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“The first principle is that you must not fool yourself and you are the easiest
person to fool.”

Richard Feynman
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Transition metal oxides have long been an important subject of study,
both theoretically and experimentally. The wide array of phases possi-
ble in their bulk forms (high Tc superconductivity, colossal magnetore-
sistance, ferroelectricity, etc.) makes them of scientific and technologi-
cal significance, while relatively recent materials deposition techniques
have allowed researchers to grow new, ’artificial’ materials in the form
of heterostructures and thin films. These structures offer a rich array of
parameters to explore, as interfaces and thin films often show patterns
of behavior that are quite different from their parent bulk compounds.
From the point of view of electronic structure theory, this offers a rich
playground where one can search for new physical phenomena. What
makes transition metal oxides physically interesting is also what makes
them difficult to study theoretically: the transition metal d-orbitals that
dictate the wide array of phases in this class of materials cannot always
be treated appropriately within band theory due to strong local electron-
electron interactions. The local interactions are most often treated with
a multi-band Hubbard model ’glued’ on top of the first principles cal-
culation. In this thesis, we have explored both a variety of complex ox-
ide heterostructures and phenomena as well as advanced the compu-
tational framework used to describe them. We have analyzed the ef-
fect of local electrostatic fields at a ferroelectric-manganite interface as
seen by electron energy loss spectroscopy, found a dimer-Mott state in
a cobaltate-titanate interface, and identified new sources of orbital po-
larization at a nickelate-aluminate interface. We have also developed a
generalized slave-boson formalism for multi-band Hubbard models that
can be applied in large scale calculations involving complex oxide het-
erostructures and thin films.
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Chapter 1

Introduction

Transition metal oxides have long been a subject of study in both theo-

retical and experimental physics. This is due to their technological utility

(for example, as ferroelectrics) as well as due to their fascinating and less-

well understood properties which relate to fundamental issues in con-

densed matter physics (e.g., high temperature superconductivity) which

also have possible practical use - if they can be harnessed.

Even in bulk form, the physical behavior of transition metal oxides is

dominated by many competing degrees of freedom and order parame-

ters (lattice, orbital, spin, charge). Due to this complexity, combining dif-

ferent transition metal oxides into new, ’artificial’ materials is a promis-

ing avenue of study for the discovery of new phenomena not found in

their parent compounds. As experimental approaches continue to push

the boundaries on the precision and complexity of the materials that can

be fabricated, it has become increasingly important that theory predict

which materials are relevant to grow in order to focus experimental ef-

forts. Furthermore, with advances in spectroscopy through which ma-

terials can be understood at the level of individual atoms (Atomic Force
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FIGURE 1.1: The large array of physical properties of tran-
sition metal oxides that occur from a combination of struc-
tural distortions and interplay between local and non-local

effects.[1].

Spectroscopy, Electron Energy Loss Spectroscopy), it has become increas-

ingly important that theory become predictive in order to understand

and explain spectroscopic results.

Starting with the Kohn-Sham equations, [2, 3] Density Functional

Theory (DFT) has been the main workhorse in understanding the ba-

sic properties of many materials including transition metal oxides. One

of its advantages is that, rather than solving the full many-body electron
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problem, it solves a single-particle problem with the many-body inter-

actions approximated by an ’exchange-correlation’ potential calculated

from the average electron density. This allows for atomic and electronic

structure predictions of surprising accuracy with a relatively low compu-

tational cost, making DFT indispensable for modeling of novel materials.

At the same time, DFT’s main advantage as a single-particle theory is

also one of its biggest headaches when treating the electronic structure

of transition metal oxides. The 3d orbitals on the transition metal cations

exhibit ’strong correlations’, i.e., the local Coulomb interaction on the

orbitals is so strong that many-body effects at the local level compete

with long-range electron transport and make the band picture inaccurate

and at times inadequate.

In order to treat local interactions, a standard approach has been to

focus a single atom and treat it as an interacting impurity with a set of

localized electronic states within a bath of conduction electrons (e.g., the

Anderson model [4, 5]). The next level is to connect all these interact-

ing impurities together to create a Hubbard model [6]. Even within the

simplest context, however, Hubbard models for solid state systems have

been very difficult to solve exactly or even accurately over a wide range

of their model parameters, requiring the development of new theoreti-

cal tools. Some examples are slave-boson methods [7–10] (described in

some detail in this thesis) and Dynamical Mean-Field Theory (DMFT)

[11, 12]. In addition, a model Hamiltonian approach necessarily relies

heavily on the set of adjustable parameters it contains (e.g., the Hubbard

local repulsion energy U ).

In recent decades, computational improvements have allowed researchers
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FIGURE 1.2: From the left: An impurity site is ’glued’ on
top of the calculated electronic structure from DFT - typical
for all ’post-DFT’ methods for correlated materials - after
which, in this particular case in DMFT, one scans through
the various possible allowed local electronic configurations
to describe the interacting impurity site. Image from Ref.

[11].

to ’glue’ impurity models on top of Density Functional Theory within

various levels of approximation, with the most common one being DFT+DMFT

[11].

DFT+DMFT has often allowed for great progress, particularly in terms

of spectroscopic properties - especially ARPES - in the bulk [13, 14].

However, it involves the very expensive self-consistent computation of

the local Green function (i.e., the solution of the interacting impurity

problem) which does not lend itself well to use on heterostructures that

often involve over 100 atoms and 20 different impurity sites. For this rea-

son, we began with two recent methods to solve the Hubbard model that

are extremely inexpensive computationally by comparison: the slave-

rotor [8–10] and slave-spin [15, 16] approaches. While developing our

own numerical implementation for these methods, we discovered that

they can be generalized [17] to an array of intermediate models of occupation-

based slave-boson methods. Since one of the goals of using this class of
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model is to be able to understand long-range order in materials, we also

had to develop a way to include spontaneous symmetry breaking, as all

previous work using the slave-rotor and slave-spin relied on a Hund’s J

coupling term or structural symmetry breaking to induce spin symme-

try breaking [10, 18]. We have shown that within these existing slave-

boson frameworks, one could not even obtain a self-consistent antifer-

romagnetic solution for a one dimensional, single band Hubbard model

at half-filling. However, we have shown that the addition of symmetry

breaking fields actually leads to a simpler, more efficient and stable com-

putational framework for slave-particle calculations that also allows for

spontaneous symmetry breaking.

The remainder of this thesis is organized as follows. In Chapter 2,

we discuss some of the methods that we’ve used as they relate to Den-

sity Functional Theory. In Chapter 3, we discuss the generalized slave-

particle framework we have developed that builds upon the slave-rotor

and slave-spin approaches. In Chapter 4, we use both density functional

theory and slave-particle methods to analyze new sources of orbital po-

larization in an aluminate-nickelate interface. In Chapter 5, we use den-

sity functional theory methods to analyze the electron energy loss spectra

at a manganite-ferroelectric interface. In Chapter 6, we discuss an un-

conventional insulating state in a cobaltate-titanate heterostructure. In

Chapter 7, we present an outlook on open questions and future work.
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Chapter 2

Methods

Density Functional Theory (DFT)

DFT is the main workhorse of computational material physics based on

first principles electronic structure. The main idea behind it is that, of-

ten, we can access many useful physical observables without explicitly

solving the full many-body interacting electron problem. Instead, we can

use a mean-field single-particle approach that is appropriately designed

to give key observables correctly. As mentioned in the Introduction, this

is also its main weakness when it comes to transition metal oxides.

The main point in DFT is to avoid explicit solution of the quantum

mechanical equation for the electronic ground state

HΨ0 = EΨ0 (2.1)

where Ψ0 is the ground state many-body wavefunction of an N -electron

system. In natural units (h̄ = 1, e = 1,me = 1) the electronic Hamiltonian

is

H = T + Vee + Vei (2.2)
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which is the sum of the electronic kinetic energy

T = −1

2

N∑
j=1

∇2
j , (2.3)

the electron-electron repulsive interaction energy

Vee =
1

2

N∑
j 6=k

1

|rj − rk|
, (2.4)

and the electron-ion attractive interaction energy

Vei = −
∑
J

ZJ
|r −RJ |

. (2.5)

To solve the many-body equation exactly, we would have to tabulate the

anti-symmetrized wavefunction:

Ψ0(r1, r2, ..., ri, ..., rj, ...rN) = −Ψ0(r1, r2...rj...ri...rN) (2.6)

for all inequivalent combinations of the electron coordinates {rj} (spin

indices are suppressed for simplicity). In real space, for a spatial repre-

sentation that allows g grid points, to represent the N wave function Ψ0,

we would need on the order of gN tabulated values which scales expo-

nentially in the number of electrons. This clearly shows a need for a sim-

pler (e.g., single-particle) approach. Modern DFT algorithms are much

more efficient than exponential scaling: in fact, their computational cost

typically scales cubically in the number of electrons, i.e. O(N3). As op-

posed to solving the full problem, however, DFT describes information

such as:
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• the ground state energy of the system E0; and thus energy differ-

ences between various configurations of atoms (particularly useful

in physical chemistry)

• the electron density, n(r)

• single particle band energies (which are not always reliable, as we’ll

discuss later)

The first two (energy and density) DFT can, in principle, describe exactly.

The band energies are in principle suspect and inexact, but in practice

enormously useful for analysis of materials properties.

