boron sheet A(1/9) has a energy gap for the in-plane σ states and a

finite density-of-states for the out-of-plane π manifold [6, 12]. Thus, the conductivity of

the A(1/9) sheet comes only from out-of-plane π states. Therefore, large-diameter single-

walled nanotubes built from A(1/9) will always be metallic since the electronic structures

are determined by the zone-folding technique [87, 88]. However, it has been found that

small-diameter boron nanotubes built from the A(1/9) sheet are semiconducting, with

energy gaps around a few tenth of eVs, due to curvature and surface buckling [12, 13].

Below, we investigate in detail these curvature effects on the energetics and electronic

structure of the single-walled nanotubes.

3.3.1 Curvature

Figure 3.18 shows how the curvature energy Ecurv changes with tube diameter D for a

wide range of such achiral single-walled nanotubes [i.e., (n,0) and (n,n) nanotubes] created

from wrapping the A(1/9) sheet. The data from these two different classes of nanotubes

lie almost exactly on the same smooth curve, suggesting that the curvature energy of this

type of single-walled nanotubes does not depend strongly on chirality. Namely, Ecurv is

determined by the nanotube diameter D, a result that is consistent with previous work on

this problem [12, 13].

As is the case for carbon nanotubes [89, 90], we expect from elastic theory that Ecurv

should have the following simple dependence on D for large D:

Ecurv =
C

D2
, (3.17)

where C is a constant. By fitting all the data in Figure 3.18, we obtain C=4.28 eVÅ2/atom,
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Figure 3.18: Curvature energies Ecurv in eV/atom of single-walled boron nanotubes made
of the A(1/9) sheet versus diameter D in Å(from LDA). Green ’�’ are for (n,0) nanotubes
with n ranging from 3 to 14. Magenta ’�’ are for (n,n) nanotubes with n ranging from 3
to 9. The indigo solid line is a single-parameter 1/D2 fit to the combined data set.

slightly larger than the value C=3.64 eVÅ2/atom in previous work [13], which we believe

is due to the fact that the LDA we use usually results in stronger bonding than GGA-

PBE. For comparison, carbon nanotubes have C=8.56 eVÅ2/atom [89, 90]. Therefore, for

a given diameter, it is easier to curve the A(1/9) sheet than to curve graphene to create

single-walled nanotubes.

3.3.2 Surface buckling

Since sheet A(1/9) is metallic with a large density of states at its Fermi energy coming

from the out-of-plane π manifold, simple zone-folding leads us to expect that all boron

nanotubes made of sheet A(1/9) are metallic. However, boron nanotubes with small radii

are actually semiconducting due to the fact that tube surfaces become buckled under the

large curvature necessitated by the small diameter. This buckling has been attributed to

rehybridization in the σ-π manifold [12, 13].

As we explained in Sec. 3.1.4, sheet A(1/9) prefers to stay flat when it is stress free

but will buckle under compression. When it buckles, the two boron atoms in each unit
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Figure 3.19: Structures (sideview and topview) and bandstructures of the single-walled
boron nanotube (3,0) with flat (left) and buckled (right) surfaces (from LDA). Red dashed
lines show the Fermi energies.

cell that are in the triangular regions will move out of the sheet plane, with one going

up and the other going down (see Figure 3.14). We find that when the A(1/9) sheet is

curved to form nanotubes, the same buckling pattern is observed: the two atoms in the

triangular regions become inequivalent, with one moving radially inwards and the other

moving radially outwards. Due to this surface buckling, small-diameter single-walled boron

nanotubes become semiconducting. Figure 3.19 shows the single-walled nanotube (3,0) as

an example. This buckling and semiconducting behavior is only relevant for small diameter
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Figure 3.20: Band gap Eg (in eV) versus tube diameter (top, in Å) and buckling amount
(bottom, in Å) for (n,0)- and (n,n)-type A(1/9)-derived single-walled boron nanotubes
calculated with both LDA and GGA.

nanotubes: as Figure 3.20 shows, the band gap vanishes for diameters larger than ∼ 20 Å

[12, 13]. We also see that for a fixed diameter, the band gaps for (n,0) and (n,n) nanotubes

can be significantly different.

As our results in Figure 3.20 show, the LDA and GGA result in systematically different

band gaps for these single-walled boron nanotubes with results that differ by ∼ 0.1-0.2 eV
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Table 3.5: Energetic, structural, and electronic data for (n, 0)- and (n, n)-type single-walled
boron nanotubes derived from sheet A(1/9) based on LDA and GGA calculations. The
table shows total energy differences δE (in meV/atom) between flat- and buckled- surfaced
cases of a nanotube, (average) nanotube diameter D (in Å), buckling amplitude Abuckle (in
Å), and the nanotube band gap Egap (in eV).

LDA GGA
Tube δE D Abuckle Egap δE D Abuckle Egap

(3,3) 2.71 8.20 0.43 0.10 6.57 8.3 0.53 0.18
(4,4) 1.30 10.9 0.29 0 4.19 11.1 0.46 0.20
(5,5) 0.68 13.7 0.24 0 2.73 13.8 0.39 0.09
(6,6) 0.35 16.4 0.21 0 1.95 16.5 0.37 0.10
(8,8) 0.32 21.8 0.01 0 1.39 21.9 0.01 0
(3,0) 9.81 4.40 0.58 0.70 14.85 4.73 0.64 0.70
(4,0) 7.16 6.06 0.51 0.62 11.38 6.31 0.57 0.75
(5,0) 5.12 7.70 0.44 0.51 8.86 7.89 0.52 0.62
(6,0) 3.13 9.33 0.37 0.35 6.32 9.47 0.47 0.47
(8,0) 0.50 12.2 0.30 0.16 3.88 12.6 0.42 0.34
(10,0) 0.03 15.7 0.02 0 2.29 15.8 0.03 0

for the same nanotube index. However, since LDA and GGA give very similar band gap

predictions for bulk materials, the difference is most likely not due to the treatment of

exchange correlation but instead coming from a structural difference. In fact, the GGA

generally predicts a larger surface buckling for single-walled nanotubes than LDA (see

Table 3.5). Therefore, we plot the same data versus the buckling amplitude instead of

diameter in Figure 3.20 — the buckling amplitude is the difference in radial distance of

the two types of buckled triangular atoms. We see an approximate collapse of the data on

a single curve for both (n,0) and (n,n) nanotubes. Therefore, we believe that to leading

order, the band gap for a single-walled nanotube is determined by its buckling amplitude,

while the relation of the buckling amplitude to the diameter is more complex but secondary.

To understand the surface buckling in more detail, we have compared the properties of

the buckled ground-state of a single-walled nanotube to the same nanotube but with a flat

surface. The flat structure is constructed as follows: we know that the atoms that buckle

are those corresponding to the atoms of the parent A(1/9) sheet that are in a triangular

region. The symmetry breaking leading to the ground state has one of these atoms move

inwards and the other move outwards. To generate the flat structure, we simply force

these two atoms to remain equivalent by doing a constrained atomic relaxation whereby
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Table 3.6: Kinetic energy (Ekin), exchange-correlation energy (Exc), electrostatic energy
(Ees), total energy (Etot) for flat- and buckled-surfaced single-walled boron nanotubes
made of sheet A(1/9) based on LDA calculations using SIESTA. For flat cases, energies
are in eV/atom. For buckled ones, we show percentage changes of the energies compared
to the corresponding flat values (’+’ for increase, ’-’ for decrease).

Flat-surfaced Buckled-surfaced
Tube Ekin Exc Ees Etot δEkin δExc δEes δEtot

(3,3) 54.90 -29.74 -102.16 -77.00 -0.14 0.05 0.06 -0.007
(4,4) 54.99 -29.76 -102.25 -77.02 -0.09 0.03 0.04 -0.004
(5,5) 55.06 -29.78 -102.31 -77.03 -0.09 0.03 0.04 -0.002
(6,6) 55.05 -29.78 -102.31 -77.04 -0.07 0.02 0.03 -0.001
(8,8) 55.18 -29.82 -102.41 -77.05 -0.28 0.16 0.11 0
(3,0) 54.73 -29.68 -101.92 -76.87 -0.28 0.10 0.11 -0.013
(4,0) 54.86 -29.72 -102.09 -76.95 -0.22 0.06 0.09 -0.009
(5,0) 54.92 -29.74 -102.17 -76.98 -0.19 0.05 0.08 -0.007
(6,0) 54.99 -29.76 -102.24 -77.01 -0.18 0.06 0.08 -0.004
(8,0) 55.03 -29.77 -102.29 -77.03 -0.14 0.05 0.06 -0.001
(10,0) 55.06 -29.78 -102.32 -77.04 -0.01 0.00 0.01 0

we constrain these two atoms to have the same radius measured from the nanotube axis. As

expected, for flat surfaces, the single-walled boron nanotubes are all metallic regardless of

diameter (e.g., see (3,0) nanotube in Figure 3.19). Table 3.6 shows the changes of different

components of the total energy of buckled single-walled boron nanotubes compared to flat

ones. For all nanotubes, buckling is always accompanied by a decrease in kinetic energy

Ekin and increases in Exc and Ees, the same as for 2D boron sheets. This strongly suggests

that surface buckling in single-walled boron nanotubes is also driven by lowering of kinetic

energy.

The total energy differences between flat and buckled nanotubes are found in Tables 3.6

and 3.5. The energy differences per atom are extremely small and decrease to zero rapidly

with increasing nanotube diameter: they are at most 15 meV/atom for the smallest diam-

eters. We note that the GGA systematically favors buckled surfaces compared to the LDA

and predicts larger energy gains from buckling. Given the extremely small magnitude of

these energy differences, it is not clear whether the LDA or GGA is accurate enough to

capture them correctly. In fact, a recent work [91] has investigated the geometry of a fi-

nite (5,0) single-walled boron nanotube segment using the presumably more accurate MP2

method [92] and concluded that no buckling exists on the surface of this finite nanotube
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because the buckled configuration has a higher energy. This is in contrast to our results

here and previous LDA and GGA-based findings [12, 13]. Hence, we believe that more

caution is required regarding the LDA/GGA predictions for such small energy differences

and that further studies are required to determine the correct ground-state geometries and

electronic properties of single-walled boron nanotubes made from the A(1/9) sheet. How-

ever, if surface buckling does in fact take place, the generic monotonic trend of decreasing

buckling and decreasing gap with increasing diameter is most likely a robust result. In

the next section, we discuss fluctuations in surface buckling assuming that the LDA/GGA

predictions for the buckling are valid.

3.3.3 Fluctuations in buckling

The fact that small diameter nanotubes constructed from the A(1/9) sheet are semicon-

ducting is a symmetry breaking phenomenon: the surface of the nanotube buckles in

a way that two originally equivalent atoms (per surface unit cell) become inequivalent

whereby one moves radially inwards and the other outwards. The existence of two distinct

but symmetry-related minima, i.e. a degenerate ground state, allows for the possibility

of topological soliton fluctuations at finite temperatures that connect one minimum to

the other. A topological soliton represents a stable, non-uniform distribution of an order

parameter (surface buckling here) that occurs in a system with several degenerate ground-

state configurations: the soliton connects two regions of the system which lie in distinct

minima; topological solitons are stable and cannot easily decay because no continuous

transformation can map the system back to a trivial uniform distribution in a single min-

imum [93]. Because the region of the soliton joining the two minima will have a relatively

flat nanotube surface, it will be metallic and thus the nanotubes will have semiconducting

regions separated by metallic islands. We examine the likelihood of this possibility below:

the main motivation is that the energy difference between flat and buckled configurations

is quite small so thermal fluctuations might play an important role.

Figures 3.21 and 3.22 show typical results for the energy and band gap of (3,0) and

(5,0) nanotubes as a function of buckling amplitude. Figure 3.23 shows the structure of

the buckled (5,0) nanotube and also identifies the atoms undergoing the buckling motion.

For intermediate buckling amplitudes, the ground-state buckled configuration and the flat
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Figure 3.21: Total energy per nanotube primitive cell (top, in eV) and band gap (bottom,
in eV) versus buckling amplitude (in Å) for the 48-atom primitive cell of the single-walled
boron nanotubes (3,0) (from LDA). Red squares and green circles are the calculated data.
Black solid curves are guides to the eye.

configuration are used as endpoints and the intermediate configurations are linearly inter-

polated between them. The reflection symmetry of the plots in Figure 3.21 and 3.22 is

a consequence of the symmetry breaking in the system. The band gap versus bucking is

strongly nonlinear and becomes zero for finite small buckling amplitude: therefore, merely

having some buckling does not guarantee semiconducting behavior; instead some finite

threshold value must be crossed.
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Figure 3.22: Total energy per nanotube primitive cell (top, in eV) and band gap (bottom,
in eV) versus buckling amplitude (in Å) for the 80-atom primitive cell of the single-walled
boron nanotubes (5,0) (from LDA). Red squares and green circles are the calculated data.
Black solid curves are guides to the eye.

For convenience, we will focus on (n, 0) nanotubes. As Figure 3.23 demonstrates for

the example of the (5,0) nanotube, all buckling atoms in a (n, 0) nanotube lie on rings

about the circumference on the nanotube. Any given ring can be classified by one of

three labels: (‘i’) the ring contains inward buckling atoms, (‘o’) the ring contains outward

buckling atoms, or (‘-’) the ring does not contain buckling atoms. For the two ground

states, the sequence is either the repeated ‘io-’ pattern or the repeated ‘oi-’ pattern. An
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Figure 3.23: Structure of single-walled boron nanotube (5,0): (a) top view, (b) side view
and (c) angled view. Big blue (dark) balls are the boron atoms moving outward, big yellow
(light) balls show the atoms moving inward and small gray balls show the rest atoms that
do not buckle.

abrupt soliton going from one to the other minimum is denoted by ‘...io-io-oi-oi-...’. Of

course, the transition region joining the ‘io-’ and ‘oi-’ minima will generally have some

width in order to lower the energy, as we detail below.

We extract soliton energies from first principles calculations as follows. For the (3,0)

and (5,0) nanotubes, we chose unit cells that were two or three times the respective prim-

itive cell. Starting from the repeated ‘io-’ ground state, we created abrupt solitons of the

‘io-oi’ and ’oi-io’ variety by fixing the buckling atoms into the appropriate positions and

relaxing all other atomic coordinates. Due to periodic boundary conditions, two equivalent

solitons are created in the unit, one ‘io-oi’ and the other ’oi-io’. To allow for wider solitons,

we allowed some of the buckling atoms to relax: for example, for a triple-long nanotube,

starting from the abrupt ‘io-io-io-oi-oi-oi’ state, we relaxed to the ‘io-io-xx-oi-oi-xx’ con-

figuration where all the atoms in the rings denoted by ‘x’ are allowed to fully relax. An

even wider soliton would be ‘io-xx-xx-oi-xx-xx’. Table 3.7 contains our first principles LDA

results for the energies of the various soliton configurations. Widening the solitons does

reduce the energy, but the reduction is most significant when the first pair of buckled rings

are allowed to relax. This data suggest that the solitons would be at most four buckling

rings wide.

To help us model longer unit cells and other (n,0) nanotubes, we fit our results to a

simple model. First, we note that the buckling configuration is specified by the amplitude

of a unit of three neighboring rings. For example, ‘io-’ has optimal positive buckling, ‘oi-’
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Table 3.7: LDA energy costs for soliton configurations of (3,0) and (5,0) single-walled
A(1/9)-derived nanotubes. The “Configuration” column describes the unit cell used and
its geometry (see text for the ‘i’, ‘o’, ‘-’, and ‘x’ nomenclature). Esol is the energy per
soliton in eV above the ground-state for that configuration. K is the extracted spring
constant for the simplified model of Eq. (3.18) in eV/Å2.

Nanotube Configuration Esol K

(3,0) io-io-io-io 0
(3,0) io-io-oi-oi 1.25 1.89
(3,0) io-xx-oi-xx 0.86 1.79
(3,0) io-io-io-io-io-io 0
(3,0) io-io-io-oi-oi-oi 1.39 2.04
(5,0) io-io-io-io 0
(5,0) io-io-oi-oi 0.92 2.28
(5,0) io-xx-oi-xx 0.60 1.98
(5,0) io-io-io-io-io-io 0
(5,0) io-io-io-oi-oi-oi 0.96 2.58
(5,0) io-io-xx-oi-oi-xx 0.64 2.34
(5,0) io-xx-xx-oi-xx-xx 0.57 2.39

has optimal negative buckling, and ‘xx-’ has an intermediate value. Let j index each such

three ring unit and Aj be its buckling amplitude. The LDA calculations on a primitive

cell of a nanotube provide us with the energy Ecoh(A) of coherently buckling the entire

length of the nanotube by amplitude A: this is what is shown in Figure 3.21 and 3.22.