In order to create a single-particle approach, we write the equation in

the energy E0 in the following way:

E0 = 〈Ψ0|T + Vee + Vei|Ψ0〉 = 〈Ψ0|T + Vee|Ψ0〉+

∫
n(r)v(r) . (2.7)

Here v(r) is the potential felt by electrons due to the ions

v(r) = −
∑
I

ZI
|r −RI |

which in fact specifies the specific electronic Hamiltonian to be solved

for a particular material. The other energies have no dependence on the

actual problem being solved.

We define an energy functional for this universal part

F = 〈Ψ0|T + Vee|Ψ0〉 (2.8)
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The Hohenberg-Kohn theorems [3] that describe how to solve the

above equations are the following.

Theorem 1: v(r) is a unique function of n(r), i.e., there is a unique bi-

jection between v(r) and n(r). Usually, we are given v(r) and then solve

for Ψ0 which then yields n(r). This theorem means we can instead use

the ground state density n(r) as a working variable. So, in fact, Ψ0 is a

functional of n(r) which we denote as Ψ0[n]. And so is F [n].

This permits us to define an energy functional of any density ñ (which

is some ground state density)

E[ñ] = F [ñ] +

∫
drñ(r)v(r) (2.9)

Theorem 2 E[n] takes its minimum value at the ground state electron

density n0(r) associated with v(r), and its value is the ground state en-

ergy E0. Hence we have a variational principle: we minimize E[ñ] over

trial densities and the lowest energy one is the right one (and delivers

the ground state energy).

These two theorems show that we can find the ground state energy

of a system as a function of the local potential and thus of the electronic

density. However, they do not tell us what F [n] is.

Kohn and Sham [2] invented a set ofN fictitious independent electron

degrees of freedom {ψj(r)} where the electron density for N electrons is

given as

n(r) =
N∑
j=1

|ψj(r)|2 . (2.10)

The Kohn-Sham equations show that one can find these electronic states
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by solving a Schrodinger equation for independent electrons. These equa-

tions are

−
[
∇2

2
+ veff (r)

]
ψj(r) = εjψj(r) . (2.11)

The effective potential veff is the sum of the ionic, the Hartree (electro-

static term) as well as the ’exchange-correlation’ potentials.

veff (r) = v(r) +

∫
dr′

n(r′)

|r − r′|
+ vxc(r) (2.12)

where v(r) is the ionic potential, the second term is the Hartree (calssi-

cal electrostatic) potential associated with n(r), and vxc is the so-called

exchange-correlation potential. The total energy in this picture is given

by

E0 = −
∑
j

〈ψj|−∇2/2 + v(r)|ψj〉+
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r − r′|
+ Exc[n] .

The exchange correlation energy Exc is related to the potential via

vxc(r) =
δExc
δn(r)

.

We also have no information, from the basic theory, about Exc.

The problem is then, what is the exchange-correlation potential (or

energy functional)? There is no known general solution, however var-

ious approximations are used. The most commonly used types of ex-

change correlation energies are:

• Local Density Approximation, where we assume that Exc depends

on n(r) in a local way, i.e., the local density of electrons determines



12 Chapter 2. Methods

the local exchange-correlation potential. This idea takes the form

ELDA
xc =

∫
d3rn(r)εxc(n(r)) (2.13)

where εxc(n) is the exchange correlation energy of an electron sys-

tem at constant density n (and which has been computed and tabu-

lated using accurate many-body methods [19]). LDA tends to work

well when the density of the electron gas is nearly constant; when n

is very large (so that the kinetic energy will dominate errors rather

than Exc); and often for the case of weak electron correlations. LDA

is usually bad when we have rapidly varying n(r), i.e., at the same

scale as the mean electron-electron separation, when we have low

density and thus electron-electron interactions dominate over the

kinetic terms, or when there are strong electron correlations LDA

gives poor band spectra. Throughout this thesis when we refer to

LDA, we specifically mean the version developed by Perdew and

Zunger. [20]

• LSDA: Is simply LDA generalized to include the effects of different

spins separately in the exchange correlation potential, hence the

name Local Spin Density Approximation.

• GGA: the Generalized Gradient Approximation, which as the name

suggests, involves the gradient of the density and is of the form:

EGGA
xc =

∫
d3rn(r)εxc(n(r),∇n(r)) (2.14)

Within the context of this thesis, the GGA approximation is used
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in the context of chapter 5, specifically the PBE version [21] , as in

our experience it more accurately predicts both EELS spectra and

magnetic order in La1−xSrxMnO3

Pseudopotentials

Since most often for our solid-state calculations we will use Bloch states

(we are mainly interested in periodic systems in this thesis), full numer-

ical convergence of all the electronic states (core and valence) would be

difficult to obtain if we simulated all the electrons. Furthermore, many of

the very tightly-bound core states states may not be of physical interest

in our calculations. For example, a 1s state in a transition metal can be

approximated as a point charge in most calculations.

Thus, when we pick an atom, we pick the states that are of most in-

terest to us and create an atomic pseudopotential to replace the actual

potential such that:

• the resulting potential that valence electrons ’feel’ after a certain

distance is the same as what they would have felt had the full cal-

culation with all the electrons been done, and

• the resulting valence wavefunctions after a certain critical distance

from the nucleus are identical to the true atomic wavefunctions of

the atom.

The core-states are not included in the explicit DFT calculation that we

wish to perform. In practice, they serve as screening charges around

the nucleus so that the resulting pseudopotentials are smoother than the

true potential. Also, there are fewer electrons needed to calculate the

properties of the system making it easier to obtain physical results.
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In some respects, this is one of the trickiest part of DFT calculations. It

is unclear what makes a certain pseudopotential type work very well, as

there are many types to choose from as well as different available open-

source codes that one can use to generate them. For the calculations I

have done, I have used pseudopotentials that are either from the Quan-

tum Espresso library [22] or others that I have generated myself using

the Vanderbilt Ultrasoft pseudopotential generating code [23].

Virtual Crystal Approximation (VCA)

In order to approximate alloys, such as La1−xSrxMnO3, it is very useful to

have a way to represent the alloying (x) in a simple and efficient manner

that does not require a very large unit cell containing the various random

distribution of atoms involved. The VCA [24] is the simplest solution to

this problem that one can think of: one creates pseudopotentials for the

two atoms and combine them linearly. Namely, to create the virtual atom

corresponding to the chemical alloying A1−xBx, one creates the virtual

pseudopotential V X
ps as

V X
ps = (1− x)V A

ps + xV B
ps . (2.15)

Of course, an ’average atom’ seems like a somewhat artificial idea. How-

ever, in cases where the atom being modeled through VCA does not have

electronic states close to the Fermi level and is used as an electron donor

as well as for its size, we’ve found that VCA [25, 26] can be a very appro-

priate method.
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DFT+U

The DFT+U approach [27], also known as LDA+U or GGA+U depending

on the type of exchange-correlation functional one uses, is a way to try

and include some of the effects of local Coulombic interactions on a sin-

gle atomic site with localized orbitals in a way that goes beyond the local

potential of DFT for cases of open shell systems (partial occupancies of

local orbitals). For example, one can aim to create an energy functional

looking like

EDFT+U = EDFT +
1

2
U
∑
i 6=j

ninj (2.16)

where the second term is the Coulomb interaction term from the Hub-

bard model, and ni is the electron occupancy of localized orbital i on

atom. However, assuming that the energy obtained from DFT is cor-

rect when the orbitals are either completely empty or completely full,

njσ ∈ {0, 1}, one has to subtract out the contribution of this Hubbard

like term to void “double counting”. This yields the following modified

functional:

EDFT+U = EDFT +
1

2
U
∑
i 6=j

ninj − UN(N − 1)/2 (2.17)

where N is the total number of electrons on the site of interest. The local

orbital energies are then

εi =
∂E

∂ni
= εDFTi + U

(
1

2
− ni

)
(2.18)
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FIGURE 2.1
A correction to DFT such as DFT+U can help break symmetry and obtain
a magnetically polarized solution and thus a band gap. This is illustrated
here for a ferromagnetic phase of a one dimensional lattice system with
nearest neighbor hoppings.

There are more complicated versions of DFT+U that include a Hund’s

term J [27], but we will not be using them in this thesis. From a prag-

matic viewpiont, what DFT+U often does is best understood in the above

local orbital energy equation: when an orbital is more than half-filled, its

energy is lowered (and vice versa). A full shift of occupancy between

0 and 1 means an energy splitting of U which mimics the formation of

a Hubbard band (albeit in band theory). In this way, DFT+U often ex-

acerbates whatever tendency to occupancy differences already exists in

a material. In addition, it can stabilize symmetry broken phases which

will have orbitals with differing electron occupations. Figure 2.1 illus-

trates this point.

Wannier Functions

In many cases when we need to obtain local properties, Bloch states be-

come inappropriate: they are, by definition, extended throughout the
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crystal. In the case of calculations such as those in this thesis, the need to

understand physics at a local level using correlated localized orbitals is

obvious. However, atomic orbitals are not always a great option: while

they are useful to understand free atoms, in the context of a solid they do

not lead to an orthogonal, complete set of states.

A method to obtain a complete and orthonormal set of states (for a set

of bands of interest) is to take a discrete Fourier transform of the Bloch

states for each band to generate a Wannier function for that band. The

method to obtain them looks deceivingly simple. Pick a band n, and to

obtain the value of the Wannier function at the lattice position R, just

sum over all the Bloch states corresponding to that band:

WnR =
1√
N

∑
k

e−ikRψnk(r) . (2.19)

It is very straightforward to prove that this transformation leads to a

complete and orthonormal basis set. Furthermore, the locality effect

seems obvious from this tight-binding like equation:

〈WnR|H|Wn′R′〉 = δnn′en(R−R′) (2.20)

whereH is the one-particle Hamiltonian generating the Bloch states, and

en(R − R′) is a function that only depends on the relative distance be-

tween the two lattice sites. This tight-binding representation would tend

to make us believe the Wannier functions must be localized.

There is, unfortunately, a great deal of freedom in picking the phases
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for the Fourier transform from Bloch to Wannier representation. For ex-

ample,

WnR =
1√
N

∑
k

e−ikRψnk(r)e
iθnk (2.21)

are an equally good set of Wannier functions for any phases θnk. In fact,

for a set of bands, one can make arbitrary unitary transformations among

them as well:

ψ̃nk(r) =
∑
m

ψmk(r)U
k
mn (2.22)

and still get equally valid Wannier functions. Hence, Wannier functions

are quite ill defined without some further constraints being imposed.

It turns out that one can pick the phases or U matrices to minimize

the spatial extent of the Wannier functions. Namely, one varies the Uk

matrices until the quadratic ’spread functional’ is minimized:

Ω =
∑
n

〈r2〉n − 〈r〉2n (2.23)

These are the basics of generating Minimally Localized Wannier Func-

tions (MLWF) [28]. As it turns out, MLWFs tend to look quite like atomic

orbitals with some added features from nearby orbitals to ensure or-

thonormality (for example, the Mn Wannier d orbitals will have some

character from the O 2p orbitals from the nearby oxygen atoms in an

oxide of Mn).

There are many uses of Wannier functions [29]. The main reason we

will use them is to obtain the physical parameters for tight-binding mod-

els that will then be modified to include local interactions. We pick bands

of interest, usually the ones near the Fermi level, and use models based

on their Wannier functions to find hopping parameters for Hubbard-like
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models.

From the above description, Wannier functions seem like an ideal ba-

sis set. But, in practice, they may be difficult to generate or work with.

For example, in calculations involving complex heterostructures, it can

be near impossible to isolate the bands of physical interest from other

bands at the same energies. This especially true in cases where, for com-

putational reasons, we must include an explicit electrode in the simula-

tion cell: most of the bands near the Fermi level will belong to the elec-

trode, and separating them from the relevant transition metal d states

can be very difficult. Furthermore, selecting the energy ranges of interest

involves some art, intuition, and luck. If one picks a range that is too

small, the bands may be cut off and incomplete. If one picks a range that

is too large, the MLWF will lose their intended meaning as the most lo-

calized states the computer will obtain will asymptotically tend to delta

functions.

O-K Edges in Electron Energy Loss Spectroscopy

Electron Energy Loss Spectroscopy (EELS) is one of the few experimental

tools that provides information about the local electronic structure in real

space at the atomic scale. High speed electrons (keV) are shot through

a material and their loss of kinetic energy is measured upon exiting the

sample. To get chemically specific information that is spatially local, one

uses a narrow electron beam and looks at high energy electron loss pro-

cesses involving transitions from core states to valence states on specific

chemical species, and each atom has a unique “fingerprint” in terms of

the energy ranges for its core-valence transitions.
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We focus on the oxygen K-edge corresponding to the oxygen 1s→ 2p

transition (approximately at 530 eV [30, 31]). The matrix element on the

O atom involved for a process with momentum transfer k is

〈1s|eik·r|2p〉 ≈ 〈1s|2p〉+ 〈1s|ikr|2p〉 (2.24)

The first term is zero since 1s and 2p are orthogonal, and the second

term is a dipole transition. We generally stop at the dipole level since

the 1s state is extremely localized so the range of r variation in the inner

product is small. In a crystal, the Bloch states have amplitudes on all

atomic states including the O 2p states, so a transition from O 1s to a

Bloch state labeled by n, k at energy E will have rate given by

(2.25)
T1s→n,k(E) ∝

∑
n,k

|〈n, k|2p〉|2δ(E − En,k)θ(En,k − EF )

= θ(E − EF )PDOS2p(E)

where PDOS2p is the projected density of states on the 2p states and

the zero of E is at EF -E1s (the lowest transition energy possible). We

have assumed here that the transition dipole matrix elements is energy

independent so it does not appear inside the sum. Since in a typical

oxide the O has a closed shell (formal charge of −2), T will be nonzero

only due to hybridization of O 2p to nearly cation states and the O-K

edge describes the local electronic and chemical environment of the O

atom in question.
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The Z and Z+1 Approximation for EELS

Although DFT, in principle, can not describe excited states involved in

EELS, in practice it has proven quite effective in the study of EELS spec-

tra in many materials [30–32]. Physically, when the core hole is created,

the electronic system requires some time to respond and screen the pos-

itive charge of the core hole. Separately, various materials have differ-

ent effectiveness at screening of electrostatic perturbations. In situations

where the screening is very localized and strong, one may disregard the

effect the core hole has on the electrons and simply compute the transi-

tion rate with the unperturbed ground state electronic wave functions:

this is the so called “Z approximation.” The opposite limit (the “final

state” approximation) is to permit the electrons to completely adjust to

the core hole and screen it statically (“Z+1 approximation”). In order to

model the core hole on the Oxygen atom, the standard method is to gen-

erate a pseudopotential in which the core hole is manually added to the

Oxygen 1s state. Thus, when screening is stronger (for example in metal-

lic systems such as Al), Z is a more appropriate approximation, while for

insulators Z+1 is better. For the manganite systems we are interested in

in chapter 5, the Z+1 approximation has proven itself appropriate in the

literature.[30, 31]

We note that Kohn-Sham states are single-particle effective electronic

states used to solve the many-body Hamiltonian in some indirect man-

ner. It is not clear at all whether using them to compute O-K edge ex-

citation spectra is a sensible procedure. Again, in practice, a great deal

of physical information is generated by this procedure and often good

agreement with experiment is possible.
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There are, of course, many shortcomings of the approach we have

used. We have ignored multipole effects in the transition matrix element,

we have ignored its energy dependence, we have not allowed for mul-

tiple scattering processes, and our description of the many-body excited

state is still at a single-particle level.
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Chapter 3

A Generalized Slave-Particle

Method For Extended Hubbard

Models

One of the long-standing areas of interest in condensed matter physics,

particularly that of complex oxides, is that of the Mott metal-insulator

transition [33]. Generically, within a Hubbard model framework, as the

strength of localized electronic repulsions is increased, the electrons pre-

fer to be localized on atomic sites and inter-site hopping is suppressed,

and at a critical interaction strength the system becomes an insulator. An

example of the rich behavior that can occur in such systems is the Orbital

Selective Mott Transition (OSMT) whereby only a subset of localized or-

bitals become insulating (localized) while the remainder have metallic

(extended) bands. An example is provided by quasi-two-dimensional

Mott transition in the Ca2−xSrxRuO4 family, where the Mott metal-insulator

transition and its magnetic properties [34] at the critical doping x = 0.5

show a coexistence between magnetic susceptibility that shows a Curie

form for S = 1/2 and a metallic state. Anisimov et al. [35] have used



24
Chapter 3. A Generalized Slave-Particle Method For Extended

Hubbard Models

DFT+DMFT to explain this situation in terms of an OSMT in which one

Ru 4d orbital is localized, while the other continues to present metallic

behavior.

The present day workhorse for ab initio materials modeling and pre-

diction, Density Functional Theory (DFT), is fundamentally based on

band theory and is unable to describe such transitions (without sym-

metry breaking of the electronic degrees of freedom: e.g., spin or orbital

polarization). To this end, Hubbard model based methods such as Dy-

namical Mean Field Theory (DMFT) and DFT+DMFT [11, 36] have been

developed to include localized correlation effects in electronic structure

calculations. However, DMFT-based methods are computationally ex-

pensive and typical present day calculations on real materials are gener-

ally restricted to treating a few correlated sites. Therefore, it is of signif-

icant interest to have computationally inexpensive, but necessarily more

approximate, methods that include correlations and can permit one to

rapidly explore the qualitative effects of electronic correlations.

One set of such approximate methods that have been of recent inter-

est are slave-particle methods. Slave-boson methods have a long back-

ground in condensed matter theory for analytical treatments of corre-

lations typically in the limiting case of infinite correlation strength [5,

7, 37–41]. Kotliar and Ruckenstein [7] used a slave-particle representa-

tion to treat Hubbard-like models at finite interaction strength, which

found applications in the realm of high-temperature superconductors

[42]. Further, Kotliar and Ruckenstein’s model has been generalized to

multi-band models [43–45] where, e.g., the effects of multiple orbitals, or-

bital degeneracy, and the Hund’s have been studied [43, 44]. However,



Chapter 3. A Generalized Slave-Particle Method For Extended

Hubbard Models
25

the approach of Kotliar and Ruckenstein, and its various extensions, re-

quire a large number of bosonic slave particles: one needs one boson per

possible electronic configuration on a correlated site.

For this reason, more economical slave-boson representations have

been of significant interest. Florens and Georges [8, 9] used a single “ro-

tor” slave-boson per site that describes the total electron count on each

site in a computationally economical manner. The slave-rotor method

was been successfully to predict a number of electronic phases of nicke-

late heterostructures [46] which was a distinct improvement over previ-

ous studies. However, a rotor-like description is not orbitally selective as

it can only describe the total electron count on a site and not its partition-

ing among inequivalent orbitals on that site. An alternative slave-particle

approach is to treat each localized electronic state (i.e., a unique combi-

nation of spin and orbital indices) with a slave boson: this “slave-spin”

approach automatically handles orbital symmetry breaking and can pre-

dict OSMTs [15, 16]. Recently, it has been applied to predict key physical

characteristics in iron superconductors [47].