When there are fluctuations in buckling, in addition to energy changes due to the fact

that Ecoh(A) depends on A, there will also be energy costs due to the non-uniformity of Aj

along the nanotube, which we model by a nearest-neighbor spring model. Thus our model

is

Etot =
�

j

Ecoh(Aj) +
K

2

�
Aj+1 −Aj

�2
, (3.18)

where K is the spring constant for Aj variations along the length. Using this model

together with the ab initio data of Table 3.7 and the actual Aj values from the associated

structures, we back out K for each case and list them in Table 3.7. Despite the simplicity

of the model, there is a general agreement for the extracted K: K ≈ 1.8 eV/Å2 for the

(3,0) nanotube and K ≈ 2.3 eV/Å2 for the (5,0) nanotube. Based on this, we assume that

K ≈ 2 eV/Å2 is a reasonable value of K for all (n,0) nanotubes. To extend this model to

all (n,0) nanotubes, we observe that the function Ecoh(A) for the (3,0) and (5,0) nanotubes
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Table 3.8: Soliton energies for the (n,0) nanotubes in eV/soliton based on the model of
Eq. (3.18) with K = 2 eV/Å2. The predictions based on LDA and GGA are presented
separately.

LDA GGA
Nanotube Esol Esol

(3,0) 0.73 0.97
(4,0) 0.62 0.85
(5,0) 0.50 0.75
(6,0) 0.36 0.62
(8,0) 0.14 0.50
(10,0) 0.001 0.003

is fit quite accurately by a fourth-order polynomial Ecoh(A) = Ecoh(0) + gA
2 + hA

4; we

extract the two constants g and h by reproducing the two important data for each (n,0)

nanotube in Table 3.5: that the minima occur at A = ±Abuckle and that the buckled

configurations at ±Abuckle are δE lower in energy than the flat one at A = 0.

Solving for solitons of the energy function of Eq. (3.18) is straightforward. We consider

a 100-long chain of rings, constrain the left 30 to be in the ‘io-’ configuration, the right

30 to be in the ’oi-’ configuration, and relax the interior 40 rings to minimize Etot. The

resulting solitons turn out to be quite narrow, typically 2-4 buckling rings at most. The

resulting energies per soliton from this model for a range of (n,0) nanotubes are shown in

Table 3.8. We note that the LDA-based soliton energies are smaller than the GGA-based

ones simply because, as Table 3.5 shows, the LDA predicts a smaller energy difference

between the flat and buckled configuration and a smaller buckling amplitude.

The results in Table 3.8 show that, even at room temperature, the average spacing

between solitons — given by exp(Esol/kBT ) lattice spacings — is quite large even for

the semiconducting (8,0) nanotube within LDA: for the (8,0), the average soliton-soliton

spacing is some 200 unit cells. Although solitons are much more closely spaced for the

(10,0) or larger tubes, these are already metallic nanotubes (see Table 3.5). Therefore, the

soliton fluctuations are sparse enough that, for the nanotubes with semiconducting ground

states, most of the nanotube length in practice will be composed of semiconducting regions

separated by rare and narrow metallic segments.

The model of Eq. (3.18) also allows us to estimate the effect of thermal fluctuations
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about each buckled configuration on the band gap of the nanotube: Figures 3.21 and 3.22

show that as the buckling amplitude fluctuates about its minimum value, the band gap

values for the nanotube generally decrease since they are close to maximal at the optimal

buckling configuration. However, classical Monte Carlo sampling using Eq. (3.18) reveals

that the fluctuations for the semiconducting nanotubes — even up up to (8,0) — only

create a modest reduction of the average band gap value during the sampling.

Summarizing this section, we find that although thermal or soliton fluctuations are

possible, the energetics of the semiconducting single-walled nanotubes prevent them from

modifying the nanotube electronic properties significantly from those of the predicted

ground-state structures. Namely, even including thermal fluctuations at room temper-

ature, the single-walled nanotubes that are predicted to have a semiconducting ground

state should in fact be semiconducting over most of their lengths.

3.4 Double-walled boron nanotubes

Although single-walled boron nanotubes show very interesting properties such as a metal-

insulator transition versus tube diameter, given that double-layered boron sheets are more

stable than single-layered ones, we should consider the question of whether single- or

double-walled nanotubes are the proper ground state for boron nanotubes of small to

medium diameter. As per Sec. 3.2, the double-Z(1/12) sheet is 0.135 eV/atom more stable

than the most stable single-layered A(1/9) sheet. Thus, large-diameter double-walled

nanotubes made of double-Z(1/12) are guaranteed to be more favorable than single-walled

ones. However, smaller diameter double-walled nanotubes have large curvatures, which

makes it harder to predict the structure and properties ahead of time.

The aim of this section is to study the structures, energetics and electronic properties

of double-walled boron nanotubes and to compare them to single-walled ones as a function

of diameter. Here, we will consider three classes of double-walled nanotubes: a) the most

obvious structures are obtained by creating double-walled nanotubes by rolling up the

highly stable double-Z(1/12) sheet as it is; b) double-walled nanotubes made from two

coaxial single-walled A(1/9)-derived nanotubes of different diameters; and c) double-walled

nanotubes constructed from coaxial single-walled Z(1/12)-derived nanotubes of different
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Figure 3.24: Structures of nanotubes (a) (12,0) and (b) (20,0) made of the double-Z(1/12)
sheet. The first column shows the structure of each nanotube viewed down its axis. In the
next four columns, we show the geometry of the inner and outer walls (surfaces) separately:
the second and third columns show a side and angled view of the inner surface, and the
fourth and fifth columns show the side and angled view of the outer surface. To help the
reader, inner surface atoms are shown in gray (darker) while outer surface atoms are shown
in yellow (lighter). In the fifth row, red solid lines mark an example of a structural “hole”
that is formed for the (12,0) nanotube on its outer surface due to broken boron-boron
bonds.

diameters. Clearly, these three possibilities do not exhaust all the possibilities for double

walled nanotubes, but we believe that they form a reasonable set of structures to study

for an initial orientation and investigation and have a high chance of including the actual

ground-state structure for double-walled boron nanotubes.

3.4.1 Double-walled nanotubes from the double-Z(1/12) sheet

We first consider double-walled boron nanotubes constructed by rolling up the most stable

double-layered Z(1/12) sheet. Although this sheet is the most stable in our library, it is

expected to be quite stiff under curvature compared to any single-layered sheet because its

inner and outer walls have the same number of atoms but are geometrically forced to have

different diameters (radii of curvature) which stretches the outer surface, compresses the

inner surface, and strains the interlayer bonds. Figure 3.24 shows two examples of such

nanotubes.

First principles results support this expectation. Figure 3.25 shows the curvature energy

versus outer nanotube diameter for such double-walled nanotubes. The curvature energies
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Figure 3.25: Red squares are the curvature energies Ecurv (in eV/atom) versus outer wall
diameter Dout (in Å) for double-walled nanotubes made from rolling the double-Z(1/12)
sheet. The blue solid line is the result of a 1/D2

out fit to all the data excluding the anomalous
(11,0) and (12,0) cases (those two show structural collapse due to high curvature as per
Figure 3.24). The green dashed line shows the curvature energies for single-walled A(1/9)-
derived nanotubes with an added constant energy of 0.135 eV/atom to account for the
energy difference between the A(1/9) and double-Z(1/12) sheets. The two curves cross at
Dout ≈ 40 Å. All data are calculated with SIESTA with the LDA approximations.

are about an order of magnitude larger than those of carbon nanotubes and single-walled

boron nanotubes of the same diameter. It turns out that due to the very high curvatures,

some of the bonds on the outer surfaces of the smallest-diameter double-walled nanotubes

of this class break to release tension. As shown in Figure 3.24, many boron-boron bonds

in the outer surface of the (12,0) nanotube are broken, forming “holes” on that surface,

while for the (20,0) nanotube, the outer surface has the same geometry as the Z(1/12)

sheet with no broken bonds. For the smallest diameter nanotubes we have considered of

this class, namely (11,0) and (12,0), this strain release mechanism tends to reduce the

curvature energies below the expected elastic trend of a 1/D2
out behavior (see Figure 3.25).

Electronically, all the double-walled nanotubes without broken bonds on the outer walls are

semiconducting, as expected from the semiconducting nature of the parent double-Z(1/12)

sheet.
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After excluding the anomalous (11,0) and (12,0) cases, we can fit the remaining data

in Figure 3.25 corresponding to Dout > 25 Å very well with the standard elastic formula

of Eq. (3.17). We obtain C=220 eVÅ2/atom. This is about 50 times larger than the

corresponding value for single-walled A(1/9)-derived nanotubes. By accounting for the

0.135 eV/atom difference in energy between the A(1/9) sheet and the double-Z(1/12)

sheet, we find a crossover in stability from single-walled to double-walled at a diameter of

Dout ≈ 40 Å. Hence, if we only compare these two classes of nanotubes, we would have the

following progression: the ground-state is double-walled and semiconducting for D > 40

Å and single-walled for D < 40 Å; as per the previous section, for 20 < D < 40 Å, the

single-walled tubes are metallic and for D < 20 Å they are semiconducting.

3.4.2 Double-walled nanotubes from two A(1/9) sheets

As we saw above, although double-Z(1/12) is the most stable sheet, its large curvature

energy makes it unfavorable for small diameter nanotubes. The large curvature cost is due

to the fact that we are constructing double-walled nanotubes by using two identical sheet

segments to construct the inner and outer walls. This in turn causes a great deal of strain

as neither surface can be optimized.

Obviously, one can reduce the strain greatly by constructing double-walled nanotubes

with inner and outer surfaces of differing diameters. Although one can attempt to choose

inner and outer surfaces (i.e. single-walled nanotubes) that are each optimal separately,

when putting them together to make a double-walled structure, one will sacrifice the opti-

mal bonding between the two that was guaranteed in the sheet structure when both were

the same sheet. Therefore, a priori it is not obvious in which diameter regimes such a pro-

gram will be successful, and we must rely on first principles results to provide guidance.

This situation is directly analogous to multi-walled carbon nanotubes [94] but with the

added complication that for boron strong inter-wall chemical bonds can form. This sec-

tion and the next investigate the properties of double-walled nanotubes constructed from

different-sized inner and outer single-walled nanotubes.

To begin, we will focus on double-walled nanotubes made from two single-walled

A(1/9)-derived nanotubes. The rationale is that the A(1/9) sheets normally don’t form

strong interlayer bonds, so that we may avoid or at least minimize the complication due
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to inter-layer bonding. Our approach to finding optimal double-walled structures is the

following: for a fixed chosen outer single-walled nanotube, we choose a number of inner

nanotubes, perform full relaxations of the resulting double-walled structures, and locate

the lowest-energy resulting combination. We then tabulate our results as a function of

the outer tube. Although other schemes are imaginable, we choose the outer diameter as

the independent variable primarily because current methods for fabrication of boron nan-

otubes [35] (as well as some non-boron nanotube growth methods) use a hollow cylindrical

physical template inside of which the nanotube is constrained to grow. Thus the exterior

diameter is the variable most obviously constrained by the experimental setup.

We label these double-walled nanotubes in the following manner: we provide the name

of the sheet used to create the nanotubes followed by a pair of (n,m) labels specifying

the outer and then inner nanotube. Therefore, A(1/9)-(8,0)-(4,0) refers to a double-walled

nanotube constructed from the (8,0) and (4,0) single-walled A(1/9)-derived nanotubes. For

computational convenience, we only consider double-walled tubes where inner and outer

nanotubes are both (n, 0) or both (n, n): this means both single-walled nanotubes are

commensurate and thus we can model the double-walled tubes using periodic boundary

conditions with relatively small periodic unit cells along the nanotube axis.

Table 3.9 presents the binding energy as a function of various inner-outer pairings for

A(1/9)-(n, 0)-(m, 0) and A(1/9)-(n, n)-(m,m) double-walled nanotubes. For both groups,

the tabulated data show that the optimal combinations are A(1/9)-(n,0)-(n-3,0) and A(1/9)-

(n, n)-(n-2,n-2). Geometrically, we find that bonds form between the inner and outer walls

in all the cases studied here. Figure 3.26 shows two such examples. The inter-wall bond

lengths are in the range of 1.7 to 1.9 Å. The distances between the walls of inner and outer

nanotubes are 2.8∼3.2 Å for A(1/9)-(n, 0)-(m, 0) type and 3.2∼3.6 Å for A(1/9)-(n, n)-

(m,m) type double-walled nanotubes, which are close to the interlayer distance of 3.49 Å

in the double-A(1/19) sheet (see Table 3.4). Electronically, the formation of the inter-wall

bonds changes the buckling pattern on both inner and outer surfaces and renders all the

double-walled nanotubes investigated here metallic. For example, Figure 3.26 shows the

relevant band structures in the case of A(1/9)-(6,0)-(3,0): the double-walled nanotube has

multiple bands crossing the Fermi energy even though the individual constituent (3,0) and
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Figure 3.26: (a) Atomic geometries of the double-walled boron nanotubes A(1/9)-(6,0)-
(3,0) and A(1/9)-(12,0)-(9,0) viewed down the nanotube (z) axis. See text for nomencla-
ture. (b) LDA bandstructure of the double-walled A(1/9)-(6,0)-(3,0) nanotube compared
to the constituent single-walled (3,0) and (6,0) cases. In all cases, the energies are shifted
so that the Fermi energies are at zero.

(6,0) nanotubes are semiconducting.

We note that our results are restricted to relatively small diameter double-walled nan-

otubes which have relatively large curvatures: the largest nanotube in our library is A(1/9)-

(18,0)-(15,0), which has an outer diameter of 28.9 Å and still has inter-walled bonds formed

between inner and outer nanotubes. Although we are presently unable to directly verify

the properties of larger diameter double-walled nanotubes through explicit calculations,

we can make some general arguments. For very large diameters, we expect weak curva-

ture effects, which means each nanotube is quite close to being a flat A(1/9) sheet. As

described in Sec. 3.2, two A(1/9) sheets stay flat and apart at a distance of 3.49 Å and do
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Table 3.9: Binding energy in eV/atom of double-walled boron nanotubes made from two
distinct coaxial single-walled A(1/9) nanotubes (calculated by SIESTA with the LDA ap-
proximation). We only consider cases where both inner and outer tubes are both of (n,0)
(up panel) or (n,n) (bottom panel) variety. Larger binding energies correspond to more
stable structures.

Outer (n,0)
12 11 10 9 8 7 6

10 7.37 - - - - - -
9 7.42 7.36 - - - - -
8 7.40 7.42 7.33 - - - -

Inner 7 7.39 7.40 7.42 7.32 - - -
(m,0) 6 7.37 7.39 7.39 7.42 7.37 - -

5 7.36 7.36 7.38 7.40 7.41 7.37 -
4 7.35 7.35 7.35 7.37 7.40 7.40 7.33
3 7.34 7.33 7.33 7.33 7.35 7.35 7.38

Outer (n,n)
8 7 6 5 4

7 7.41 - - - -
6 7.43 7.40 - - -

Inner 5 7.40 7.43 7.39 - -
(m,m) 4 7.37 7.39 7.45 7.39 -

3 - 7.36 7.38 7.43 7.39
2 - - 7.35 7.36 7.43

not form chemical bonds. Therefore, such large diameter double-walled boron nanotubes

will be similar to double-walled carbon nanotubes in that there will be weak van der Waals

interactions between the walls. We would expect the inter-wall distance to be quite close

to 3.49 Å. This fixed distance (i.e. fixed diameter difference) allows us to estimate that the

optimal combinations for large diameters will be A(1/9)-(n, 0)-(n-4,0) and A(1/9)-(n, n)-

(n-2,n-2) for (n, n). Notice that the optimal combination for large-diameter (n, 0) type

nanotubes is different from small-diameter ones. Electronically, we expect such double-

walled nanotubes to be metallic since each individual constituent single-walled nanotube

is metallic by itself.