In this chapter, we introduce a generalized framework for slave-particle

descriptions. This produces a ladder of correlated models, and the slave-

rotor and slave-spin are automatically included as two specific cases.

Our approach does not require any physical analogies to create the slave

bosons (e.g., a quantum rotor or angular variable to motivate the slave-

rotor or a pseudo-spin to motive the slave-spin) and works directly in

the occupation number representation. In our approach, one can choose

which degrees of freedom are treated as correlated degrees of freedom
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(e.g., total electron count on a site, electron counts in each orbital, elec-

tron count in each spin channel, etc.) so that we can isolate the effect of

correlations on the separate degrees of freedom in a systematic manner.

Section 3.1 presents our general formalism, how it builds upon previ-

ous models, as well as gives a few examples of models that can be built

within this framework. Section 3.2 is devoted to tests of possible models

built within this formalism in a mean-field approach at half-filling within

a one-band and a two-band model in order to compare our results with

those of previous work as well as to better understand the role of the

different terms in an extended Hubbard model within our formalism. In

Section 4.7 we conclude this paper and discuss possible new avenues for

researchers to use this method and possible developments of it in pre-

dicting properties of correlated materials.

3.1 The Generalized Slave-Particle Representa-

tion

In this section we introduce our generalized slave-particle representa-

tion. In appropriate limits, our approach reproduces previous frame-

works such as the slave-rotor and slave-spin methods. One utility of

our approach is that it allows us to unite these two, as well as other in-

termediate models, into a single slave-particle methodology. A variety

of slaves-particle models can be investigated and compared so that one

can isolate which specific correlated degrees of freedom are critical for

describing a specific physical problem.
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The general correlated-electron Hamiltonian we consider is an ex-

tended Hubbard model given by

Ĥ =
∑
i

Ĥ i
int +

∑
imσ

εimσd̂
†
imσd̂imσ −

∑
ii′mm′σ

timi′m′σd̂
†
imσd̂i′m′σ . (3.1)

The index i ranges over the localized sites of the system (usually atomic

sites), m ranges over the localized spatial orbitals on each site, σ denotes

spin, Ĥ i
int is the local Coulombic interaction for site i detailed further

below, εimσ is the onsite energy of the orbital imσ, and timi′m′σ is the spin-

conserving hopping element term connecting orbital imσ to i′m′σ. The

d̂ are canonical fermion annihilation operators. We take the interaction

term to have the standard Slater-Kanamori form [48]

Ĥ i
int =

Ui
2

(n̂2
i − n̂i) +

U ′i − Ui
2

∑
m 6=m′

n̂imn̂im′ − Ji
2

∑
σ

∑
m6=m′

n̂imσn̂im′σ

− Ji
2

∑
σ

∑
m 6=m′

{
d̂†imσd̂imσ̄d̂

†
im′σ̄d̂im′σ +d̂†imσd̂

†
imσ̄d̂im′σd̂im′σ̄

}
. (3.2)

The first and second term stem from Coulombic repulsion terms between

same spatial orbital (U ) and different spatial orbitals (U ′). The third term

is Hund’s exchange between different orbitals of the same spin with

strength J . The fourth term contains the intrasite “spin flip” and “pair

hopping” terms. The index σ̄ is the spin opposite to σ. The subscripts i

on theU , U ′ and J parameters denote the fact that each correlated site can

have its own set of parameters; however, to keep indices to a minimum
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below, we suppress this index. The various number operators are

n̂imσ = d̂†imσd̂imσ , n̂im =
∑
σ

n̂imσ

n̂iσ =
∑
m

n̂imσ , n̂i =
∑
mσ

n̂imσ .

For what follows, we keep in mind that due to the fact that n̂2
imσ = n̂imσ,

the Hund’s term in Ĥ i
int can be rewritten in an equivalent form to give

Ĥ i
int =

Ui
2

(n̂2
i − n̂i) +

U ′i − Ui
2

∑
m6=m′

n̂imn̂im′ − Ji
2

∑
σ

(n̂2
iσ − n̂iσ)2

− Ji
2

∑
σ

∑
m6=m′

{
d̂†imσd̂imσ̄d̂

†
im′σ̄d̂im′σ +d̂†imσd̂

†
imσ̄d̂im′σd̂im′σ̄

}
.

The interacting Hubbard hamiltonian is impossible to solve exactly

and even difficult to solve approximately. Part of the difficulty comes

from the fact that we have interacting fermions which have both charge

and spin degrees of freedom. Following well-known ideas in slave-boson

approaches [5, 7, 37–41], one separates at each site the fermionic degrees

of freedom from the charge degrees of freedom by introducing a bosonic

“slave” particle on that site. The boson is spinless and charged, and one

also has a remaining neutral fermion with spin termed a spinon. With

spinons denoted by f̂ operators and slave bosons by Ô operators, we

define
(3.3)d̂imσ = f̂imσÔiα

and
(3.4)d̂†imσ = f̂ †imσÔ

†
iα .

The index α is part of our generalized notation that permits us to unify

many slave-particle models. The meaning of α depends on the type of



3.1. The Generalized Slave-Particle Representation 29

model chosen, as we will show in detail below with a variety of exam-

ples. The index α refers to a subset of the mσ indices that belong to a site

i. For example, if we use a slave-rotor model for the correlated orbitals

on a site [8, 9], then α is nil: Ôiα = Ôi. Namely, we have a single slave

particle on each site i that tracks the total number of particles on that site.

At the opposite limit, we can have a unique slave boson for each mσ (the

“slave-spin” method [15, 16]), so that α = mσ.

Since we have introduced new degrees of freedom and enlarged the

Hilbert space, it is necessary to avoid unphysical states that have no cor-

respondence to those in the original problem. As Eqs. (4.3) and (3.4)

show, the number of spinon and slave particles track each other because

they are annihilated and created at the same time. Thus, one must en-

force the operator constraints

(3.5)d̂†imσd̂imσ = f̂ †imσf̂imσ

and
(3.6)

∑
mσ ∈α

f̂ †imσf̂imσ = N̂iα

where N̂iα is the number operator for the slave particles which takes on

integer values from Nmin to Nmax, i.e., in the number representation we

have

N̂iα = diag (Nmin, Nmin + 1, . . . , Nmax − 1, Nmax) . (3.7)

The appropriate values of Nmin and Nmax depend on the slave model

chosen and are discussed below. Enforcing the operator constraints of

Eq. (3.6) at all times ensure that only physical states in one-to-one corre-

spondence to the original states are considered in the extended spinon+slave

boson Hilbert space.
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To reproduce the standard behavior of the annihilation operator [15,

16]

d̂imσ|nimσ〉 =
√
nimσ|nimσ − 1〉

it must be that

f̂imσ|nimσ〉 =
√
nimσ|nimσ − 1〉

and

Ôiα|Niα〉 = |Niα − 1〉 .

However, if nimσ = 0, then the action of f̂imσ will destroy the state re-

gardless of what Ôα may do, so for this case we have an undetermined

situation:

Ôiα|Niα = 0〉 = undetermined .

Following the same logic for the creation operators yields

Ô†iα|Niα〉 = |Niα + 1〉

unless we reach the ceiling Niα = Nmax when we have a similar indeter-

minacy

Ô†iα|Nmax〉 = undetermined .
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Putting this all together, the slave boson operator Ôiα in the number

basis must have the form

Ôiα =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

Ciα 0 0 . . . 0 0


(3.8)

where Ciα is at this point an undetermined constant that we are free to

choose. Below, we will use this freedom to ensure that we reproduce a

desired non-interacting band structure at zero interaction strength (when

Ĥ i
int = 0).

We note that we may decide to allow for additional unphysical states

with negative or positive occupations. For example, letting Nmin → −∞

and Nmax → +∞, which in turn makes Ciα irrelevant, yields the slave-

rotor formalism [8, 9]. On the other hand, a separate slave boson for

each spin+orbital combination imσ gives Nmin = 0 and Nmax = 1 which

recovers the “slave-spin” formalism [15, 16].

Substituting the spinon and slave operators into the original extended

Hubbard Hamiltonian gives the following form, which for the moment

we specialize to the symmetricU ′ = U, J = 0 case to keep the logic simple
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(the more general cases are enumerated further below):

Ĥ =
U

2

∑
i

(
(
∑
α

N̂iα)2 −
∑
α

N̂iα

)

+
∑
imσ

εimσf̂
†
imσf̂imσ

−
∑

ii′mm′σ

timi′m′σÔ
†
iαÔi′α′ f̂ †imσf̂i′m′σ .

For the onsite εimσ terms, we have replaced f̂ †imσf̂imσÔ
†
iαÔiα by the simpler

f̂ †imσf̂imσ because even though Ô†iαÔiα is not necessarily identity (unless

Ciα = 1), the two set of operators act identically on all the physical states

of interest (because f̂imσ annihilates the state with zero particles). The

important point is that the introduction of the slave bosons permits us to

write the interaction term only in terms of the slave operators.

The above Hamiltonian is still an interacting one and thus impossible

to solve. In slave-particle approaches, one splits this problem into two

separate problems connected to each other via averaging of the relevant

operators. Namely, we approximate the ground state wave function of

the original system by a product state |Ψf〉|Φs〉 where |Ψf〉 is the collec-

tive spinon state and |Φs〉 is the collective slave boson state. The operator

constraints of Eq. (3.6) are replaced by their average number constraints

(3.9)〈
∑
mσ∈α

f̂ †imσf̂imσ〉f = 〈N̂iα〉s

where the f and s subscripts denote averaging over the spinon |Ψf〉 and

slave boson |Φs〉 ground state wave functions, respectively.

With this separability assumption, the time-independent Schrödinger

equation for the original system separates into two separate equations

where the constraints are enforced by Lagrange multipliers appearing in
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the two Hamiltonians. The spinon Hamiltonian is

Ĥf =
∑
imσ

εimσf̂
†
imσf̂imσ −

∑
iα

hiα
∑
mσ∈α

f̂ †imσf̂imσ

−
∑
ii′αα′

〈Ô†iαÔi′α′〉s
∑
mσ∈α
m′σ∈α′

timi′m′σf̂
†
imσf̂i′m′σ (3.10)

where hiα is the Lagrange multiplier enforcing Eq. (3.9). The spinons are

coupled to the slave bosons via the average 〈Ô†iαÔi′α′〉s which renormal-

izes spinon hoppings between sites i and i′. The spinon problem is one

of non-interacting fermionic particles with spin.

The slave boson Hamiltonian takes the form

Ĥs =
U

2

∑
i

(
(
∑
α

N̂iα)2 −
∑
α

N̂iα

)
+
∑
α

hiαN̂iα

−
∑
ii′αα′

 ∑
mσ∈α
m′σ∈α′

timi′m′σ〈f̂ †imσf̂i′m′σ〉f

 Ô†iαÔi′α′ (3.11)

where the spinon average 〈f̂ †imσf̂i′m′σ〉f renormalizes the slave boson hop-

pings. The slave boson problem is one of interacting charged bosons

without spin.

The original problem has been reduced to a set of paired problems

that must be solved self-consistently. The spinon and slave boson prob-

lems only communicate (i.e., are coupled) via averages which renormal-

ize each other’s hoppings. At this point, one must make some approxi-

mations in order to solve the interacting bosonic problem. Typical ap-

proaches to date include single-site mean field approximations [8, 9],

multiple-site mean field [49], approximation by sigma models to yield
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Gaussian integrals [8, 9] as well as a combination of using tight-binding

parameters obtained using Wannier functions from DFT followed by a

mean-field approximation [46].

The procedure to obtain the requiredCiα in order to solve the coupled

problems is as follows. At U = U ′ = J = 0, one ensures that the spinons

reproduce the original non-interacting band structure and pre-specified

site occupancies (i.e., fillings). This means that the slave-boson expecta-

tions 〈O†iαOi′α′〉s should be unity in order not to modify the spinon hop-

pings away from the original hoppings. The numbers Ciα and hiα are de-

termined by these condition as well as the prespecified non-interacting

site occupancies. This requires us to solve the coupled slave and spinon

problems at U = U ′ = J = 0 self-consistently to obtain Ciα and hiα. The

values of Ciα are then held fixed from that point forward. Finally, we can

turn on U,U ′, J to non-zero values to self-consistently solve the desired

interacting problem.

Prior to solving some model problems within our new framework,

we first provide more complete descriptions of a number of potential

choices for the slave-boson model (i.e., the choice of α). Differing choices

split the interaction terms Ĥ i
int of Eq. (3.2) in different ways between the

spinon and slave sectors. This opens the door to systematic comparison

between the different types of treatments of correlations with the slave

bosons.

3.1.1 Number slave

The simplest approach is to simply create a single slave boson on each

site i whose number operator N̂i counts all the electrons on that site.
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FIGURE 3.1: Visual representation of a few possible slave-
particle models within our formalism.

In other words, the label α contains all the mσ orbitals on that site and

thus is superfluous so we can simply write Ôiα = Ôi. Description of

the physically allowed states requires Nmin = 0 while Nmax will be the

maximum number of electrons allowed on that site: e.g., 10 for d shells

or 14 for f shells.

In this case, the slave boson can only represent the U term of the inter-

action in Eq. (3.2) so that all remaining interaction terms must be treated

at the mean-field level in the spinon sector. Thus the slave Hamiltonian

in this case is

Ĥs =
U

2

∑
i

(
N̂2
i − N̂i

)
+
∑
i

hiN̂i

−
∑
ii′

[∑
mm′σ

timi′m′σ〈f̂ †imσf̂i′m′σ〉f

]
Ô†i Ôi′ (3.12)
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while the spinon Hamiltonian contains all the remaining interaction

terms at mean-field level:

Ĥf =
U ′ − U

2

∑
i

∑
m 6=m′

(
nimn̂im′ + nim′n̂im

−
∑
σσ′

{
ρim′σ′imσf̂

†
im′σ′ f̂imσ + ρimσim′σ′ f̂ †imσf̂im′σ′

})
− J

2

∑
iσ

∑
m6=m′

(
nimσn̂im′σ + nim′σn̂imσ

− ρim′σ′imσf̂
†
im′σ′ f̂imσ − ρimσim′σ′ f̂ †imσf̂im′σ′

)
− J

2

∑
iσ

∑
m 6=m′

(
ρimσ̄imσf̂

†
im′σ̄f̂im′σ + ρim′σim′σ̄f̂

†
imσf̂imσ̄

− ρim′σimσf̂
†
im′σ̄f̂imσ̄ − ρimσ̄im′σ̄f̂

†
imσf̂im′σ

+ ρim′σ̄imσf̂
†
imσ̄f̂im′σ + ρim′σimσ̄f̂

†
imσf̂im′σ̄

− ρim′σimσf̂
†
imσ̄f̂im′σ̄ − ρim′σ̄imσ̄f̂

†
imσf̂im′σ

)
+
∑
imσ

εimσf̂
†
imσf̂imσ −

∑
i

hin̂i

−
∑
ii′

〈Ô†i Ôi′〉s
∑
mm′σ

timi′m′σf̂
†
imσf̂i′m′σ . (3.13)

In the derivation of the expression for the above spinon Hamiltonian Ĥf ,

we have used the definition of the one-particle density matrix

ρba = 〈f̂ †a f̂b〉f ,

the standard mean-field contraction of four particle operators into two-

particle operators weighed by averages

f̂ †a f̂
†
b f̂cf̂d ≈ ρdaf̂

†
b f̂c − ρcaf̂

†
b f̂d + ρcbf̂

†
a f̂d − ρdbf̂ †a f̂c ,
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and the average occupations

nimσ = ρimσimσ , nim =
∑
σ

nimσ .

This approach has the simplest slave Hamiltonian and the most com-

plex spinon Hamiltonian because the number-only slave boson can only

describe the simplest U part of the interaction; the remaining terms in-

volving U ′ and J must be handled at mean-field level by the spinons. As

mentioned above, the physical range for the occupation numbers of the

number slave N̂i is from zero to the physically allowed Nmax for that site.

However, we can decrease Nmin below zero and Nmax above the physical

value if desired; in the limit where the range of occupancies allowed is

very large we automatically recover the slave-rotor method.

3.1.2 Orbital slave

A more fine-grained model is to count the number of electrons in each

spatial orbital m separately with a slave boson. We call this the orbital

slave method. Here the index α labels a specific spatial orbital m and

ranges over the two spin directions for that orbital: we have Ôim for the

raising/lowering operator and N̂im for the particle count slave operators.
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The slave sector can now directly describe more of the interaction terms:

Ĥs =
U

2

∑
i

(∑
m

N̂im

)2

−
∑
m

N̂im


+
U ′ − U

2

∑
i

∑
m6=m′

N̂imN̂im′ +
∑
i

∑
m

himN̂im

−
∑
ii′mm′

[∑
σ

timi′m′σ〈f̂ †imσf̂i′m′σ〉f

]
Ô†imÔi′m′ (3.14)

and the spinon Hamiltonian is less complex than the previous case as it

only has the J terms (at mean-field level):

Ĥf = −J
2

∑
iσ

∑
m6=m′

(
nimσn̂im′σ + nim′σn̂imσ

− ρim′σ′imσf̂
†
im′σ′ f̂imσ − ρimσim′σ′ f̂ †imσf̂im′σ′

)
− J

2

∑
iσ

∑
m 6=m′

(
ρimσ̄imσf̂

†
im′σ̄f̂im′σ + ρim′σim′σ̄f̂

†
imσf̂imσ̄

− ρim′σimσf̂
†
im′σ̄f̂imσ̄ − ρimσ̄im′σ̄f̂

†
imσf̂im′σ

+ ρim′σ̄imσf̂
†
imσ̄f̂im′σ + ρim′σimσ̄f̂

†
imσf̂im′σ̄

− ρim′σimσf̂
†
imσ̄f̂im′σ̄ − ρim′σ̄imσ̄f̂

†
imσf̂im′σ

)
+
∑
imσ

εimσf̂
†
imσf̂imσ −

∑
i

∑
m

himn̂im

−
∑
ii′mm′

〈Ô†imÔi′m′〉s
∑
σ

timi′m′σf̂
†
imσf̂i′m′σ . (3.15)