We now compare the stability of these double-walled boron nanotubes to the A(1/9)-

derived single-walled ones. Figure 3.27 shows the total energy per atom versus outer

diameter for these two classes of nanotubes. In all cases studied here, the double-walled are

more stable than the single-walled variety, typically by 0.05 eV/atom. As the Figure shows,
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Figure 3.27: Total energies (from LDA) per atom versus outer diameter Dout for single-
walled A(1/9)-derived nanotubes (solid indigo curve), double-walled A(1/9)-(n,0)-(n-3,0)
for n=6–12 (green circles), and double-walled A(1/9)-(n,n)-(n-2,n-2) for n=4–8 (magenta
triangles). The red dashed line is the energy of a single flat A(1/9) sheet. The blue
dot-dash straight line shows the energy of the double-A(1/9) sheet.

the energies in both cases have essentially asymptoted to the respective sheet energies, so

we expect this relative stability to also hold for larger diameters. We note that the energy

of large diameter double-walled nanotubes asymptotes to the energy of the double-A(1/9)

sheet, which is some 0.03 eV/atom more stable than the single-walled A(1/9) sheet due

to weak inter-sheet interactions. There appears to be some chirality dependence to the

data as the A(1/9)-(n,n)-(n-2,n-2) are lower in energy than the A(1/9)-(n,0)-(n-3,0), but

at present we do not have a detailed understanding of this difference. In brief, this section

shows that for all diameters envisioned, double-walled A(1/9)-derived nanotubes will be

more stable than their single-walled varieties. Furthermore, we expect all the A(1/9)-

derived double-walled nanotubes to be metallic.

3.4.3 Double-walled nanotubes from two Z(1/12) sheets

We just have shown that double-walled nanotubes constructed from the A(1/9) sheet are

always more stable than single-walled ones for all diameters. Since the double-Z(1/12)
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Table 3.10: Binding energy in eV/atom of double-walled boron nanotubes made from two
coaxial single-walled Z(1/12) nanotubes (calculated by SIESTA with the LDA approxima-
tion). We only consider cases where both inner and outer tubes are (n,0) (left) or (n,n)
(right) type. Larger binding energies correspond to more stable structures.

Outer (n,0)
10 9 8 7 6

8 7.44 - - - -
7 7.49 7.45 - - -

Inner 6 7.43 7.47 7.43 7.27 -
(m,0) 5 - 7.41 7.47 7.42 7.28

4 - - 7.40 7.49 7.43
3 - - 7.32 7.41 7.47

Outer (n,n)
8 7 6 5

7 7.41 - - -
6 7.51 7.40 - -

Inner 5 7.35 7.49 7.40 -
(m,m) 4 7.33 7.34 7.48 7.43

3 - 7.33 7.33 7.47
2 - - 7.31 7.32

sheet is more stable than the double-A(1/9) sheet (see Table 3.4), we might further sta-

bilize double-walled nanotubes by pairing two coaxial single-walled Z(1/12) nanotubes of

different diameters.

We follow the same program as in the previous section for the A(1/9)-derived double-

walled nanotubes when constructing double-walled structures. Again, for simplicity, we

consider only the cases where both inner and outer nanotubes are both (n, 0) or both (n, n).

We employ the same nomenclature as the previous section, so that Z(1/12)-(n,m)-(p, q)

is a double-walled nanotube with outer single-walled tube (n,m) and inner single-walled

tube (p, q) and where both single-walled nanotubes are made from curving a Z(1/12) sheet.

Table 3.10 presents the binding energy for different combinations of inner and outer

nanotubes. The optimal combinations are (n,0)-(n-3,0) and (n,n)-(n-2,n-2). Figure 3.28

shows the structures of Z(1/12)-(9,0)-(6,0) and Z(1/12)-(8,8)-(6,6). In all cases we have

studied in this work, as exemplified by Figure 3.28, we find that interlayer bonds form

between the inner and outer surfaces with a bond length close to 1.7 Å. The fact that

such bonds form is no surprise since the double-Z(1/12) sheet has interlayer bonds of the

same length. However, the number of bonds formed is harder to predict: since the inner

and outer tubes have different number of atoms, not all the bonds that form in the sheet

geometry are possible in the tube geometry. More careful examination shows that the two

classes of double-walled nanotubes solve this frustration in opposite manners: more inter-

tube bonds than expected form for the Z(1/12)-(n,0)-(n-3,0) cases, while too few bonds
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Figure 3.28: Atomic geometries viewed down the nanotube axis and LDA bandstructures
for the (a) Z(1/12)-(9,0)-(6,0) and (b) Z(1/12)-(8,8)-(6,6) double-walled nanotubes. Fermi
levels are at zero (energies are shifted accordingly) and denoted by the red horizontal
dashed lines.

are formed in the Z(1/12)-(n,n)-(n-2,n-2) cases. Put another way, the Z(1/12)-(n,0)-(n-

3,0) structures have the right number of bonds for the outer tube but too many for the

inner tube, and the Z(1/12)-(n,n)-(n-2,n-2) have the opposite behavior. This is visible in

Figure 3.28: for Z(1/12)-(9,0)-(6,0) we see a regular alternating buckling pattern on the

outer wall whereas for Z(1/12)-(8,8)-(6,6) the inner wall features the alternative regular

buckling.
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The consequence of this “defective” interlayer bonding pattern on the electronic struc-

ture is that all such double-walled nanotubes we have studied are metallic. Figure 3.28

shows two examples of the band structures. This is different from the semiconducting

nature of the double-Z(1/12) sheet or the double-walled nanotubes made directly from

the double-Z(1/12) sheet of Sec. 3.4.1. An analysis of the local densities-of-states of these

small-diameter double-walled nanotubes shows that the states at the Fermi level are ex-

tended to the whole structure rather then being localized around the structural defects.

Due to computational limitations, the sample of double-walled nanotubes we present

here from first principles is limited to small diameters. Although we are not yet able to

directly simulate larger diameter nanotubes, we can present general arguments to deduce

their likely properties. Clearly, for very large diameters, in order to minimize the total

energy, the local structure of such double-walled nanotubes will converge to the structure

of the double-Z(1/12) sheet and the distance between the inner and outer walls will be

close to 3.23 Å as appropriate to the double-layered sheet. This means that the optimal

combinations will be (n,0)-(n-3,0) and (n,n)-(n-2,n-2), which are the same as found for

the small diameter cases. Furthermore, since the inner walls have fewer atoms than the

outer walls, the structural defects related to frustrated interlayer bonding persist for all

large diameter double-walled nanotubes, and we thus expect them to be metallic as well.

Quantitatively, the number of structural defects per unit nanotube length is constant

for either (n,0)-(n-3,0) or (n,n)-(n-2,n-2) classes because the number of the defects is

proportional to the constant difference in the number of atoms between inner and outer

walls: the linear density of defects per unit length will not depend on diameter but only

possibly on chirality.

We now turn to the comparative energetics for this class of double-walled nanotubes.

Figure 3.29 shows the total energy per atom versus outer wall diameter for this class

in comparison to those of the single-walled A(1/9)-derived nanotubes and the double-

walled A(1/9)-derived nanotubes. For the range of diameters examined, double-walled

nanotubes made from two coaxial Z(1/12) single-walled nanotubes are always the most

stable. As discussed in Sec. 3.4.1, single-walled A(1/9)-derived nanotubes are more stable

than double-walled nanotubes rolled up directly from the double-Z(1/12) sheet for Dout <
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Figure 3.29: Total energies (from LDA) per atom versus outer diameter Dout for single-
walled boron nanotubes (indigo dot-dash line), double-walled boron nanotubes made of
A(1/9) single-walled nanotubes (green circles and magenta triangles), and double-walled
boron nanotubes from two Z(1/12) single-walled nanotubes (blue squares and yellow plus).
The red dashed line shows the energy of the double-Z(1/12) sheet. The black solid curve
is a fitting to squares and plus in the range of 15 Å < Dout < 25 Å.

40 Å. Therefore, at least for Dout < 40 Å, metallic double-walled nanotubes constructed

from two different concentric Z(1/12) single-walled nanotubes are our best candidate for

the ground state structure.

To predict the ground state for Dout > 40 Å, we compare the metallic double-walled

nanotubes made from two different concentric Z(1/12) single-walled nanotubes with the

semiconducting ones based on the double-Z(1/12) sheet. From Sec. 3.4.1, the latter group

has an energy per atom given by

E = E[double-Z(1/12)] + (220.4 eVÅ
2
)/D2

out , (3.19)

where E[double-Z(1/12)] is the energy per atom for the double-Z(1/12) sheet. For the

former group, when tube diameter becomes very large, they are essentially gently curved

double-Z(1/12) sheets with a fixed number of structural defects per unit length. So the
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total energy has two important contributions: the total energy per atom of the double-

Z(1/12) sheet and the energy increase due to the structural defects — the curvature energy

is minimized by choosing optimal choice of inner and outer walls and we assume it can be

neglected (if it were to be included it would be a small sub-leading term of order 1/D2
out).

Since the number of defects per unit length is constant regardless of tube diameter, we

assume that each defect increases the total energy by a constant amount, which when

divided by the number of atoms gives a contribution proportional to 1/Dout. So we expect

the total energy for large diameters to be given approximately by

E = E[double-Z(1/12)] + S/Dout , (3.20)

for some constant S. We fit the available data in Figure 3.29 for 15 Å < Dout < 25 Å and

find S = 1.59 eVÅ. Comparing the above two formulae gives a crossing at Dout = 139 Å.

Therefore, we can safely state that, for the experimentally fabricated range of nanotubes

with Dout < 100 Å [35], our best candidates for the ground-state are double-walled boron

nanotubes constructed from two different concentric Z(1/12) single-walled nanotubes. All

such nanotubes are computed to be or are expected to be metallic.

3.5 Summary

We have presented structures and electronic properties of single-layered and double-layered

boron sheets, single-walled and double-walled boron nanotubes. Although boron is the

neighbor of carbon in periodic table, boron nanostructures have distinct properties to car-

bon, which is mainly due to the electron deficiency of boron. Boron has three valence

electrons but four atomic orbitals (2s, 2px, 2py, 2pz) which makes it impossible for boron

to form regular electron bonding. Instead three-center or even multi-center bonds are nec-

essary for the stability of boron structures. This electron deficiency has resulted in unique

2D boron sheet structures which are made of mixtures of hexagons and triangles, with

atoms in the triangular regions acting as electron donors. Because all other boron nanos-

tructures we have investigated are based on boron sheets, the peculiar structures of boron

sheets have consequently determined various properties of other boron nanostructures.

We have explained the stability of boron sheets by the balance of two-center bonding
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in the hexagonal regions and three-center bonding in the triangular regions. Particularly,

we discovered a self-doping phenomenon in boron sheets that adding or removing atoms

to hexagon centers does not change the number of bonding states but merely increases

or decreases the number of electrons. With self-doping, a close connection between boron

and carbon nanostructures can be drawn – starting from a carbon nanostructure, a cor-

responding boron nanostructure can be built by adding extra atoms to hexagon centers.

Self-doping can be further employed to help search for stable Mg boride sheet structures.

In addition, these atomically thin boron sheets are not always flat, and some sheets pre-

fer buckled groundstate geometries. This buckling phenomenon is in contradiction to the

σ-π mixing picture and can be well explained through a nonconventional electron gas de-

scription. With two single-layered boron sheets stacking together, double-layered boron

sheets can have interlayer bonds formed if the constituent single-layered boron sheet has

a buckled groundstate. The most stable double-layered boron sheet is metallic with a

band gap of 0.8 eV. For single-walled boron nanotubes based on the α sheet, their cur-

vature energies are smaller than single-walled carbon nanotubes. Under large curvature,

single-walled boron nanotubes become semiconducting with buckled surfaces. Although

the energy gains from opening gaps around Fermi levels are very small, the semiconducting

behavior of small boron nanotubes is quite robust under soliton perturbation. For double-

walled boron nanotubes, the optimal structures have smaller inner nanotubes than outer

nanotubes, releasing large strain which will otherwise exist. The most stable double-walled

boron nanotubes are always more stable than single-walled ones and are metallic.
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Chapter 4

Mg boride nanostructures

Mg boride nanostructures can be constructed by doping pure boron nanostructures with

Mg. The added Mg atoms act as another source of electrons in addition to the boron

atoms in triangular regions and tend to change the boron substructures as well as many

other properties. In this chapter, we discuss novel properties caused by Mg doping and

explore the phase diagrams of Mg boride nanostructures in order to find the most stable

phases.

4.1 Negative curvature energy

We start with presenting negative curvature energies in Mg boride nanotubes. In most

nanotubular systems, e.g., carbon and boron nitride nanotubes, it always costs energy to

bend the covalent bonds when rolling up the precursor sheet into nanotubes. In other

words, these nanotubes all have positive curvature energies which increase quadratically

with curvature. On the other hand, Mg boride nanostructures are rather peculiar. We

have discovered that the curvature energy is negative for many Mg doped boron sheets.

Equivalently, certain Mg doped boron sheets prefer to curve themselves automatically into

nanotubes, which is a unique phenomenon and has not been seen in other nano-systems.

As examples, we show nanotubes built from two precursor sheets – the Mg doped α sheet

and the Mg doped hexagonal sheet.

We first discuss the Mg doped α sheet with Mg:B = 1:8 where all Mg atoms stay on

the same side of the boron sheet. The structure is shown in Fig. 4.1. When constructing
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Figure 4.1: (Left) Curvature energy per atom versus diameter of the constituent boron
nanotube for nanotubes made of Mg doped α sheet with Mg:B=1:8. (Right) Structure of
Mg doped α sheet with Mg:B=1:8. Large blue balls are Mg, small gray balls are B.

a nanotube from this sheet, it is possible to place Mg atoms either inside or outside the

nanotube. These two kinds of geometries result in different curvature energies. Figure 4.1

shows the curvature energy versus diameter for nanotubes made of this Mg doped α sheet

with Mg inside or outside. We see that nanotubes with Mg inside generally have smaller

curvature energy than those with Mg outside. More importantly, for nanotubes with Mg

inside, their curvature energies are negative for a wide range of diameters for both (n,0)-

and (n,n)-type. In addition to the Mg doped α sheet, negative curvature energy is also

observed in nanotubes made of the hexagonal MgB2 sheet (see Fig. 4.2). Similarly, Mg can

be put inside or outside when constructing these nanotubes, which leads to different curva-

ture energies as shown in Fig. 4.2. For nanotubes derived from the hexagonal MgB2 sheet,

the ones with Mg outside are always energetically favored and have negative curvature

energies independent of nanotube diameter or chirality.

As illustrated by the above two systems, negative curvature energy is a common phe-

nomenon in Mg boride nano-materials. We have studied a series of Mg doped boron sheets

with hexagonal hole density η ranging from 0 to 1/3 and varied Mg doping concentration.

We found that negative curvature energy occurs for Mg doped boron sheets with both

small and large η. In addition, we discovered a general trend – negative curvature energy
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Figure 4.2: (Left) Total energy per atom versus diameter of the constituent boron nanotube
for nanotubes made of hexagonal MgB2 sheet. (Right) Structure of the hexagonal MgB2

sheet. Large blue balls are Mg, small gray balls are B.

occurs for small-η sheets with Mg atoms inside and for large-η sheets with Mg outside.

Mg on boron sheets

To understand the negative curvature energy in Mg boride nanotubes, we first study their

precursors, Mg doped boron sheets. We define the absorption energy per Mg as

Eab = (EB − Edoped)/NMg + EMg,

where Edoped is the energy of Mg doped boron sheet, EB is the energy of the same boron

sheet with Mg removed, NMg is the number of Mg, and EMg is the energy of an isolated

Mg atom. Eab is positive, and larger Eab means stronger binding of Mg to the boron sheet.

We start with the Mg doped α sheet. First, we checked the convergence of Eab versus

the size of the supercell. We calculated Eab for one Mg on an α sheet with different-sized

unit cells and found that a 2×2 unit cell converges Eab to 5 meV/Mg. So a 2×2 unit cell

is sufficient to isolate a Mg from its periodic copies. Second, we investigated the preferred

absorption site for Mg. By computing Eab with Mg placed on high-symmetry points in a

2×2 unit cell, we found that the center of a hexagon is the most stable absorption site with

Eab=1.07 eV/Mg and is at least 0.4 eV/Mg more stable than any other sites. In addition,
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Figure 4.3: Structures, absorption energies, and Mg-Mg bond length for six exemplary
configurations of Mg doped α sheet: (a) isolated Mg, (b) Mg dimer, (c) MgB8, (d) Mg2B8,
(e) Mg3B8, and (f) Mg25B72. Large blue balls are Mg, small gray balls are B.

we studied two Mg atoms on an α sheet with a 4×2 unit cell. We searched for the most

stable structure over many configurations where the two Mg are placed on various high-

symmetry points and on either side of the sheet. We found that two Mg prefer to stay on

the same side of the sheet and close to each other, showing that the interaction between

two Mg is attractive on the α sheet. The optimal configuration, shown in Fig. 4.3(b), is

0.21 eV/Mg more stable than an isolated Mg on a hexagon center. The distance between
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two Mg in the optimal configuration is 2.80 Å, which is smaller than the LDA bond length,

3.40 Å, in a Mg dimer [95].

Finally, we investigated 2D meshes of Mg on top of an α sheet. Figure 4.3(c)-(f) show

structures of four exemplary systems we studied. The simplest 2D Mg structure on the

α sheet (MgB8) is to put one Mg on every hexagon center, which has Eab=1.25 eV/Mg.

When increasing Mg concentration and putting additional Mg on triangular regions, we

obtained hexagonal (Mg2B8) and triangular (Mg3B8) lattices on top of the α sheet. These

two configurations have Eab of 1.52 eV/Mg and 1.60 eV/Mg, which are about 0.5 eV/atom

larger than isolated Mg. Hence, Mg prefer to attract each other and form 2D lattices on

top of an α sheet instead of staying isolated. To find the optimal 2D Mg structure on

α sheet with the largest Eab, we have constructed many configurations and searched for

the best one. We found that the optimal structure is Mg25B72 shown in Fig. 4.3(f). This

configuration has the largest Eab we have seen in an Mg-α sheet system, which is 1.70

eV/Mg. Furthermore, the Mg-Mg bond length in Mg25B72 is about 3.00 Å, very close to

the LDA Mg-Mg bond length of 2.99 Å calculated for a 2D triangular lattice of pure Mg.

On the other hand, Mg on the hexagonal sheet shows very different behavior. Since the

hexagonal sheet is unstable by itself, we have kept the boron sublattice fixed and relaxed

only the Mg coordinates. We performed similar calculations to those for Mg on the α

sheet. We found that the most favored absorption site is still the hexagon center, with a

large Eab=3.56 eV/Mg for isolated Mg. In addition, we found that the interaction between

Mg is always repulsive and isolated Mg gives the largest Eab.

We have also investigated many other Mg doped boron sheets and have discovered two

opposite behaviors for Mg on boron sheets as exemplified by the α and hexagonal sheets,

respectively. On boron sheets with η ≤1/7, Mg attract each other and form covalent bonds

with bond length close to pure Mg structures. On the other hand, on sheets with η ≥1/6,

the interaction between Mg is always repulsive and isolated Mg is preferred. We explain

the underlying mechanism below.

Charge transfer

We have discovered that a simple charge transfer picture can be used to explain the dis-

parate Mg-Mg interactions on the different boron sheets. In Mg-B systems, Mg is expected

86



Figure 4.4: Fermi level of boron sheets versus η. Red circles are the DFT calculated data
and the blue solid line is a fit.

to donate electrons to the boron sub-system and become positively charged. The amount

of charge transfer from Mg to B is driven by the Fermi level difference between Mg and

boron sheets. Since the Fermi level of Mg is approximately its 2s atomic energy level,

the Fermi level difference is determined mainly by the Fermi level of boron sheets. Figure

4.4 shows the Fermi level versus η for boron sheets. We can see that the Fermi level of

boron sheets changes more than 2 eV when η goes from 0 to 1/3. Small-η boron sheets

have higher Fermi levels than large-η ones. We then expect that Mg will donate fewer

electrons to small-η boron sheets and more to large-η ones, which is exactly what we see

in our ab initio calculations. Figure 4.5 shows the calculated charge transfer from Mg to

different boron sheets using two approaches – Löwdin charges [71] and a Wannier function

based method [7]. Although different in absolute numbers, both approaches show the same

trend that Mg on boron sheets with larger η donates more electrons and is more positively

charged.

Hence, the interactions between Mg atoms can be understood in the following way.

When doped on boron sheets with small η, Mg atoms donate few electrons to the boron

sheets and are close to being neutral, and thus prefer to make covalent bonds with each
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Figure 4.5: Charge transfer from Mg to boron sheets (in e/Mg) calculated using Wannier
functions (blue circles) and Löwdin method (red squares)

other much like Mg atoms. On the other hand, on large-η boron sheets, Mg atoms are

well ionized with charge states close to Mg2+, and repulsive Coulomb interactions become

dominant and make the Mg atoms stay as far away from each other as possible.

Explanation of negative curvature energy

Once we know that the different charge states on Mg atoms determine the Mg-Mg interac-

tions, we can apply this knowledge to explain our discovery of negative curvature energy.

When constructing a nanotube from a Mg boride sheet, we change the distance between

Mg atoms in addition to curving boron-boron bonds. If the Mg stay outside the nan-

otube, the distance between Mg and Mg becomes larger with increased curvature, while

the Mg-Mg distance decreases if Mg are inside. For nanotubes based on small-η boron

sheets, Mg-Mg interactions are attractive and Mg atoms prefer to aggregate and thus pre-

fer to stay inside the nanotube to make covalent bonds. The energy lowering from forming

Mg-Mg bonds can overcome the energy cost of bending the boron-boron bonds and can

result in negative curvature energy. However, with extreme curvature, Mg-Mg bonds can

become shorter than the optimal length, introducing large curvature energy which is what

we see in Fig. 4.1. For nanotubes based on large-η boron sheets, Mg-Mg interactions are
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Table 4.1: Decomposed energy changes for nanotubes made of Mg doped α sheet, MgB8.
EMg (in eV/Mg) is the energy changes for Mg nanotubes compared to Mg sheet. EB (in
eV/B8) is the energy changes for B nanotubes compared to B sheet. Esum is the sum of
EMg and EB. Ecurv (in eV/MgB8) is the overall curvature energy for Mg boride nanotubes.

EMg EB Esum Ecurv

(6,0) -0.38 0.37 -0.01 0.00
(8,0) -0.35 0.22 -0.13 -0.15
(10,0) -0.25 0.15 -0.10 -0.10
(3,3) -0.76 0.45 -0.31 -0.30
(4,4) -0.48 0.26 -0.22 -0.15
(5,5) -0.30 0.17 -0.13 -0.08
(6,6) -0.22 0.12 -0.10 -0.04
(8,8) -0.14 0.07 -0.07 -0.02

repulsive, so Mg atoms prefer to stay away from each other and on the outside. When the

energy gain from Coulomb repulsion overcomes the energy to bend boron-boron bonds, we

observe negative curvature energy.

To support our explanation, we turn to nanotubes made from the Mg doped α sheet –

MgB8. We focus on nanotubes with Mg inside which have negative curvature energies. Ac-

cording to our theory, negative curvature energy originates from the attractive interaction

between Mg. Hence, the curvature energy of a Mg boride nanotube is approximately the

sum of the energy gained from Mg interaction and the energy lost to bend boron-boron

bonds, assuming that the bonding between Mg and the α sheet does not change much

with curvature. To test this, we decompose MgB8 nanotubes into separate Mg and B nan-

otubes and the MgB8 sheet into Mg and B sheets, with their atomic coordinates being the

same as the original relaxed configuration. We then calculate energy changes for Mg and

B nanotubes relative to their sheet structures and compare the sum of these two energy

changes to the curvature energy of the corresponding MgB8 nanotube. Table 4.1 shows our

calculated results. As we can see, the interaction between Mg is indeed the driving force

for negative curvature energy, and the sum of energy changes from Mg and B separately

explains the total curvature energy quite well.
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4.2 Two-dimensional Mg boride sheets

After presenting the peculiar negative curvature energy in Mg boride nanotubes, we now

discuss 2D Mg boride sheet structures and their phase diagram which determines the most

stable phases. In a 2D Mg boride sheet, Mg atoms donate electrons to boron sheets.

With donated electrons from Mg, boron sheets tend to reduce their triangular regions and

increase η to keep the optimal filling of bonding states. Larger Mg concentration then

results in large η for the constituent boron sheets. For a given ratio of Mg to boron (i.e.

stoichiometry), the optimal groundstate structure should be searched with respect to boron

sheet structures and Mg positions. Given the optimal structures at each stoichiometry, we

are able to build the phase diagram and determine the most stable phases and phase

coexistence.

We have used a genetic algorithm to search for optimal structures at fixed stoichiome-

tries. To map out the phase diagrams for Mg boride sheets, we choose 17 reasonable

stoichiometries and search for the most stable structure at every stoichiometry. By writing

the formula of a Mg boride compound as MgmBn, where m, n are integers, the 17 stoi-

chiometries we investigated are m:n = (1:8, 1:6, 1:5, 1:4, 1:3, 2:5, 1:2, 2:3, 3:4, 1:1, 4:3,

3:2, 2:1, 5:2, 3:1, 4:1, 6:1). In our simulations, we have considered two different constraints

on the structures of 2D MgmBn sheets: restricting the constituent boron subsystem to

be at most a single-layered sheets, or allowing the existence of double-layered boron sheet

structures. In this section, we first discuss the 2D MgmBn structures with single-layered

boron sheets, and then present double-layered boron sheets based Mg boride structures.

4.2.1 Mg borides based on single-layered B sheets

Structures

Using the genetic algorithm, we have determined the most stable sheet structures at each

stoichiometry MgmBn under the structural constraint that boron sheets are at most single-

layered. Here, we discuss the structures of these 2D sheets. Figure 4.6 shows exemplary

structures of the most stable Mg boride sheets for eight different stoichiometries. As we

can see from the Figure, the MgB8 structure is based on the most stable single-layered

boron sheet - α sheet. When the concentration of Mg increases from MgB8 to MgB5
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Figure 4.6: Illustration of the most stable Mg boride sheet structures for eight different
stoichiometries: (a) MgB8, (b) MgB5, (c) MgB2, (d) MgB, (e) Mg2B, (f) Mg5B2, (g) Mg4B
and (h) Mg6B. Small gray balls are B and large blue balls are Mg.

and MgB2, the constituent boron sheets have increased hexagonal regions, or equivalently

larger hexagonal hole density η. As soon as the stoichiometry hits m:n=1:1, or MgB,

the constituent boron sheet becomes hexagonal, which is the same as the structure of

bulk MgB2. With even larger Mg ratios – Mg2B and Mg5B2, the boron sheet remains

hexagonal and additional Mg atoms keep stacking on both sides of the MgB layer in an

hcp-like manner similar to Mg bulk. When the concentration of Mg gets extremely high,
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Mg4B in our case, the boron subsystem breaks into 1D zigzag lines instead of forming 2D

sheets (similar structures of boron have been seen in Li boride bulk [96]) and this trend

persists for higher Mg concentration (Mg6B) with Mg forming bulk-like slabs.

The above observation can be explained through a charge transfer picture, in which

Mg atoms donate electrons to the boron subsystems and consequently change the bonding

patterns of the boron. As shown in previous sections, pure boron sheets are made of

mixtures of triangles and hexagons. The graphitic hexagonal boron sheet is not stable

because boron only has three valence electrons instead of four so that large parts of the

bonding states are not filled. Adding boron atoms to the hexagonal sheet forms mixtures

of hexagonal and triangular motifs and thus improves stability by balancing two-center

and three-center bonding. According to the self-doping rule in pure boron sheets, adding

a boron atom to the center of a hexagon does not change the number of bonding states

but only adds three valence electrons to the system. In other words, we can consider every

atom added to a hexagonal center as a perfect electron donor. With a fixed number of

bonding states, the most stable α sheet is the structure with the right number of atoms in

hexagon centers, which makes all atoms in the hexagonal lattice have 4 electrons each and

the α sheet become iso-electronic to graphene.

With the existence of Mg, each Mg atom donates a certain number of electrons to

the boron sub-system. In other words, every boron atom now has more than 3 valence

electrons. Hence, fewer boron atoms are needed at the hexagon centers to keep the boron

subsystem iso-electronic to graphene. As a consequence, the most stable structures with

Mg should contain a boron structure that has fewer triangular regions than the α sheet.

Furthermore, more hexagonal regions appear as more Mg atoms are added to the system,

and this is exactly what we see in Fig. 4.6 from MgB8 to MgB. When the m:n ratio reaches

1:1, the constituent boron sheet starts to become exactly graphitic, suggesting that this

is the point where each B atom now has approximately 4 electrons . After the m:n ratio

exceeds 1:1 and Mg becomes more numerous than B, each B atom would have more than 4

electrons, which would fill anti-bonding states which challenges the stability of the graphitic

boron structure. But only after the m:n reaches 4:1 does the graphitic boron structure

break and the zigzag lines of boron are formed with quite similar boron structures to Li
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Figure 4.7: Phase diagram of 2D Mg boride structures based on single-layered boron sheets:
formation energies versus Mg concentration x. Red squares are DFT calculated data with
LDA. The black solid coexistence line connects the α sheet and the most stable phase MgB
for boron rich environments (x ≤1).

boride bulk [96]. Lines of boron form because each boron has more than 4 electrons and

thus prefers to lower its coordination. One can imagine the extreme scenario where each

boron atom has 8 electrons and the boron atoms would not bind to each other at all.

Phase diagram

After calculating the total energies of the most stable structures for all the 17 stoichiome-

tries we have considered, we are now ready to construct the phase diagram for 2D Mg

boride sheets and determine the most stable phase. Using the pure boron α sheet and Mg

bulk as the two reference systems, we define the formation energy of a MgmBn or MgxB1−x

[x = m/(m+ n)] structure as

EForm = EMgxB1−x − (1− x)Eα − xEMg, (4.1)

where EMgxB1−x is the energy per atom of the structure MgxB1−x, Eα is the energy per

atom of the α sheet, and EMg is the energy per atom of bulk Mg.

Figure 4.7 shows our calculated phase diagram, which is formation energy EForm versus
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Mg concentration x for Mg boride sheets based on single-layered boron structures. For

small x with x < 1/2, most structures are above the EForm = 0 line connecting the

α sheet to Mg bulk, except for MgB2 with x=1/3 which is slightly below this line. This

means that, for small Mg concentrations, Mg boride sheets are not very stable with respect

to the two references. At x=1/2 the MgB sheet (see Fig. 4.6), which is based on a graphitic

boron sheet, is 0.11 eV below the EForm = 0 line, showing that MgB is a stable phase. For

x larger than 1/2 and smaller than 0.8, all stable structures are constructed from the MgB

sheet by stacking Mg on both sides of the MgB sheet in an hcp manner. These structures

are about 0.07-0.1 eV below the EForm = 0 line and are also stable. When x gets close to

1, the Mg boride structures are based on zigzag boron lines which are above the EForm = 0

line and unstable. Hence, we can see that, compared to the α sheet and bulk Mg, stable

Mg boride sheets occur around x=1/2.

Given the experimental situation where Mg boride nanostructures are fabricated by

doping pure boron nanotubes with a small amount of Mg [14], we are interested in the

most stable phases under boron rich environments, and we focus on the phase diagram for

x ≤ 1/2. As shown in Fig. 4.7, for x ≤ 1/2 a straight line connecting α sheet and MgB

at x=1/2 has all other structures lying above it. Hence, MgB is the most stable structure

indicated by our phase diagram. In other words, if we only consider 2D flat sheet structures

based on at most single-layered boron sheets and neglect any possible curvature effects,

doping single-walled boron nanotubes with Mg will result in coexistence of the α sheet and

the MgB structure once the whole system reaches equilibrium; no other structures would

occur.

4.2.2 Mg borides based on double-layered B sheets

Structures

In the previous section, we have discussed the structures and phase diagram for 2D Mg

boride structures based on single-layered boron sheets. Because the most stable double-

layered boron sheet, double-Z(1/12), is more stable than the optimal single-layered α sheet,

in principle 2D Mg boride structures based on double-layered boron sheets should be more

stable than those with single-layered boron sheets. In this section, we relax our constraints

on the configurations of the boron sub-system and allow the occurrence of 2D Mg boride
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Figure 4.8: (a)-(e) Illustrations of the most stable Mg boride structures based on double-
layered hexagonal boron sheets for five stoichiometries. Small gray balls are B and large
blue balls are Mg. (f) Structure of double-layered hexagonal boron sheet. The upper layer
of the boron sheet is shown as green balls and the lower layer is in red.

structures with double-layered boron sheets.