3.1.3 Spin slave

An alternative fine-graining beyond the number slave is to have two

slave bosons per site that count spin up and spin down electrons sep-

arately but with no orbital differentiation. Namely, α labels a spin state
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σ but ranges over all spatial orbitals. Hence, we have Ôiσ and N̂iσ for our

slave operators. The slave-boson Hamiltonian is

Ĥs =
U

2

∑
i

(∑
σ

N̂iσ

)2

−
∑
σ

N̂iσ

− J

2

∑
σ

(
N̂2
iσ − N̂iσ

)

+
∑
i

∑
σ

hiσN̂iσ −
∑
ii′σ

[∑
mm′

timi′m′σ〈f̂ †imσf̂i′m′σ〉f

]
Ô†iσÔi′σ (3.16)

while the spinon Hamiltonian is

Ĥf =
U ′ − U

2

∑
i

∑
m6=m′

(
nimn̂im′ + nim′n̂im

−
∑
σσ′

{
ρim′σ′imσf̂

†
im′σ′ f̂imσ + ρimσim′σ′ f̂ †imσf̂im′σ′

})
− J

2

∑
iσ

∑
m 6=m′

(
ρimσ̄imσf̂

†
im′σ̄f̂im′σ + ρim′σim′σ̄f̂

†
imσf̂imσ̄

− ρim′σimσf̂
†
im′σ̄f̂imσ̄ − ρimσ̄im′σ̄f̂

†
imσf̂im′σ

+ ρim′σ̄imσf̂
†
imσ̄f̂im′σ + ρim′σimσ̄f̂

†
imσf̂im′σ̄

− ρim′σimσf̂
†
imσ̄f̂im′σ̄ − ρim′σ̄imσ̄f̂

†
imσf̂im′σ

)
+
∑
imσ

εimσf̂
†
imσf̂imσ −

∑
i

∑
m

himn̂im

−
∑
ii′mm′

〈Ô†imÔi′m′〉s
∑
σ

timi′m′σf̂
†
imσf̂i′m′σ . (3.17)

3.1.4 Spin+orbital slave

This approach represents maximum fine-graining whereby we use a slave

boson for each spin+orbital combination. Thus the index α now repre-

sents a full set of quantum numbersmσ so we have Ôimσ and N̂imσ for the

slave operators. The physically allowed occupancies are 0 and 1 which
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is isomorphic to a pseudo-spin. For this reason, the named used for this

approach in the literature is the “slave-spin” method [15, 16]. However,

given the possible confusion this term creates between the real electron

spin as well as the difficulty of using such a name unambiguously in our

generalized formalism, we prefer the more explicit name “spin+orbital

slave” where the spin refers to the physical electron spin.

In this approach, we can describe the maximum number of interac-

tion terms in the slave Hamiltonian:

Ĥs =
U

2

∑
i

(∑
mσ

N̂imσ

)2

−
∑
mσ

N̂imσ


+
U ′ − U

2

∑
m 6=m′

(∑
σ

N̂imσ

)(∑
σ′

N̂im′σ′

)
− J

2

∑
σ

∑
m6=m′

N̂imσN̂im′σ

+
∑
i

∑
mσ

himσN̂imσ −
∑

ii′mm′σ

timi′m′σ〈f̂ †imσf̂i′m′σ〉f Ô†imσÔi′m′σ . (3.18)

The corresponding spinon Hamiltonian still contains the spin flip and

pair-hopping terms:

Ĥf = −J
2

∑
iσ

∑
m6=m′(

ρimσ̄imσf̂
†
im′σ̄f̂im′σ + ρim′σim′σ̄f̂

†
imσf̂imσ̄

− ρim′σimσf̂
†
im′σ̄f̂imσ̄ − ρimσ̄im′σ̄f̂

†
imσf̂im′σ

+ ρim′σ̄imσf̂
†
imσ̄f̂im′σ + ρim′σimσ̄f̂

†
imσf̂im′σ̄

− ρim′σimσf̂
†
imσ̄f̂im′σ̄ − ρim′σ̄imσ̄f̂

†
imσf̂im′σ

)
+
∑
imσ

εimσf̂
†
imσf̂imσ −

∑
i

∑
m

himn̂im

−
∑
ii′mm′

〈Ô†imÔi′m′〉s
∑
σ

timi′m′σf̂
†
imσf̂i′m′σ . (3.19)
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We mention that in prior work [15], the spin flip and pair hopping

terms were argued to be well treated in the slave-particle sector instead.

Namely, they were removed from the spinon Hamiltonian and the fol-

lowing terms were added to the slave Hamiltonian:

− J
∑
m 6=m′

(Ŝ+
im↑Ŝ

−
im↓Ŝ

+
im′↓Ŝ

−
im′↑ + Ŝ+

im↑Ŝ
+
im↓Ŝ

−
im′↑Ŝ

−
im′↓ + h.c.) (3.20)

where the Ŝ operators in the number basis are

Ŝ+ =

 0 0

1 0

 , Ŝ− =

 0 1

0 0

 (3.21)

While such an ad hoc approach is not the strictly theoretically consistent

way to split operators between the spinon and salve boson sectors, in

practice it does reproduce the desired behavior of the spin flip and pair

hopping terms in the slave boson sector and does not introduce any nu-

merical difficulties.

3.2 Mean-Field Tests

We now proceed to describe computational results based on a simple

single-site, paramagnetic, nearest-neighbor, mean-field solution of the

slave Hamiltonian at half filling. This will permit us to both reproduce

prior literature as well as to compare various slave Hamiltonians to each

other.

To do so, we shift the local interaction energies so that they are zero

at half filling, i.e. when nimσ = 1/2. We also make the standard choice
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U ′ = U − 2J . The local interaction term (ignoring for the moment the

spin flip and pair-hopping terms) takes the form from prior work[16]:

(3.22)Ĥ i
int =

U − 2J

2
(n̂i− niorb)2 + J

∑
m

(n̂im− 1)2− J

2

∑
σ

(n̂iσ − niorb/2)2

where niorb is the number of localized correlated spatial orbitals on site i.

In the single-site mean-field approximation, we will be solving for a

single site self-consistently coupled to an averaged bath of bosons on the

nearest neighbor sites. Our assumptions ensure that all sites are identical

with no spin polarization. Furthermore, to connect to the literature, we

further assume that in the multi-orbital case there are only non-zero hop-

pings between nearest neighbor orbitals with the same m index. With all

these assumptions, it is easy to see that Ciα = 1 is the choice that gives

half-filling for the slave problem at U = U ′ = J = 0. In addition, we

can set the Lagrange multipliers hiα = 0 since we have set the half-filling

energy to be zero. The density matrix elements 〈f̂ †imσf̂i′m′σ〉f that renor-

malize the slave boson hoppings will be spin and site independent and

will be non-zero only when m = m’. Hence, they can be absorbed into

the definition of the hopping elements timi′m′σ.

We begin with J = 0. The slave Hamiltonian is

Hs =
U

2

∑
i

(∑
α

N̂iα − norb

)2

−
∑
iα

∑
m∈α

(
Ôiαt

eff
m + Ô†iαt

eff
m

)
(3.23)

where the effective hoping for spatial orbital m is

teffm =
∑
i′α′

∑
m′σ∈α′

timi′m′σ〈Ôα′〉s .
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The simple form of this Hamiltonian makes it easy to directly read off

the quasiparticle weight renormalization Zα which narrows the spinon

bands:

Zα = 〈Ôα〉2s . (3.24)

When Zα = 0, a Mott insulator is realized in such a simple single-site

model [50]. We solve the problem self-consistently for different slave

models. Since at half-filling the Lagrange multipliers hiα = 0, all that is

required to solve the spinon problem is to renormalize each spinon band

width (i.e., hopping) by the appropriate Zα factor.

3.2.1 Single-band Mott transition

We begin with a single-band model where there is one spatial orbital per

site. Figure 3.2 compares various slave models based on the dependence

of Z on U . Specifically, we compare the slave rotor model (allowed oc-

cupancies from −∞ to +∞), the orbital slave model (allowed occupan-

cies 0, 1, or 2) which here is identical to the number slave model, the

spin+orbital slave (“slave-spin”) model (allowed occupancies 0 or 1) and

the Gutzwiller approximation where ZGutzwiller = 1− (U/Uc)
2.

For this system, the Gutzwiller and spin+orbital slave methods pre-

dict exactly the same results, as noted previously.[16] In fact, the spin+orbital

slave model, at half-filling for a single orbital per site at the single-site

mean field level, can be shown to be isomorphic to the Gutzwiller ap-

proximation as well as to the Kotliar-Ruckenstein model as described

by Bunemann.[45] This shows that, beyond their utility as mathemati-

cal models, such slave-boson methods can parallel and help understand
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other approaches that originate from apparently different sets of many-

body approximations.

The slave-rotor method has an aberrant behavior for small U . Specif-

ically, Z for the slave-rotor method has the small U expansion

Zrotor = 1−O(
√
U/teff ) . (3.25)

The reason for this behavior is due to the unbounded number states per-

mitted in the slave rotor model. Specifically, in the number basis the

slave-rotor problem corresponds to an infinite one dimension lattice la-

beled by Ni, with hoppings teff between neighboring sites, and with a

quadratic potential UN2
i /2. For small U , the ground state of this prob-

lem will be spread over many sites so that we can take the continuum

limit. The problem turns into the textbook one dimensional harmonic

oscillator with mass 1/(2teff ) and spring constant U . The ground state

wave function ψ(Ni) is a Gaussian, and 〈O〉s =
∑

n ψ(n)ψ(n − 1) can be

computed. Expansion in U then gives the above form.