With the new structural constraint, we have re-run the genetic algorithm calculations

and searched for more stable structures. As a result, we discovered more stable structures

at five stoichiometries, which are MgB4, MgB3, MgB2, Mg3B4 and MgB. Figure 4.8(a)-(e)

show their structures. As we can see, all five structures are based on the same double-

layered hexagonal boron sheet [shown in Figure 4.8(f)] with different Mg coverages. The

double-layered hexagonal boron sheet is constructed by stacking two single-layered hexag-

onal sheets on top of each other with one sliding slightly along the in-plane B-B bond. As

a result, all the hexagons are slightly distorted.

Other than the five double-layered structures shown in Fig. 4.8, we have not observed

any double-layered structures at other stoichiometries. For structures with large Mg con-

centrations (x > 1/2), this is probably because double-layered structures are not as stable
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as the single-layered structures we discussed in Sec. 4.2.1 for these stoichiometries: each

boron has more than 4 electrons such that boron prefers to form low-coordinated struc-

tures. On the other hand, for x <1/2, it might be possible to find more stable structures

based on the double-layered hexagonal boron sheet, but this would require us to do much

larger searches and use significantly more computational time and resources.

Phase diagram

We construct a new phase diagram that includes the more stable double-layered structures

found at MgB4, MgB3, MgB2, Mg3B4 and MgB. For other stoichiometries, we use the

same single-layered structures as in Fig. 4.7. To be compatible with the double-layered

boron sheets based Mg boride structures, we now use the optimal double-layered boron

sheet, double-Z(1/12), as the reference system for pure boron instead of the α sheet; we

still use Mg bulk as the other reference system. The formation energies of all structures

are recalculated with respect to the new references.

Figure 4.9 shows the formation energies EForm versus x. We connect MgB4, MgB3,

MgB2, Mg3B4 and MgB with linear lines to get the linear interpolated formation energies

for those structures based on the double-layered hexagonal boron sheet with Mg concentra-

tions between these five stoichiometries. We can see that structures with small x and large

x are unstable with respect to the two references and all stable structures occur around

x=1/2. Similar to what we have done in Sec. 4.2.1, for the x ≤ 1/2 region lines connect-

ing structures at x=0, 1/3, 3/7 and 1/2 have all other structures lying above the lines as

shown in Fig. 4.9. Hence, the double-layered boron sheet, MgB2, Mg3B4 and MgB are

stable structures under boron-rich environments and can coexist with the double-Z(1/12)

sheet. In addition, all structures based on the double-layered hexagonal boron sheet with

x between 1/3 and 1/2 should also be stable.

4.2.3 Discussion

We have described the structures of 2D Mg boride sheets and their phase diagram under

two different structural constraints which allows at most single-layered or double-layered

boron sheets. One can image that, if we relax the constraint even more, more stable “2D”

structures will show up, and if we do not impose any restriction on the structures, the
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Figure 4.9: Phase diagram of 2D Mg boride sheets including double-layered boron sheet
based structures: formation energies versus Mg concentration x. Blue circles are DFT
calculated data for double-layered boron sheet based structures and red squares show
calculated formation energies for single-layered boron sheet based structures. The blue
dashed lines connecting MgB4, MgB3, MgB2, Mg3B4 and MgB account for structures
based on the double-layered hexagonal boron sheet with x between 1/5 and 1/2. The
black solid lines connecting structures at x = 0, 1/3, 3/7 and 1/2 denote stable phases at
equilibrium.

most stable phase should be the bulk MgB2 structure. So we must carefully define the

very question we are trying to answer. Here, we are trying to address the problem of

what are the likely geometries of the Mg boride nanostructures (presumably nanotubes)

fabricated in experiments. Thus we should first investigate the 2D flat sheets which are the

precursors of Mg boride nanotubes. For 2D flat Mg boride sheets, we should focus on those

stable 2D structures that are relatively easy to curve into nanotubes. Therefore, structures

based on single-layered boron sheets should have small curvature energies and are the first

objects to study. Structures based on double-layered boron sheets are more stable but also

are more difficult to curve, but the curvature energies might not be too large. On the other

hand, structures based on three or more layers of boron will be formidable to curve and

are out of the scope of this preliminary investigation.
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4.3 Mg boride nanotubes

In the previous section, we have discussed the phase diagrams of 2D flat Mg boride sheets

under structural constraints. For Mg boride nanotubes with very large diameters, their

stable structures and phase diagrams should be similar to those of 2D structures since

curvature effects will be small. However, the story can be different for small-diameter Mg

boride nanotubes. In this section, we show how the phase diagram changes with curvature

when 2D Mg boride sheets are curved into 1D nanotubes.

From the previous section, we know that sheet structures based on double-layered boron

can be more stable than those based on single-layered boron. However, when considering

nanotubes, curvature could play an important role in determine the energetic order, espe-

cially for small diameters and large curvature. Since the ionic bonds between Mg and B

should not be very angle-dependent and should not change much when going from sheets

to nanotubes, the curvature energy comes mostly from the bond bending in the boron

sub-system and changes in Mg-Mg interactions. As we have shown in Section 4.1, changes

in Mg-Mg interactions can results in negative curvature energy in Mg boride nanotubes. In

addition, similar to single-walled and double-walled carbon nanotubes, Mg boride sheets

with double-layered boron sheets are much more difficult to curve. Due to the above

two factors, we expect that curvature plays an important role in determining the phase

diagrams of Mg boride nanostructures, especially when nanotube diameters reach small

values.

4.3.1 Curvature energy of stable two-dimensional phases

Before discussing the effect of curvature on the phase diagram of Mg boride nanostructures,

we first investigate the curvature energies of two stable phases under two different structural

constraints: the single-layered MgB sheet (shown in Fig. 4.6) and the double-layered MgB2

sheet (shown in Fig. 4.8).

Figure 4.10 shows the curvature energies versus diameter of the constituent boron nan-

otubes for the single-layered MgB sheet. The curvature energies turn out to be dependent

on both nanotube diameter and chirality. The (n,n)-type nanotubes have smaller curva-

ture energies than the (n,0)-type for given nanotube diameters. By fitting the curvature
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Figure 4.10: Curvature energies versus nanotube diameters for both (n,0) and (n, n) type
nanotubes made from the hexagonal MgB sheet.

energy versus diameter with 1/D2, we obtain

Ecurv = C1/D
2
, C1 = 34.54 eVÅ

2
(4.2)

for (n,n)-type and

Ecurv = C2/D
2
, C2 = 45.18 eVÅ

2
(4.3)

for (n,0) type. Comparing these to the corresponding values for single-walled boron nan-

otubes made of α sheet, we can see that the curvature energies for this MgB sheet is about

one order of magnitude larger. We believe that the large energy cost to curve the sheet

comes from the fact that Mg atoms are extremely ionized and it costs large energies to

place Mg atoms inside nanotubes.

For the double-layered MgB2 sheet, we had expected that its curvature energy would

be larger than the single-layered MgB sheet because the covalently bonded double-layered

hexagonal boron sheet is harder to curve (in addition to the fact that Mg atoms do not

prefer to stay inside nanotubes). We show the curvature energy versus average diameter of
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Figure 4.11: Curvature energies versus average nanotube diameters for both (n,0) and
(n, n) type nanotubes made from the MgB2 sheet based on double-layered hexagonal
structures.

constituent boron nanotubes for the MgB2 sheet in Fig. 4.11. The curvature energy is also

slightly chiral dependent with the (n,0)-type nanotubes having slightly smaller curvature

energies. Fitting Ecurv versus D with 1/D2 results in

Ecurv = C3/D
2
, C3 = 81.04 eVÅ

2
(4.4)

for (n,n)-type and

Ecurv = C4/D
2
, C4 = 79.44 eVÅ

2
(4.5)

for (n,0)-type. These values are about twice what we have for the MgB sheet.

These large curvature energies for the two stable phases of 2D Mg boride sheets sug-

gest that curvature is important for the phase diagrams of Mg boride nanotubes with small

diameters. When diameters are small, the original stable phases for 2D structures could

become unstable due to large curvature energies, and some other structures with small or

even negative curvature energies may become more favorable. Consequently, it is neces-

sary to take into account curvature effects when building phase diagrams for Mg boride
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nanostructures.

4.3.2 Curvature effects on phase diagrams

In the previous section, we have discovered that large curvature energies exist for the

two stable phases of 2D Mg boride sheets. In addition, many Mg boride nanotubes have

negative curvature energies. Due to these findings, investigation of curvature effects on

phase diagrams of Mg boride nanotubes becomes indispensable.

Single-layered structures

First, we consider Mg boride nanotubes based on single-layered boron structures. We

have constructed nanotubes from the 10 representative 2D Mg boride sheets in Fig. 4.7

which are the most stable structures at 10 corresponding stoichiometries. We studied the

dependence of their total energies on the (average) diameters of the constituent boron

nanotubes. Here we set up the phase diagrams for Mg boride nanotubes with various

fixed nanotube diameters. For a given nanotube diameter, we use the single-walled boron

nanotube made of α sheet with the same diameter as the reference for pure boron and Mg

bulk as the other reference for pure Mg, and calculate the formation energies of Mg boride

nanotubes with respect to these two references.

Figure 4.12 shows the phase diagrams for three different diameters, D=10Å, 15Å and

20 Å. For D=10Å and 15Å, the only stable phase is MgB5, whose 2D sheet structure is

shown in Fig. 4.6. When the diameter exceeds 15 Å and reaches 20 Å, both phases, MgB5

and MgB, are stable with respect to the two reference systems. MgB5 is just above the

line connecting pure boron and MgB, meaning MgB becomes slightly more stable than

MgB5 when D=20Å. Considering that MgB is the most stable phase for 2D flat sheets,

D=20Å should be the transitional diameter for the most stable phase to change from

MgB5 to MgB. Therefore, if we constrain all structures to be based on single-walled boron

nanotubes, MgB5 is the most stable phase for D < 20 Å and MgB is the optimal phase

for D > 20 Å.

Double-layered structures

Once we relax our constraints to include structures based on double-layered boron sheets, or

equivalently double-walled boron nanotubes, we expect more drastic changes in the phase
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Figure 4.12: Phase diagram for Mg boride nanotubes based on Mg doped single-layered
boron sheets with three different diameters: 10 Å, 15Å and 20Å. Blue squares are calculated
data. The two references are single-walled boron nanotubes based on the α sheet and Mg
bulk.
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Figure 4.13: Phase diagram for Mg boride nanotubes based on single-layered and double-
layered boron sheets with three different diameters: 10 Å, 15Å and 20Å. Blue squares
are single-layered structures and red circles are double-layered. The two references are
double-walled boron nanotubes based on α sheet and Mg bulk.
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diagram due to curvature. Similar to the previous section, we have calculated the phase

diagrams for three different nanotube diameters. Here we use the most stable double-walled

boron nanotubes [8] as the reference for pure boron and Mg bulk as the other reference.

We have included nanotubes made of three Mg boride sheets based on the double-layered

hexagonal sheet including MgB4, MgB2, and Mg3B4 (structures shown in Fig. 4.8). We

do not include the double-layered MgB structure because it has extremely large curvature

energies due to layers of Mg atoms on both sides of the double-layered hexagonal boron

sheet such that it is always less stable than the MgB structure based on single-layered

hexagonal sheet for D < 40 Å.

Figure 4.13 shows phase diagrams for three nanotube diameters including all structures

discussed in Sec. 4.3.2 and nanotubes made of the three double-layered sheet structures.

For D=10Å, nanotubes made of double-layered MgB2 and Mg3B4 sheets are unstable and

collapse, and nanotubes made of double-layered MgB4 are less stable than the single-

layered counterpart. The most stable phase is MgB5 based on single-layered boron sheets

whose precursor sheet is shown in Fig. 4.6. When D=15Å, no structures are stable with

respect to the two reference systems. No Mg boride nanostructures will exist in principle.

As D goes to 20 Å, MgB becomes the only stable structure whose formation energy is only

slight below zero. Therefore, at very small diameters with D < 20 Å, The only two stable

phases are MgB5 and MgB, both of which are based on single-layered boron sheets.

Discussion

In this section, we have studied how curvature changes the phase diagrams of Mg boride

nanostructures. Our starting points are the most stable stable 2D sheet structures found

using genetic algorithm. All nanotube structures we considered are based on these sheet

structures. Apparently such analysis may overlook some important structures which are

not very stable as sheets but have small or even negative curvature energies. To deal with

this problem in the right way, we should follow a similar procedure to what we have done

for 2D sheet structures – to search for the best nanotube structures at given stoichiometry

and diameter using a genetic algorithm and to build the phase diagrams based on these

best nanotube structures. We have proposed a method to adapt genetic algorithms to

studying nanotubes which is described in Appendix A. We have done tests on this method
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and some promising results have been obtained. We expect further investigation on this

topic in the future.

4.4 Summary

We have presented structures and phase diagrams for Mg boride nanostructures including

2D sheets and nanotubes. First, we show that negative curvature energy exists for certain

Mg boride nanotubes which is caused by the interactions between Mg atoms. Depending on

the structure of the boron sheets, Mg can have different charge states, resulting in distinct

interactions between Mg atoms. When curving Mg doped boron sheets into nanotubes,

curvature changes the distance between Mg and hence the interaction strength. Once

energy gain from Mg-Mg interactions overcomes energy loss from bending covalent boron

bonds, we can observe negative curvature energy. This phenomenon has not been seen in

other nanotube systems and might be important for the growth of Mg boride nanotubes.

Second, we present the most stable Mg boride sheet structures for various stoichiometries

with two different structural constraints. Based on these structures, we construct the phase

diagram and predict the stable phases under boron-rich environment. When considering

only structures based on single-layered boron sheets, the stable phase is a MgB sheet which

is composed of a hexagonal boron lattice. Once we including Mg boride structures with

double-layered boron sheets, several phases based on a double-layered hexagonal sheet can

coexist. These results on 2D sheet structures should also hold for Mg boride nanotubes

with large enough diameters and small curvature effects. Finally, we consider curvature

effects on the stability of Mg boride nanotubes and how their phase diagrams change with

curvature. When nanotube diameters are smaller than 20 Å, Mg boride nanotubes based

on single-walled boron nanotubes are generally preferable due to smaller or even negative

curvature energies. Our present research on Mg boride nanotubes is not complete enough

to definitively predict stable phases with large curvature, and a genetic algorithm based

investigation is in progress.
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Chapter 5

Boron crystals with layered

structures

All boron crystals that exist at ambient conditions have complex structures based on B12

icosahedra. The simplest boron crystal, α rhombohedral boron, is made of equivalent in-

terconnected B12 icosahedra [2, 3, 4, 97]. Another stable phase of boron, β rhombohedral

boron, which is close in energy to α rhombohedral boron, is based on a B105 lattice with

additional sites partially filled with boron atoms, averaging 106.67 atoms in a rhombo-

hedral unit cell [4, 5, 97]. With the discovery of superconductivity in compressed boron

crystals at pressures about 160 GPa [98], much work has been dedicated to exploring novel

boron phases under high pressure. Recently a new high-pressure boron phase, γ boron, was

fabricated experimentally and verified by first principles calculations [99, 100]. This new

boron crystal consists of B12 icosahedra and B2 dimers which act as electron acceptors and

donors, respectively, thus showing some ionic behavior. However, this new phase is semi-

conducting and cannot become superconducting. To search for possible superconducting

phases, researchers have focused on metallic boron structures including α-Ga, fcc and bcc.

α-Ga boron is stable when pressure is larger than 100 GPa but has small density-of-states

around the Fermi level [101]. Fcc and bcc phases have large DOS around the Fermi levels

but are only stable under pressures larger than 200 GPa [102]. Obviously, further study is

needed to clarify the phase diagram of boron under high pressure. We note that graphite,

a layered carbon crystal, can be built directly from stacking graphene sheets. With the

106



Figure 5.1: (a) Structure of the most stable layered boron crystal in our library. Two
inequivalent layers in a unit cell are shown in different colors to guide the eyes. (b) and
(c) Structures of constituent boron sheets in two inequivalent layers. Blue solid lines show
the unit cell of the sheet. Green (light) dashed lines mark the line of atoms moving up
and red (dark) dashed lines mark the line of atoms moving down. When packed to form a
crystal, one layer is shifted along the x direction to make the two stars match in the x-y
plane.

discovery of stable 2D boron sheets [6], an interesting question can be raised for boron crys-

tals – are there any stable boron crystal structures which are based on sheet structures? In

this chapter, I present boron crystals with layered structures and compare their stability

with other boron crystalline phases under pressure. All calculations are performed using

the PWSCF code [103, 104] and the LDA [58] for exchange and correlation.

5.1 Structure and energy

Unlike graphene and graphite for carbon, boron sheets are significantly (∼ 0.5 eV/atom)

less stable than α rhombohedral boron. To construct stable boron crystals from boron

sheets, it is essential to choose the optimal alignment between different layers of boron

sheets such that stabilizing interlayer bonds can form. We have discovered that, in layered

boron crystal structures, interlayer bonds are multi-center-like, which are different from

the two-center-like interlayer bonds in double-layered boron sheets.

We build layered boron crystals by stacking copies of a boron sheet along the z direction

(perpendicular to the sheet plane). We optimize structures by varying the boron sheets and
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Figure 5.2: Total energy in eV/atom relative to α rhombohedral boron versus η for layered
boron crystals built on two-dimensional boron sheets.

their relative alignment. Figure 5.1 shows the most stable layered boron crystal structure

in our library, built from a boron sheet with η=1/9 which has a slightly different hexagon

arrangement from the α sheet. For this layered structure, a primitive unit cell consists of

two inequivalent layers which are buckled with lines of boron atoms moving alternatively

up and down along the z direction (similar to the buckling in the buckled triangular sheet

[36, 38, 39]). The buckling configurations of two layers are exactly out-of-phase such that

atoms moving down in the upper layer can meet atoms moving up in the lower layer forming

bonds and vice versa. In addition, to make efficient bonding between layers, the two layers

of boron sheets are not exactly matched in the x-y plane, but the upper layer is shifted

along the x direction by half a lattice vector. Compared to the case that two layers are

exactly matched in the x-y plane, the total energy is lowered by about 0.1 eV/atom.

Using the same procedure, we have constructed other layered boron crystal structures

based on boron sheets with different η values. Similar to boron sheets, the stability changes

with η. Figure 5.2 shows calculated total energy versus η for layered boron crystals. These

layered structures are about 0.1-0.2 eV/atom less stable than the α rhombohedral boron.
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The optimal structure in our library occurs at η=1/9 which is shown in Figure 5.1 and

a structure with η=1/7 is only 0.01 eV/atom less stable. The energy variance versus η

for these layered crystals is ∼0.07 eV/atom for 0 < η < 0.2, which is smaller than the

corresponding value for boron sheets.

5.2 Stability under high pressure

From the previous section, we have learned that boron crystals built based on sheet struc-

tures are not as stable as α rhombohedral boron under ambient conditions. However,

these layered boron crystals have smaller average volume per atom than α rhombohedral

boron, which suggests that layered boron structures may become more favorable under

high pressure. In this section, we study the relative stability of our most stable layered

boron structure with respect to α rhombohedral boron under high pressure. In addition,

we compare our layered structures with two stable high-pressure boron phase, γ boron

and α-Ga boron, which are preferred phases under the experimentally reasonable pressure

range (P ≤ 200GPa) as shown in previous work [99, 100, 101].

Figure 5.3 shows the calculated enthalpy for layered boron, γ boron and α-Ga boron

relative to α rhombohedral boron under different external pressures ranging from 0 to 150

GPa. As we can see, the α rhombohedral boron is the most stable phase at zero pressure. γ

boron is only 0.03 eV/atom less stable, while layered boron and α-Ga boron are less stable

by 0.13 and 0.26 eV/atom, respectively. As pressure increases, all three phase become

more stable with respect to α rhombohedral boron. When pressure reaches 20 GPa, γ

boron becomes optimal and it remains as the most stable phase for pressure less than 80

GPa. Around 80 GPa, three phases become very close in enthalpy and are approximately

degenerate showing possible coexistence of these three. This approximate degeneracy in

enthalpy remains for pressures between 80 and 110 GPa. Eventually, α-Ga boron is the

most stable structure for pressures larger than 110 GPa.

When comparing the stability of these four boron phases, we have neglected tempera-

ture effects by assuming that vibrational entropy and configurational entropy are approxi-

mately the same for different boron phases. However, boron crystals are usually fabricated

at very high temperature around 2000-3000K and hence the entropy effect can play an
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Figure 5.3: Enthalpy of three boron crystals relative to α rhombohedral boron for pressure
ranging from 0 to 150 GPa: γ boron (green squares), α-Ga boron (red circles) and layered
boron (blue triangles).

important role. For instance, β rhombohedral boron is less stable than α rhombohedral

boron based only on total energy, but it becomes more stable than α rhombohedral boron

when one accounts for vibrational entropy effects, in agreement with experiments [4, 97].

In our case, three boron phases become almost degenerate for pressures between 80 and

110 GPa, and entropy could be an important factor determining their relative stability and

should be further investigated. In particular, because layered boron structures have much

freedom in their construction (varying sheet structures and alignment between different

layers) which generate structures with very close energies, configurational entropy along

with high temperature could contribute to their stability.

Finally, I compare the DOS of the four boron crystals. Figure 5.4 shows the density

of states for the most stable layered boron structure along with the three other boron

phases. This layered boron crystal is metallic and its DOS around the Fermi level is ∼0.1
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Figure 5.4: Densities-of-states for four boron crystals: (a) most stable layered boron, (b) α-
Ga boron, (c) γ boron and (d) α rhombohedral boron. Densities-of-states are in states/(eV
atom). Fermi levels are at zero for all plots.

states/(eV atom). γ boron and α rhombohedral boron are semiconducting. In addition,

α-Ga boron is metallic but with a small DOS around the Fermi level of ∼0.04 states/(eV

atom). Considering that a large DOS around the Fermi level may lead to a higher chance

of superconductivity, this layered boron crystal structure is worth further investigation.

5.3 Summary

Using first-principle calculations, a new class of layered boron crystals is proposed which

is built from two-dimensional boron sheets. Although not as stable as α rhombohedral

boron at ambient conditions, layered boron crystals become competitive with α boron, γ

boron and α-Ga boron under high pressure. In addition, layered boron crystals have a

larger DOS around their Fermi level when compared to other boron phases.
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Chapter 6

Hydrogen storage with boron

nano-materials

Hydrogen is a promising source for clean and renewable energy and may replace fossil

fuels in the future [105, 106]. Developing novel materials to efficiently store hydrogen with

high gravimetric and volumetric densities is a very challenging topic since the hydrogen

storage and release should be performed close to room temperature and under ambient

conditions [106]. Carbon based nano-materials are good candidates for hydrogen storage

because of their light weight and easy fabrication in experiments [107, 108, 109, 110, 111].

For convenience of operation, physisorption of hydrogen on the surface of carbon nano-

structures is preferred [112]. In addition, to operate around room temperature, the binding

energy of hydrogen should be in the range of a few tenths of an eV/H2 [111, 113]. However,

the interaction between H2 and pure carbon surfaces is weak and the binding energy is

usually ∼0.05 eV/H2 [112]. Researchers have proposed various methods to increase the

binding energy by decorating carbon nano-structures with metal dopants [109, 110, 111,

114]. Ca doped carbon fullerenes and nanotubes turn out to be the optimal one with

hydrogen storage weight percentage up to 9% as shown by first-principles calculations

[114].

As the neighbor of carbon, metal doped boron fullerenes and nanotubes were also

investigated as possible candidates for hydrogen storage materials. Various model systems

have been studied including transition metal doped boron fullerenes, Li and Ca doped
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boron fullerenes and nanotubes, all of which show encouraging results [115, 116, 117, 118,

119]. In this chapter, I discuss physisorption and chemisorption of hydrogen on pristine

and various metal doped boron nano-structures. The dynamics of hydrogen absorption is

explored by calculating energy barriers between physisorption and chemisorption. Finally

pros and cons of boron based hydrogen storage materials are discussed and possible future

questions are raised. In the calculations, we use the PWSCF code [103, 104] and the

LDA for exchange and correlation [58]. Results are checked with GGA-PBE [60]. K-

point sampling of the Brillouin zone uses a Gaussian smearing width of 0.05 eV. The

nudged elastic band method [81, 82, 83, 84] is employed to compute the energy barriers

for hydrogen from physisorption to chemisorption. We have focused on the most stable α

sheet and nanotubes based on the α sheet, although there are many other stable boron

sheets [6].

6.1 Hydrogen on boron sheets and nanotubes

We would like to first clarify the differences between physisorption and chemisorption of

hydrogen. In physisorption, the bonding of the hydrogen molecule stays approximately

intact and the interaction between hydrogen and substrate is mainly of weak van der

Waals type. Since physisorption does not break any covalent bonds, there are no (or

very small) energy barriers for physisorption which is good for fast storage and release of

hydrogen. On the other hand, in chemisorption H-H bonds are broken (or damaged) and H

atoms make strong chemical bonds with the substrate. In this case, the absorption energies

can be much larger. Chemisorption usually needs to overcome large energy barriers when

breaking H-H bonds and the process is usually slow.

We define the absorption energy per H2 as

Eab = EH2 + (EB − EB+H2)/NH2 , (6.1)

where EH2 is the energy of a free-standing H2 molecule, EB is the energy of the boron

substrate, EB+H2 is the energy of the whole system (boron substrate + hydrogen) and NH2

is the number of adsorbed hydrogen molecules. A system is stable compared to separated

boron substrate and isolated hydrogen molecules when Eab is larger than zero. Lager Eab
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Table 6.1: Absorption energy Eab (in meV/H2) for hydrogen physisorption on a pristine
α sheet and the (3,0) α-sheet-derived boron nanotube. Four different configurations are
considered in each case: hydrogen on top of a hexagon parallel (hex �) or perpendicular (hex
⊥) to the surface, and hydrogen on top of a triangular atom parallel (tri �) or perpendicular
(tri ⊥) to the surface.

hex � hex ⊥ tri � tri ⊥
α sheet 70 86 81 78

(3,0) BNT 94 93 97 87

means more stable binding of hydrogen to the substrate.

6.1.1 Physisorption

We start with discussing hydrogen physisorption on pristine boron sheets and nanotubes.

Table 6.1 shows the calculated Eab for hydrogen physisorption on pristine α sheets and

the (3,0) α-sheet-derived boron nanotube for different absorption sites and H2 configura-

tions. We can see that the absorption energy for hydrogen physisorption on the α sheet

is uniform for different absorption sites and is in the range of 70-90 meV/H2, which is

larger than graphene. For the (3,0) boron nanotubes, the binding between hydrogen and

boron is strengthened slightly by the curvature, and the absorption energy is closer to 100

meV/H2. Although hydrogen binds stronger on boron nanostructures than carbon [40], the

absorption energy is far too small for practical applications at room temperature. Hence,

physisorption of hydrogen on pristine boron nanostructures is not a plausible mechanism

for hydrogen storage.

6.1.2 Chemisorption

Next, we show results of hydrogen chemisorption on the α sheet and the (3,0) nanotube.

When chemisorbed on the α sheet, H2 is decomposed into two hydrogen atoms which

then bond to two boron atoms. We have studied chemisorption of one H2 molecule on a

Table 6.2: Absorption energies (in eV/H2) and energy barriers (in eV) from physisorp-
tion to chemisorption for different configurations of hydrogen chemisorption on α sheet.
Configuration (1,7) is unstable and Eab and Ebarrier are not shown.

sites (1,2) (1,3) (1,4) (1,7) (2,8) (7,11) (1,8) (1,9) (1,10) (1,11)
Eab 0.04 -0.04 -0.12 - 0.49 0.22 -0.11 0.48 0.39 0.61

Ebarrier 1.54 1.34 1.18 - 1.41 1.35 1.48 1.21 1.37 0.84
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Figure 6.1: (a) Absorption sites on the α sheet for hydrogen chemisorption denoted by
numbers from 1 to 11. (b) Absorption sites on the (3,0) boron nanotubes for hydrogen
chemisorption denoted by numbers from 1 to 6.

2×2 unit cell of the α sheet with different absorption sites for two hydrogen atoms. We

denote absorption sites using numbers from 1 to 11 as shown in Figure 6.1(a). Table 6.2

shows Eab for different inequivalent configurations of two hydrogen atoms absorbed on the

α sheet. For instance, (1,2) means one H atom is attached on atom 1 and the other H

atom is bonded to atom 2. We can see from the Table that for some configurations Eab

is negative, meaning that these configurations are not as stable as separated α sheet and

hydrogen molecules. In other words, the energy gain from forming B-H bonds is not always

sufficient to compensate the energy cost to break H-H bonds. For those configurations with

positive absorption energies, Eab is in the range from 0.2-0.6 eV/H2, which is in the optimal

desired range. The most stable absorption site is (1,11) which has Eab=0.61 eV/H2.

For the nanotube (3,0) made of the α sheet, we have calculated Eab for six differ-

ent inequivalent configurations of hydrogen chemisorption. We use a similar denotation

for absorption sites as shown in Figure 6.1(b). Table 6.3 shows the absorption energies.

Compared to the flat α sheet, curvature drastically increases the absorption energies for

hydrogen and Eab is always positive for the configurations we have studied. Similar effects

have been seen for graphene and carbon nanotubes [120, 121]. A simple rationalization

would be that curvature mixes in-plane states and out-of-plane states inducing sp3-type

hybridization such that each boron atom can bind hydrogen atoms more strongly. All
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Table 6.3: Absorption energy (in eV/H2) and energy barriers (in eV) from physisorption
to chemisorption for different configurations of hydrogen chemisorbed on boron nanotube
(3,0). Configurations (1,2) and (1,5) are unstable and are relaxed into (1,3) and (1,4),
respectively.

(1,2) (1,3) (1,4) (1,5) (1,6) (2,5)
Eab - 1.40 1.35 - 0.94 0.40

Ebarrier - 0.50 1.03 - 0.70 0.38

configurations have absorption energies close to or larger than 1 eV/H2, indicating very

strong binding (except for configuration (2,5)).

6.1.3 Energy barriers for chemisorption

Although physisorption of hydrogen on the α sheet and nanotube (3,0) results in too weak

binding, chemisorption has led to reasonable absorption energies for α sheet, which sug-

gests that hydrogen chemisorption on boron sheets and nanotubes might be a plausible

mechanism for hydrogen storage. However, chemisorption usually needs to overcome large

energy barriers, and the energy barriers for hydrogen release can be even larger. We should

consider how large the energy barriers are and how efficiently H2 can be chemisorbed and

released from chemisorption configurations. To address these questions, we calculate the

minimal energy reaction path from physisorption to chemisorption using nudged elastic

band method and determine the energy barriers. Figure 6.2 shows a calculated reaction

path from physisorption to chemisorption configuration (1,3) as an example. As we ex-

pected, the maximal energy on the path is where H-H bond is broken and this point

determines the energy barrier for the reaction.

Tables 6.2 and 6.3 show the energy barriers from physisorption to chemisorption for

both the α sheet and the (3,0) nanotube. For the α sheet, the energy barriers are in the

range of 0.84 eV to 1.54 eV, and for the (3,0) nanotube the energy barriers are a little

smaller, with the smallest energy barrier being 0.38 eV. Compared to graphene and carbon

nanotubes, the energy barriers from physisorption to chemisorption are much smaller for

hydrogen absorbed on boron sheets and nanotubes and hence chemisorption is more plau-

sible. However, compared to room temperature, these energy barriers for chemisorption

are too large and the efficiency of hydrogen absorption and release will be very low. In our
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Figure 6.2: Minimal energy reaction path for hydrogen absorbed on the α sheet from
physisorption (at reaction coordinate 0) to chemisorption configuration (1,3) (at reaction
coordinate 1).

opinion, pristine boron sheets and nanotubes cannot be used as hydrogen storage materials

at room temperature.