In reality, however, perturbation theory guarantees that quasiparticle

weights are modified starting at second order in the interaction strength:

Z = 1−O(U2/teff ) . (3.26)

The slave-rotor fails since for small U it spreads the wave function over a

large number of unphysical states. What this means is that one would in-

correctly overestimate the importance of electronic correlations at weak

interaction strengths when using the slave-rotor method. In this view,
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FIGURE 3.2: Quasiparticle weight Z as a function of U/Uc
for different slave-particle models for the paramagnetic
single-band Hubbard at half filling. Uc is the critical value
of U when Z = 0, i.e., the Mott transition, for each model.
The black crosses show slave rotor results, the blue circles
are the Gutzwiller approximation results (Z = 1 = U2

U2
c

)
which for this model are the same as the spin+orbital slave
(“slave-spin”) results in blue crosses, and the green cir-
cles show the orbital slave results (identical to the number
slave). We note that the slave-orbital Hilbert space is very
small, so that it does not agree with the rotor, unlike the

two-band slave number.

our orbital and number slave methods may be viewed as corrected ro-

tors which are restricted to the appropriate finite set of physical states.

Finally, Figure 3.2 illustrates that slave methods employing finite slave

Hilbert spaces all automatically correct the small U behavior.

3.2.2 Isotropic two-band Mott transition

Next, we consider a two-band degenerate Hubbard model. Figure 3.3

displays the results. We note that the two band eg model is of physical

relevance as the slave-rotor has shown itself to be of use in eg nickelate
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FIGURE 3.3: Quasiparticle weight Z as a function of U/Uc
for different slave-particle models for a degenerate param-

agnetic two-band Hubbard model at half filling.

systems within a pd model[46]. For this particular degenerate case with

high symmetry, the spin slave and orbital slave models turn out to be

identical since each posits two slave particles each with the allowed oc-

cupations 0, 1, or 2. We note that, in this case, the slave rotor and number

slave become very similar for large U : once slave number fluctuations of

Ni are small, the size of the slave Hilbert space becomes irrelevant.

3.2.3 Anisotropic Orbital-Selective Mott Transition

We present mean-field calculations exemplifying the orbital-selective Mott

transition in an anisotropic two band model with paramagnetic solution

and at half filling. We take spatial orbital m = 1 to have the larger hop-

ping t1 while m = 2 has the smaller hopping t2. Hence, t2/t1 specifies the

degree of anisotropy.

The first slave model for this system is the spin+orbital method which
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has been used previously[15, 16]: each slave boson has allowed occu-

pancies 0 or 1. The second model is to forgo the explicit spin degree of

freedom in the slave description and to employ the orbital slave model

where each slave boson has allowed occupancies 0, 1, and 2. The com-

parison tests the importance of explicit treatment of spin in the electronic

correlations for such a system. We will focus on the Orbital-Selective

Mott Transition (OSMT) when one orbital has a finite bandwidth and is

metallic while the other has undergone a Mott insulating transition and

is localized.

We begin with J = 0. Figure 3.4 illustrates the behavior of the renor-

malization factor Z for both bands versus U for three different t2/t1 ratios

within the two slave particle models. An OSMT occur for small enough

t2/t1 ratio but the critical value depends on the type of slave model. For

the orbital slave model, we find that OSMT occurs when t2/t1 < 0.25

while for spin+orbital slave we must have a slightly smaller value of

t2/t1 < 0.2.

We now consider J > 0. We continue to treat the spinon problem

as that of a simple, paramagnetic, half-filled tight-binding model with

two separate bands with each hopping renormalized by the appropriate

〈Ôα〉s. For the orbital slave model, we can only include the first two

terms of Eq. (3.22) due to the lack of an explicit spin label in the slave

description. Thus we will compare the orbital slave and spin+orbital

slave using the same interaction term

(3.27)Ĥ i
int =

U − 2J

2
(N̂i − 2)2 + J

∑
m

(N̂im − 1)2 .

It is clear from the above two interaction terms that, for fixed U , J > 0

permits larger orbital independent number fluctuations (i.e., it reduces
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FIGURE 3.4: Quasiparticle weights for the paramagnetic
anisotropic two-band single-site Hubbard model at half
filling as predicted by the orbital+spin slave model (blue)
and the orbital slave model (red) at J = 0 for three t2/t1
ratios. In each plot, the Z value for the first orbital with
larger hopping t1 is denoted by symbols while for the sec-
ond orbital solid lines with no symbols are used. An OSMT
occurs when the two Z do not go to zero at the same U
value: orbital slave (red) in the center plot and both slave

models in the lower plot.
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the correlation effect of this mode) since U ′ = U − 2J becomes smaller

in the first term. However, the second +J term simultaneously punishes

intra-orbital number fluctuations and thus enhances intra-orbital corre-

lation effects which in turn favors an OSMT.

The phase diagram as a function of t2/t1 and J for this system in

shown in Figure 3.5. The boundaries shown separate regions where

OSMT occurs (above the boundaries) from where a standard Mott tran-

sition occurs (below the boundaries). The figure confirms the fact that in-

creasing J favors OSMT. Qualitatively, the orbital slave and spin+orbital

slave show very similar behavior: they have a critical t2/t1 at J = 0 be-

tween 0.2−0.25 for OSMT to occur, and then with increasing J the critical

t2/t1 becomes larger so less anisotropy is needed to drive an OSMT, as

observed previously in DMFT [51] and spin+orbital slave calculations

[16].

We have also considered the case where we permit the orbital slave

model to have unlimited occupations: namely, we have a two rotor model

(one for each orbital occupation). In this case, we find that no OSMT is

possible when J = 0 for any bandwidth ratio t2/t1. This result is sim-

ilar to previous DMFT [16, 51], which found that a finite J is needed

in order to have an OSMT. However, it contradicts the results of previ-

ous orbital+spin slave results [16] as well as our results above where we

find that a small enough bandwidth ratio t2/t1 makes an OSMT possible

even for J = 0. These differences further illustrate the need for multi-

ple models and cross verification when describing a possible OSMT for

real materials which have complex band structures (e.g., the three-band

Ca2−xSrxRuO4 system [35]).
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Prior work [16] has shown that the presence of the Hund’s term

− J

2

∑
σ

∑
m 6=m′

(n̂mσ − 1/2)(n̂m′σ − 1/2) = −J
2

∑
σ

(n̂iσ − 1)2 . (3.28)

makes OSMT slightly more difficult to achieve as it increases inter-orbital

m 6= m′ correlations by favoring spin pairing between different orbitals

but does not aid intra-orbital correlations. Separately, adding the spin-

flip and pair-hopping terms makes OSMT easier to achieve [16].

Although not directly relevant to our main focus, for completeness

we include a final comparison based on a fixed slave model with vari-

ous combination of interaction terms. We choose the spin+orbital orbital

model and then choose to include different interaction terms in the slave-

particle Hamiltonian. The first choice is the interaction terms used above

in Eq. (3.27). The second choice is to add the Hund’s term:

(3.29)Ĥ i
int =

U − 2J

2
(N̂i − 2)2 + J

∑
m

(N̂im − 1)2 − J

2

∑
σ

(N̂iσ − 1)2 .

Prior work [16] has shown that the presence of the Hund’s term makes

OSMT more difficult to achieve as it increases inter-orbital correlations

by favoring spin-pairing among different orbitals but does not enhance

intra-orbital correlations.

The third choice is to add the spin-flip and pair-hopping terms as per

the ad hoc method of Eq. (3.20):

(3.30)
Ĥ i
int =

U − 2J

2
(N̂i − 2)2 + J

∑
m

(N̂im − 1)2 − J

2

∑
σ

(N̂iσ − 1)2

− J
∑
m 6=m′

(Ŝ+
im↑Ŝ

−
im↓Ŝ

+
im′↓Ŝ

−
im′↑ + Ŝ+

im↑Ŝ
+
im↓Ŝ

−
im′↑Ŝ

−
im′↓ + h.c.) .