6.2 Hydrogen on metal doped boron nanostructures

6.2.1 Physisorption

Since pristine boron sheets and nanotubes are not suitable for hydrogen storage, we have

considered decorating boron nanostructures with light metal atoms, including alkali and

alkaline earth metals. These metal atoms are attached to the surfaces of boron nanos-

tructures and serve as absorption sites for hydrogen. We have studied five different metal

dopants (Li, Na, K, Mg and Ca). Because alkali and alkaline earth metal atoms do not

aggregate on top of the α sheet and nanostructures based on the α sheet, adsorption of

hydrogen on metal doped α sheets can be well approximately by hydrogen interacting with

an isolated metal atom. In our calculations, we only examine the case of an isolated metal
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Figure 6.3: Physisorption energies (in eV/H2) for hydrogen on five different kinds metal
doped α sheet with different numbers of hydrogen molecules.

atom with hydrogen absorbed around it. The most stable absorption site for an isolated

metal atom on a boron sheet or nanotube is on top of a hexagon.

We first consider the physisorption process of hydrogen on metal doped α sheet. Figure

6.3 shows the physisorption energies of hydrogen for different metal dopants on the α sheet

and versus the number of hydrogen molecules. We can see that the absorption energies are

larger than pristine boron sheets and nanotubes. However, only Li and Ca have absorption

energies within the desired range of 0.2 eV-0.4 eV; the other three metal dopants do not

provide strong enough binding. Ca is preferable to Li because of the larger binding energies.

In order to check how curvature of the boron surface may change the binding energies, we

have computed the absorption energies for hydrogen physisorption on metal-doped B80

fullerenes and nanotubes and found out that the absorption energies are almost the same

as the Ca doped α sheet. Hence, curvature of the boron surface does not contribute to

physisorption energy of hydrogen to metal dopants.
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Figure 6.4: Chemisorption sites for Ca doped α sheet. Large blue ball is Ca and small
gray balls are B.

6.2.2 Chemisorption and energy barriers

We now focus on Ca doped α boron sheets and study hydrogen chemisorption. We consider

different absorption sites as shown in Figure 6.4. Table 6.4 shows the chemisorption energies

for different configurations. Compared to the pristine α sheet, the chemisorption energies

are much larger and are positive for all configurations considered. In addition, we calculate

the energy barriers from physisorption to chemisorption as shown in Table 6.4. For some

of the configurations, the energy barriers are surprisingly small. In particular, the energy

barrier for (1,7) is only 0.10 eV. Hence, chemisorption is greatly facilitated by Ca.

Furthermore, we have discovered an extremely stable chemisorption configuration. We

Table 6.4: Chemisorption energy (in eV/H2) and energy barriers (in eV) from physisorption
to chemisorption for different configurations of hydrogen chemisorbed on Ca doped α sheet.

(1,2) (1,3) (1,4) (1,7) (2,8)
Eab 1.00 0.94 0.89 0.80 0.75

Ebarrier 0.54 1.03 1.83 0.10 0.42
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Figure 6.5: A stable configuration for hydrogen chemisorption which has almost zero energy
barrier from physisorption to chemisorption. Large blue ball is Ca, small green blue balls
are H and medium gray balls are B.

show this configuration in Figure 6.5. Instead of having both hydrogen atoms bonded to

boron atoms, only one H atom is bonded to a boron atom and the other one sits on top of

the Ca atom. The absorption energy for this configuration is 1.20 eV/H2. Furthermore,

we have found out that this configuration of chemisorption has almost zero energy barrier

(less than 50 meV) to physisorption.

Since chemisorption of hydrogen on the Ca doped α sheet has a tiny energy barrier, we

consider the extreme case where there is one H atom bonded to each of the six boron atoms

close to Ca atom. We calculate the absorption energy for additional hydrogen molecules

physisorbed on this hydrated system. The calculated absorption energies for first three

hydrogen molecules are about 0.24 eV/H2, which are 50% less than the case where no

hydrogen molecules are chemisorbed. Hence, chemisorption of hydrogen can lower the

performance of Ca doped α sheets as hydrogen storage materials.
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Figure 6.6: (a) A preliminary phase diagram for two-dimensional Ca borides based on
single-layered boron sheets. (b) Structure of the CaB4 sheet.

6.2.3 Stability of Ca doped boron sheets

In the previous sections, we have learned that Ca doped α sheets might be good hydrogen

storge materials if we consider only physisorption of hydrogen. In this section, we discuss

the stability of Ca doped boron sheets and suggest that researchers may have been working

on the wrong material stoichiometry: i.e. Ca doped α sheets may not be the relevant

material.

To achieve high density of hydrogen storage, boron sheets (or fullerenes, nanotubes)

need to be highly doped by Ca to provide sufficient absorption sites. Since Ca is expected
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to donate electrons to α sheet, similar to our argument for Mg borides [7], a large concen-

tration of Ca on boron sheets will change the boron sheet structures, and α sheet based

structures will not be the most stable ones. The optimal stoichiometry and structure can

be found by using a similar method to Mg borides (i.e. genetic algorithms). In Figure 6.6,

we show a very preliminary phase diagram for two-dimensional Ca borides based on single-

layered boron sheets. According to this phase diagram, a CaB4 sheet structure is the most

stable stoichiometry for two-dimensional Ca boride sheets. Because the phase diagram is

based on limited data, further study is needed to explore detailed information of the phase

diagram. Furthermore, all work on hydrogen storage of Ca doped boron nanostructures

should be reinvestigated using the most stable Ca boride structure.

6.3 Summary

We have studied physisorption and chemisorption of hydrogen on pristine and metal doped

boron nanostructures. For pristine boron sheets and nanotubes, we found that physisorp-

tion of hydrogen does not provide enough binding for room-temperature operation. In

addition, chemisorption of hydrogen can have absorption energies in the right range but

can be difficult to achieve due to large energy barriers from physisorption to chemisorp-

tion. For metal doped boron sheets, Li and Ca are the right metal elements to decorate

boron nanostructures and provide absorption sites for physisorption of hydrogen. Ca is

better than Li because of larger absorption energies. Furthermore, we have shown that

energy barriers are very small and even close to zero for hydrogen to be chemisorbed on

Ca doped boron sheets, which can reduce the absorption energy for additional physisorbed

hydrogen molecules. Hence, in our opinion, Ca doped boron nanostructures might not be

the ideal materials for hydrogen storage. In the end, we show very preliminary results

on the phase diagram of two-dimensional Ca borides and suggest that researchers might

have been working on the wrong material composition and structures. Further research is

needed to evaluate boron nanostructure-based hydrogen storage.
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Chapter 7

Conclusions

The goal of this thesis is to understand boron and Mg boride nanostructures using first-

principles calculations based on density functional theory, focusing on their structures,

bonding, electronic properties and possible applications on hydrogen storage. Our system-

atic research contributes valuable information to the knowledge of boron nanomaterials.

In the first part of this thesis, boron sheets and nanotubes are investigated. As the

starting point for nanotubes, two-dimensional sheet structures need be studied first. For

boron the sheet structures are not as trivial as graphene is to carbon because no such

boron structures exist in nature. Luckily we can borrow ideas from graphene and small

clusters of boron. The direct analogy to graphene, the hexagonal boron sheet, is unstable

with respect to shearing perturbation. On the other hand, small boron clusters are quasi-

planar and made of triangular motifs. The triangular boron sheet derived from boron

clusters is much more stable than the hexagonal sheet but not optimal. Instead, a class

of stable boron sheets can be constructed via mixing the hexagonal and triangular phases

and benefit from the balance of two-center bonding in hexagonal regions and three-center

bonding in triangular regions. Equivalently these boron sheets can be considered to be

constructed by removing atoms from a triangular template sheet. The stability of these

boron sheets is dependent on the hexagon hole density η, which is the ratio of removed

atoms to the triangular template. The most stable boron sheet, α sheet, occurs at η=1/9.

As further shown with maximally localized Wannier functions, boron atoms in the tri-

angular regions of boron sheets act like “perfect electron donors”. When a boron atom
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is added to the center of a hexagon, the number of bonding states does not change such

that the only effect of the added boron atom in the triangular region is to increase the

number of electrons by three. Equivalently the added atom donates all its three valence

electrons to the hexagon lattice via multi-center bonding and we name this phenomenon

“self-doping”. Self-doping naturally explains the stability of α sheet – atoms in the tri-

angular regions donate all their electrons, giving the hexagonal lattice the same number

of electrons as graphene. In addition, self-doping links boron nanostructures with carbon

nanostructures. Similar to α sheet and graphene, starting from a stable carbon nanostruc-

ture, a corresponding stable boron nanostructure can be constructed by replacing carbon

with boron and adding the right number of electrons to hexagon centers. Finally, self-

doping provides a scheme to efficiently search for the optimal Mg boride sheet structure

with given stoichiometry.

Composed of mixtures of hexagons and triangles, boron sheets are not always flat.

Boron sheets with small η prefer buckled groundstate geometries, while the others always

stay flat with the separational point at η=1/9. This asymmetric buckling behavior cannot

be explained by mixing of in-plane σ and out-of-plane π states, which in fact generates

contradictory results. Instead an unconventional electron gas picture can lead to a rea-

sonable explanation to the buckling of boron sheets which links buckling to increasing

of η such that only buckling in small-η sheets is preferred. This asymmetric buckling has

important consequences on double-layered boron sheets. When constructed from two iden-

tical atomically thin boron sheets, double-layered boron sheets can have interlayer bonds

formed if only the constituent boron sheets prefer to buckle. These interlayer bonds in

double-layered boron sheets are strong and two-center-like due to which the most stable

double-layered boron sheet occur at η=1/12 and is semiconducting with a band gap of 0.8

eV.

With single-layered boron sheets as precursors, single-walled boron nanotubes can be

constructed. While electronic properties of large single-walled boron nanotubes can be pre-

dicted from their precursors via a zone-folding technique, small boron nanotubes possess

rather peculiar geometries and electronic properties. Although α sheet is metallic and flat

such that large-diameter boron nanotubes are metallic, small-diameter boron nanotubes
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based on α sheet prefer buckled surfaces with atoms in the triangular regions going inward

and outward alternatively, due to which small-diameter boron nanotubes are semicon-

ducting. This metal-to-semiconductor transition occurs for boron nanotubes when their

diameter is smaller than 20 Å. Interestingly, for small boron nanotubes energy gain from

surface buckling is at most a few tens of meV/atom which is small even compared to room

temperature. However, the semiconducting behavior is expected to be quite stable under

thermal and soliton perturbations.

Similar to single-walled boron nanotubes, double-walled boron nanotubes can be built

with the most stable double-layered boron sheet as precursor. Double-walled boron nan-

otubes built in this way tend to have huge curvature energies because inner and outer nan-

otubes are identical such that the inner one is compressed and the outer one is stretched

around the circumference. To release the strain, a small inner nanotube and a large outer

nanotube should be used to construct a double-walled boron nanotube whose energy is

optimized with respect to the diameter of the inner nanotube. The resulting double-walled

boron nanotubes benefit from a good balance between strain release and inter-walled bond

formation. Compared to single-walled boron nanotubes, double-walled boron nanotubes

are always more stable and are metallic for the interesting range of diameters. Following

this trend, boron nanotubes are expected to be more stable with increasing number of

walls. Given the hollow structures fabricated in experiments, certain kinetic limitation

mechanism should play a crucial role in the growth of boron nanotubes. However, this

kinetic process can be very difficult to simulate.

The second part of this thesis discusses the structures and phase diagrams of Mg boride

nanostructures. Again, Mg boride sheet structures are the starting point. If focusing on

structures based on single-layered boron sheets, one can consider Mg boride sheets as the

product of doping boron sheets with Mg atoms. When doped on different single-layered

boron sheets, Mg atoms tend to have different charge states, resulting distinct interactions

between Mg atoms. Mg atoms are attractive on small-η boron sheets but repel each other

on large-η boron sheets. Due to interactions between Mg atoms, Mg doped small-η boron

sheets prefer to have Mg stay inside when curved to form nanotubes; it is the opposite

for large-η boron sheets. When energy gains from Mg-Mg interaction overcome energy

125



losses on bending covalent boron bonds, Mg boride nanotubes can be more stable than the

precursor sheets, indicating negative curvature energies. The negative curvature energy is

a unique phenomenon for Mg boride nanotubes and may be important for the growth of

Mg boride nanotubes.

To further understand the overall phase diagrams for two-dimensional Mg boride sheet

structures, the most stable sheet structures at various stoichiometries are searched globally

using a genetic algorithm. Two different structural constraints are considered – the con-

stituent boron sheets are limited to be atomically thin or are allowed to be double-layered.

In the first case, the optimal structures at all stoichiometries can be understood with the

self-doping picture where larger Mg concentration results in large η for the constituent

boron sheets. The stable phase under boron-rich environments is a MgB sheet based

on a hexagonal boron lattice which coexists with α sheet. Once allowing for structures

based on double-layered boron sheets, more stable structures are found to be based on the

double-layered hexagonal boron sheet. Under boron-rich environments, several double-

layered hexagonal boron sheet based Mg boride sheets can coexist with the most stable

double-layered boron sheet.

When considering nanotubes built from Mg boride sheets, curvature effects can be

important for the phase diagrams, especially for small-diameter nanotubes. On one hand,

stable phases from sheet phase diagrams all have large curvature energies and are thus

difficult to curve into nanotubes. Furthermore, structures based on double-layered boron

sheets are much harder to curve than those based on single-layered sheets. On the other

hand, certain Mg boride sheets even prefer curved geometries due to Mg-Mg interactions.

From our rather preliminary results, we observe two trends for the stable phases. First,

structures with small or even negative curvature energies are more preferred for small

diameters. Second, structures based on single-layered boron sheets tend to win over those

double-layered structures for small diameter.

In the third part of the thesis, layered boron crystals based on boron sheet structures

are proposed based on first-principle calculations. These layered boron crystals are con-

structed by stacking boron sheets perpendicular to their surfaces with multi-center-like
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bonds forming between layers. Compared to α rhombohedral boron, layered boron crys-

tals are less stable by 0.15 eV/atom under ambient conditions but can become more stable

under high pressure. When pressure is about 100 GPa, layered boron crystals are com-

parable in stability with two other stable high-pressure phase – γ boron and α-Ga boron.

Given the fairly large DOS around Fermi level for layered boron crystals, they might be

more likely to be superconducting.

The last part of the thesis is dedicated to the possible application of boron nano-

materials for hydrogen storage. For pristine boron sheets and nanotubes, the absorption

energy of hydrogen is too small if hydrogen is physisorbed. On the other hand, the en-

ergy barriers for hydrogen to be chemisorbed are too large to allow fast performance of

absorption and release. In fact, to achieve fast operation physisorption of hydrogen with

the right absorption energies is always preferred. Hence, pristine boron nanostructures are

not suitable for hydrogen storage. Among various metal doped boron nanostructures, Ca

doped ones are optimal and provide the right absorption energy for hydrogen to be ph-

ysisorbed. However, the existence of Ca results in very small or even close to zero energy

barriers for the chemisorption of hydrogen on boron sheets and facilitates the chemisorption

process. The chemisorbed hydrogen atoms can subsequently jeopardize the performance

of Ca atoms as absorption sites, raising the question whether Ca doped boron sheets or

nanotubes are the right materials for hydrogen storage. Furthermore, high concentration

of Ca doping can change the groundstate geometries of boron sheets by donating many

electrons to boron. Hence, Ca doped α sheet or α nanotubes may not be the right system

to investigate. Instead similar procedures to Mg boride sheets should be performed which

first determines the stable stoichiometry and structure then investigates hydrogen storage

properties based on the stable structure.

Further problems

In this thesis we have mainly concentrated in structures, bonding and electronic properties

of boron and Mg boride nanostructures. We are also interested in further investigating

several other problems. One of the problems involves the differences between the second

row and the third row elements in periodic table, e.g., B and Al, C and Si. If viewed
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from pseudopotentials, C and Si are very similar – they have the same number of elec-

trons and similar pseudopotentials converging to −4/r. However, C and Si have rather

different properties. For instance, the groundstate structure of C is graphite while for Si

it is diamond structure. From constructing pseudopotentials we know that properties of

materials are determined by not wavefunctions in the core regions but wavefunctions in

the interstitial regions. Hence the differences between C and Si should be determined by

the shape of their atomic wavefunctions outside core regions. The shape of an atomic

wavefunction is usually described via two factors – locality which measures how localized

the wavefunction is around the core, and eigen-energy which shows the asymptotic decay

rate of the wavefunction. We would like to know which one is the major factor determining

the differences by changing one factor while fixing the other.

Another problem we are interested in is the possibility to grow two-dimensional boron

sheets directly on flat substrates. Unlike graphene, boron sheets do no exist in nature and

are not very stable compared to bulk boron. To grow boron sheets in a similar manner to

graphene, we need a substrate which binds boron atoms strongly to avoid bulk-like phases

while in the same time provides good mobility for boron atoms to move on the substrate.

Possible candidates for the substrates are various close-packed transition metal surfaces.

We are trying to search over various candidates to find the optimal one.

Finally, with analogy to graphene nanoribbons, boron nanoribbons are expected to

have novel properties due to electron confinement and edge effects. To approach this

problem, we can have many degrees of freedom to construct boron nanoribbons such as

precursor sheets with different η and hexagon patterns, different cutting directions. As a

starting point, we have studied nanoribbons constructed from the flat triangular sheet and

discovered interesting properties. For instance, boron nanoribbons from the triangular

sheet are metallic for most cases but can become semiconducting with specific cutting

direction and width. In addition, boron nanoribbons prefer to be cut along B-B bonds

generating smooth edges and these smooth-edged nanoribbons sometimes are more stable

than the precursor triangular sheet. We expect further work to be done on nanoribbons

based on more general precursor sheets.
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Appendix A

Genetic algorithm

A.1 Basic procedure

The basic procedure of a genetic algorithm in predicting crystal structures is illustrated in

Figure A.1. In the following context, we explain the procedure in details.

Representation of structures

For each structure, we represent its unit cell with a 3×3 matrix in which each row is a

lattice vector. To remove the redundancy from rotation, we transform the lattice matrix

into lower-triangular format. Equivalently we rotate the structure and make the first

lattice vector align along x axis and second lattice vector lie in x-y plane. In following

calculations, lattice matrices are always represented in or transformed to lower-triangular

format. On the other hand, atomic positions are in fractional coordinates which facilitates

crossover of two structures.

Generation of random structures

We randomly generate initial structures with constraints to avoid too unreasonable config-

urations. First, we randomly generate the 3×3 lattice matrix with nine random numbers

and make sure that they fulfill the following requirements: a) angles between any two

lattice vectors are between 50◦ and 130◦, and b) ratio between lengths of any two lattice

vectors is between 1/3 and 3. We then transform the lattice matrix into lower-triangular

format which is then multiplied by a common factor to make sure that volume of the unit

cell is within reasonable range. Second, all atomic coordinates are generated in fractional
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Figure A.1: Basic procedure of genetic algorithm in predicting crystal structures.

units with random numbers and distances between any two nearest neighbors are ensured

to be larger than 1 Å. In principle, more constraints in the generating initial random struc-

tures will lead to faster convergence of the final structures but might increase the chances

to miss optimal structures.
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Local minimization

To relax each structure to the corresponding local minimum, we have used a standard DFT

code SIESTA with the conjugate gradient method. SIESTA is very stable when relaxing

randomly generated structures which are usually highly distorted. In contrast, we have

done some testing and used PWSCF to relax random structures. We found out that the

BFGS algorithm in PWSCF is unstable when relaxing structures far from local minima

and shows unreasonable large stresses after a few ionic steps. On the other hand, local

minimization is in principle not necessary and was not used in many versions of genetic

algorithm codes. However, local minimization has been proven to be indispensable for

structure prediction in practice. The reason is quite simple. Local minimization greatly

simplifies the free energy surface and removes many degrees of freedom in constructing

crystal structures such as small changes of bong length and bond angles. In addition,

local minimization is a very mature technique in first-principles calculations and can be

performed very efficiently. Overall, local minimization is able to speed up genetic algorithm

calculations very much and should be included in all calculations.

Crossover and Mutation

Crossover means the process that two parent structures combine together to generate new

structures. The generated new structure should keep some characteristics from each parent

structure. In a genetic system, crossover of chromosomes is rather straight forward because

each chromosome can be essentially represented by an one-dimensional array of 1s and 0s

and crossover can be done by cut-and-paste. However, for crystal structures crossover can

be quite tricky because each structure is represented by a 3×3 lattice matrix and fractional

coordinates of atoms. In practice, crossover of two crystal structures involves two parts.

First, the new lattice matrix is generated by mixing the lattice matrices of two parents

randomly. A random number rL is generated and the lattice matrix of the offspring

structure is obtained by

Los = rL × Lp1 + (1− rL)× Lp2, (A.1)

where Lp1 and Lp2 are the lattice matrices of two parents.
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Second, atomic coordinates of the new structure are obtained in the following way.

Essentially we would like to cut the two parent structures along a certain direction, pick

one part from the first parent and another part from the second parent, stick the two parts

together and form a new structure to be used in the next generation. In practice, we first

randomly choose a lattice vector and let us assume we have picked the first lattice vector.

Then we generate a random number rA in [0,1) and choose atoms from the first parent

with the first coordinate smaller than rA and additional atoms from the second parent with

the first coordinate lager than rA to form the offspring structure. We check the number of

atoms for each species – we remove atoms randomly if there are too many and add atoms

randomly if there are too few.

On the other hand, mutation changes crystal structures randomly and abruptly with

certain probabilities. Mutation provides the mechanism to bring novel properties into

the system and is especially important when trying to jump out from a local minimum.

Three operations can be done for mutation – changing lattice matrix, perturbing atomic

positions, and switching positions of atoms from different species. Among three operations,

perturbing atomic positions is least important because local minimization cancels most of

the effects from small perturbation of atomic positions. In practice, the operation to

perturb atomic position can be safely neglected.

Parameters and convergence

For a typical genetic algorithm calculation to deal with problems with 20 to 30 atoms, we

use 20 structures in each generation and choose 12 most stable ones as parents to generate

new structures for next generations. We generate one new structure by changing the lattice

matrix, one new structure by switching atoms from different species and the remaining

structures from the crossover of two parents. In addition, the most stable structure in each

generation is kept to compete in the next generation. We assume one genetic algorithm

calculation converges when at least 5 structures in one generation are the same as the most

stable one. Most of our calculations converge in less than 15 iterations. We have set our

maximal number of iterations to be 20.
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A.2 Adaptation to two-dimensional sheets and Nanotubes

Genetic algorithm can be easily adapted to studying two-dimensional sheet structures

and nanotubes. For two-dimensional sheet structures, we set up structures in the x-y

plane and vacuum along z. We fix the z lattice constant to be 30 Å for all structures.

When generating initial random structures, only the first two lattice vectors are randomly

generated and are fixed in the x-y plane. In addition, z coordinates of atoms are randomly

generated in the range of [0, 0.3) to ensure a two-dimensional configuration. In the process

of local minimization, only the first two lattice vectors are relaxed and are always kept

in the x-y plane. In crossover, only the first two lattice vectors can be chosen to perform

cut-and-paste. In addition, to avoid the occurrence of bulk-like phases for our Mg boride

sheet structures, we have applied penalty functions to constrain the constituent boron

structures to be sheet-like. We add the following function to the total energy of each Mg

boride structure during the competition process

Epenalty = K ×
B atoms�

i

[(|zi − z̄|− L)×H(|zi − z̄|− L)]2, (A.2)

where zi is the z coordinate of boron atom i, z̄ is the average z coordinate of all boron

atoms, K and L are two parameters, the sum is over all boron atoms, and H(x) is the

Heaviside step function (equal to 0 if x < 0, 1 if x ≥ 0). Basically, we apply a quadratic

penalty to the total energy once the distance between a boron atom and the xy plane

defined by z̄ is larger than L. By varying the values of K and L, we are able to confine the

constituent boron sub-systems of all Mg boride structures to be single-layered or double-

layered, which are the two types of scenarios we have investigated.

For nanotubes, we perform all genetic algorithm procedure on their precursor sheets

and make structures compete with each other based on total energies calculated from nan-

otubes. First, we randomly generate sheet structures and roll them into nanotubes. After

relaxing these nanotubes into their local minima, we choose a certain number of most stable

ones from the relaxed nanotubes and obtain their precursor sheets. We perform crossover

and mutation on these sheets to generate new sheet structures which are then rolled up
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Figure A.2: Basic procedure of genetic algorithm for nanotubes.

into nanotubes to be used in the next generations. The whole process iterates until conver-

gence. With curvature effects included, the energy surface becomes even more complicated

and hence the convergence in nanotube calculations is slower than two-dimensional sheets,

especially for small-diameter nanotubes.
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Appendix B

Notes on pseudopotentials

We have managed to change the locality of pseudo atomic wavefunctions while fixing the

atomic eigenenergies. Suppose we have generated a norm-conserving pseudopotential for

carbon with a reference electronic configuration 2s22p2 and cutoff radii rs and rp. Then

pseudo atomic wavefunction ϕl is described by

�
− �2
2m

∇2 + V
ps

l
(r) + Vxc(r) + Vh(r)

�
ϕl(r) = �lϕl(r), (B.1)

where V
ps

l
is the pseudopotential for the angular momentum component l, Vxc is the

exchange-correlation potential and Vh is the Hartree potential. We further separate the

radial part of the wavefunction from ϕl by introducing

ϕl(r) =
Ul

r
Ylm, (B.2)

where Ylm is the spherical harmonic function. Then the radial equation is

�
− �2
2m

d
2

dr2
+ V

ps

l
(r) + Vxc(r) + Vh(r) +

l(l + 1)�2
2mr2

�
Ul(r) = �lUl(r). (B.3)

To change the locality of Ul(r) while fixing �l, we alter V
ps

l
(r) inside the core region and

keep the asymptotic behavior of V ps

l
(r) (≈ −4/r when r → ∞). We have developed two

methods to accomplish the task.

The first method is rather straightforward. We discretize the core region into Ns and
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Np points for s and p channels, respectively. Usually the same grids from pseudopotential

generation are used. We denote the s and p pseudopotentials on these grids by two vectors

ξs (with length Ns) and ξp (with length Np). Then Us(r), Up(r) and �s, �p are functions

of ξs and ξp, or ξ=(ξs, ξp), which is a vector with length Ns+Np. The original question is

then transformed into how to change ξ such that �s and �p are fixed, or how to move along

the contour lines of �s and �p. The solution is simple. First, we compute the gradients of

�s and �p with respect to ξ

∇s =
d�s

dξ
=

�
∂�s

∂ξ1
,
∂�s

∂ξ2
, . . .

�
, (B.4)

and

∇p =
d�p

dξ
=

�
∂�p

∂ξ1
,
∂�p

∂ξ2
, . . .

�
. (B.5)

∇s and ∇p are vectors with length Ns+Np. Then we orthonormalize ∇s and ∇p via the

Gram-Schmidt scheme

ns =
∇s

|∇s|
(B.6)

n
�
p = ∇p − (∇p · ns)ns, np =

n
�
p

|n�
p|
. (B.7)

If we induce a small change in ξ that is perpendicular to both ns and np, �s and �p

will remain unchanged. For any arbitrary change to ξ, we simply perform the following

transformation

δ → δ
� = δ − (δ · ns)ns − (δ · np)np, (B.8)

then δ
� is perpendicular to ns and np.

In practice, pseudopotentials are generated using the fhi98PP code [122]. We then

employ the same discrete grids inside the core region as those used in pseudopotential

generation, and calculate ∇s and ∇p with small changes of ξ at each grid point, which

requires solving the radial equation (Equation B.3) Ns+Np times. With ∇s and ∇p,

we can obtain ns and np via the Gram-Schmidt orthonormalization. Then we propose

a small change to ξ, and make it perpendicular to ns and np via the transformation in

Equation (B.8). The resulting change is then applied to ξ, and new radial wavefunctions
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and eigenenergies are recalculated using fhi98PP. ns and np are also recalculated. We

repeat the process until we obtain desired changes in the pseudopotentials.

The above method is time-consuming because there are hundreds of discrete points

inside the core region, and thus calculating ns and np at each iteration requires hundreds

of runs of fhi98PP to solve the radial equation. To improve the efficiency, instead of

modifying ξ point by point, we can change the pseudopotential with continuous functions.

we have considered changes in the form of sine and cosine functions. To confine the changes

within the core region, we multiply each function by a cutoff function, which results in the

following functions

e
−(r/rc)8 , cos

�
kπ

rc
r

�
e
−(r/rc)8 , sin

�
kπ

rc
r

�
e
−(r/rc)8 , (B.9)

where k is a positive integer and rc is the cutoff radius.

We have used functions with k up to 2, resulting in 5 basis functions for each channel

(s and p) and 10 basis functions in total. We denote these functions by fi, i=1,2,. . .,10,

and expand changes in the pseudopotentials with respect to them

∆ =
10�

i=1

cifi (B.10)

Following a similar procedure to that in the previous method, we calculate the gradients

∇s =

�
∂�s

∂c1
,
∂�s

∂c2
, . . .

�
, (B.11)

∇p =

�
∂�p

∂c1
,
∂�p

∂c2
, . . .

�
, (B.12)

and obtain the orthonormalized ns and np

ns =
∇s

|∇s|
(B.13)

n
�
p = ∇p − (∇p · ns)ns, np =

n
�
p

|n�
p|
. (B.14)

With a small arbitrary change to the pseudopotentials, δ, we expand it in terms of the
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Figure B.1: Radial wavefunctions and pseudopotentials for s and p channels of a carbon
atom. Black dashed lines show the wavefunctions and pseudopotentials from the original
pseudopotential generation with the cutoff radii rs=rp=1.8a0. Red solid lines show the
wavefunctions and pseudopotentials for the case of a more localized s wavefunction, in
which the eigen-energies �s and �p remain the same.

basis functions

δ =
10�

i=1

difi, (B.15)

or simply δ=(d1,. . .,d10). Then we make the following transformation

δ → δ
� = δ − (δ · ns)ns − (δ · np)np, (B.16)

and modify the pseudopotentials according to δ
�. This new method is much faster than

the previous one, because evaluating ns and np only needs to run fhi98PP 10 times at each

iteration instead of hundreds.

By choosing different proposed changes in the pseudopotentials, we are able to generate

138



new pseudopotentials with the atomic radial wavefunction of one channel (s or p) more

localized or delocalized, while fixing approximately the other channel. For instance, if

we propose changes only to the s pseudopotential, and make it more negative inside the

core region, the s radial wavefunction will become more localized, while the p wavefunction

stays approximately unchanged. As an example, Figure B.1 shows the radial wavefunctions

and pseudopotentials of a carbon atom, for which the s wavefunction has been modified

to be more localized compared to the original one. We can see that the wavefunction and

pseudopotential of the p channel barely change.
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[71] Per-Olov Löwdin. On the non-orthogonality problem connected with the use of
atomic wave functions in the theory of molecules and crystals. J. Chem. Phys.,
18(3):365–375, 1950.

[72] Daniel Sanchez-Portal, Emilio Artacho, and Jose M. Soler. Projection of plane-wave
calculations into atomic orbitals. Solid State Communications, 95:685–690, 1995.

144



[73] P. J. M. Laarhoven, P. J. M. van Laarhoven, and E. H. L. Aarts. Simulated annealing:
theory and applications. Springer, 1987.

[74] S. Goedecker. Minima hopping: An efficient search method for the global minimum of
the potential energy surface of complex molecular systems. J. Chem. Phys., 120:9911,
2004.

[75] S. Goedecker, W. Hellmann, and T. Lenosky. Global minimum determination of
the Born-Oppenheimer surface within density functional theory. Phys. Rev. Lett.,
95(5):55501, 2005.

[76] C. J. Pickard and R. J. Needs. High-pressure phases of silane. Phys. Rev. Lett.,
97(4):45504, 2006.

[77] Artem R. Oganova and Colin W. Glass. Crystal structure prediction using ab initio
evolutionary techniques: Principles and applications. J. Chem. Phys., 124:244704,
2006.

[78] Artem R. Oganov and Colin W. Glass. Evolutionary crystal structure prediction as
a tool in materials design. J. Phys. : Condens. Matter, 20:064210, 2008.

[79] Colin W. Glassa, Artem R. Oganova, and Nikolaus Hansenc. USPEX–Evolutionary
crystal structure prediction. Comput. Phys. Commun., 175:713–720, 2006.

[80] Atomistix ToolKit Manual. http://www.quantumwise.com/documents/manuals/ATK-
2008.10/index.html.

[81] Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A climbing image
nudged elastic band method for finding saddle points and minimum energy paths. J.
Chem. Phys., 113:9901, 2000.

[82] G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged elastic
band method for finding minimum energy paths and saddle points. J. Chem. Phys.,
113:9978, 2000.
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