Adding these spin-flip and pair-hopping terms makes OSMT easier to

achieve [16].
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Phase diagrams for the second and third choices above are available

in the literature [16] and are reproduced in Figure 3.6 which also includes

the results of the first choice as well. We note that only including the

intra-orbital terms (first choice) or all terms (third choice) leads to es-

sentially the same phase diagram. However, excluding the spin-flip and

pair-hopping terms (second choice) makes it harder to achieve an OSMT

phase: one can not achieve an OSMT for any reasonable J once the band-

width ratio t2/t1 exceeds ≈ 0.6. The physics behind this progression is

as follows. Starting with J = 0 and a relatively large U , the ground-

state basically contains only states which are half-filled and have a total

of two electrons per site (there are six such states). Adding the intra-

orbital term (first choice) with J > 0 then further restricts us to the four

states with only one electron per orbital (but with no preference for spin

states). Such a ground-state can suffer an OSMT when further increas-

ing U since the narrower band (more localized orbital) can become fully

localized. Next, adding the Hund’s term (second choice) creates a prefer-

ence for the two spin-aligned states in this four dimensional subspace by

lowering their energy: this enhances inter-orbital correlations at the ex-

pense of intra-orbital correlations which favor an OSMT phase. Third,

adding the spin-flip and pair-hopping (third choice) terms essentially

cancels the effect of the Hund’s term. This is explained by a straight-

forward computation of the matrix elements of this interaction in the

four dimensional subspace. One finds that the spin-flip term couples

the two states where electrons have opposite spins with a strength that

is precisely such that their symmetric combination has the same energy

lowering as the Hund’s term induces for the spin-aligned states. Thus,
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FIGURE 3.5: Phase diagram for the anisotropic two-band
single-site Hubbard model at half-filling as a function of
the anisotropy ratio t2/t1 and J . Two slave boson meth-
ods are used: orbital slave (red circles) and spin+orbital
slave (blue crosses). In each case, the boundary curve de-
marcates the possible existence of an Orbital-Selective Mott
Transition when U is ramped up from U = 0. Regions
above the boundary display OSMT while regions below it
present a standard Mott transition where both bands be-

come insulating at the same critical Uc value.

we are essentially back to the four states we had when only operating

with the intra-orbital interaction (first choice). Our final comment is that

these differences are not very dramatic once the hopping ratio t2/t1 is

below ≈ 0.5. As Fig. 3.6 shows, in all cases only a modest value for J is

sufficient to stabilize the OSMT phase instead of a standard Mott transi-

tion.
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FIGURE 3.6: Phase diagram for the anisotropic two-band
single-site Hubbard model at half-filling as a function of
the anisotropy ratio t2/t1 and J for the spin+orbital slave
model. Three different interaction terms are used: intra-
orbital term only which is Eq. (3.27), intra-orbital plus
Hund’s which is Eq. (3.29), and all terms included which

is Eq. (3.30)
. This allows us to isolate the role of each interaction term.
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3.2.4 Ground State Energies

A final and most stringent test for the slave models is to compare their

total energies. In the interest of space, we will focus on the simplest case

of degenerate orbitals, isotropic hopping, and phases that are paramag-

netic and paraorbital (no orbital differentiation) to make some general

comments. In a fully self-consistent model with more parameters and

non-degenerate bands, we may expect more complexity to be revealed.

Previous work [52] has shown that ground-state calculations can reveal

competition between the orbital-selective Mott state (due to very large

crystal-field splitting) and an anti-ferromagnetic Mott insulating state

(due to a large J), a transition which is likely first-order [52].

With J = 0, the ground state energy per site of the paramagnetic and

paraorbital phase is

Eg = −
∑
α

∑
m∈α

teffm 〈Ôα〉s +
U

2
〈[
∑
α

N̂α − norb]2〉 . (3.31)

We compute the ground-state energy as a function of U for one-band and

two-band isotropic models at half-filling (same systems that are in the

above sections) and also include the Hartree-Fock total energy. Figures

3.7 and 3.8 display the energies versus U for the one-band and two-band

cases, respectively. The plots employ the half-band width D = 2t.

In all cases, for large enough U the slave models produce an insu-

lating phase (i.e., isolated atomic-like sites) which has zero hopping and

zero number fluctuation and thus zero energy in this model. The Hartree-

Fock total energy necessarily has a linear dependence on U for the high
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degree of spin and orbital symmetry since the Hartree-Fock Slater deter-

minant wave function will be unchanged versus U and always predicts

a metallic system.

The next observation is that for small U , some of the slave models do

worse than Hartree-Fock. However, as U is increased their total energies

eventually drop below the Hartree-Fock one. Furthermore, increasing

the number of bands from one to two improves the total energies of all

slave methods compared to Hartree-Fock. For a given number of bands,

increasing the fine-grained of the slave model (i.e., having more slave

modes per site) also lowers the total energy. Hence, the slave-rotor is

generally the worst performer.

A final observation is that only the fully fine-grained spin+orbital

slave method, which can differentiate between all possible configura-

tions, always predicts a total energy below that of Hartree-Fock. It also

has the correct linear slope of Eg versus U matching the Hartree-Fock

one. The other slave methods have higher slopes of Eg versus U at the

origin so that they can only outperform Hartree-Fock beyond some fi-

nite value of U . The slope matching of the spin+orbital slave is a nat-

ural expression of its accounting in detail for all the quantum numbers

on each site and in being forced (like all slave models) to reproduce the

non-interacting state at U = 0. The fact that the other slave models have

higher slopes is a reflection of their larger (and quantitatively incorrect)

number fluctuations at U = 0. Namely, the interaction Hamiltonian Ĥ int

is a quadratic function of the occupancy numbers so that its expecta-

tion value (the interaction energy) depends directly on the fluctuations
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FIGURE 3.7: Ground-state energy per site (Eg/t) of a single
band Hubbard model at J = 0 in the paramagnetic phase
at half filling for a variety of slave representations as well
as for the Hartree-Fock approximation. D = 2t is the band
width of the non-interacting system. For this model the
orbital slave is identical to the number slave and the spin

slave is the same as the spin+orbital slave.

of these occupancies; at fixed U , the larger the set of allowed occupan-

cies in a slave model, the larger this quadratic fluctuation and the higher

the interaction energy. In fact, the number fluctuations of the slave-rotor

model are so large at U = 0 that they lead to a pathological infinite slope

of Eg versus U at U = 0. By comparison, the number slave method,

which can be viewed as a corrected rotor, has a much more reasonable

behavior.

As a side note, it is interesting that for the single-band case, one has

the following analytical results based on the coincidence of the of the

spin+orbital slave and Gutzwiller approximations. In the metallic phase,

where U < Uc, the quasiparticle weight Z is given by

Z = 1− U2/U2
c (3.32)



3.2. Mean-Field Tests 57

FIGURE 3.8: Ground-state energy per site (Eg) for an
isotropic two-band Hubbard model at half filling for J = 0

in the paramagnetic and paraorbital phase.

and from perturbation theory at small Z[8]

Uc = 8D . (3.33)

Using the following definition:

t0 = t〈f †imσfimσ〉U=0 (3.34)

the ground-state energy is given by

Eg = −2t0 +
U

4
− U2

128t20
. (3.35)

For the insulating state (U ≥ Uc), we have Eg = 0.

Our calculations in this section permit us to say that while our gener-

alized approach permit us to easily compare different slave models and

isolate different degrees of freedom simply, total energy comparisons are
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much more challenging. First, one should do energy comparisons of dif-

ferent phases within a single slave model since the differing models can

produce differing total energies with dependence on the details of the

system. Second, after understanding the relevant degrees of freedom

and how they influence the physical behavior, the total energy calcula-

tion should be most accurate with the most fine-grained model which is

in the spin+orbital slave representation (“slave-spin” in the literature).

3.3 Conclusion

We have developed a generalized formalism that reproduces previous

slave-particle formalisms in appropriate limits but also allows us to de-

fine and explore intermediate models and to compare them systemati-

cally. Our formalism moves beyond the analogy with angular momen-

tum behind slave-rotor formalism, and instead works directly in the phys-

ically correct finite-sized number representation permitting new models

to be developed in what we feel is a more natural way based on occupa-

tion numbers. As an example, we have shown how the standard Mott

transition as well as the orbital selective Mott transition appear in differ-

ent slave models for single-band and two-band Hubbard models.

We believe it is useful to have a variety of slave particle methods

on hand as they provide computationally inexpensive methods for ex-

ploring the role of electronic correlations in materials and interfaces with

broken symmetries (e.g., orbital symmetry breaking). The cheap compu-

tational load is particularly advantageous for interfacial systems where

translational symmetry is lost in one direction and simulation cells that
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capture the region near the interface must contain at least tens to hun-

dreds of atoms. As such, these simpler slave-particle models are useful

for exploratory research where more accurate and expensive Hubbard-

model solvers such as DMFT [12, 36] would be prohibitive to apply rou-

tinely. The ability to isolate potentially interesting correlated degrees of

freedom from each other by choosing different slave approaches may

illuminate which degrees of freedom are the most critical to model accu-

rately.

3.4 Appendix

In this appendix, we provide some detailed examples of how the physi-

cal subspace is isolated from the extended Hilbert space of spinon+slave

boson states and how the operators act in the physical subspace. In the

process, we also provide explicit examples for various choices of the

slave labels α. We focus on a single site i and hence suppress the site

label i below.

The original Hilbert space, i.e, the Fock space of the fermionic d̂mσ

field operators, is spanned by basis kets in the occupancy number repre-

sentation for the field operators and have the form |{nmσ}〉 where nmσ ∈

{0, 1}. The enlarged Hilbert space for spinons and slave particles is spanned

by product kets in the number occupancy basis of the form

|{nmσ}〉f |{Nα}〉s

where, again, nmσ ∈ {0, 1} are the fermionic spinon occupancies while

Nα are the bosonic particle counts. The f and s subscripts label the
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spinon and slave boson kets.

The constraint on the physical allowed states translates to the numer-

ical constraint

Nα =
∑
mσ∈α

nmσ . (3.36)

We remember that we choose the {nmσ} to match exactly between the

original electron and spinon kets.

We begin with the simplest example of a single spatial orbital on the

site where the kets look like |n↑, n↓〉f |{Nα}〉s. There are two states for

electrons and thus a total of four possible configurations: no electrons,

one spin up electron, one spin down electron, and a pair of spin up and

down electrons. If we have a single slave boson per site to simply count

the number of electrons so the α label is nil (i.e., the number slave repre-

sentation), then our four physically allowed kets are

|0, 0〉f |0〉s , |1, 0〉f |1〉s , |0, 1〉f |1〉s , |1, 1〉f |2〉s .

We note that the number of slave particles is constrained by Eq. (??) to

the total the number of spinons.

Next, if we have this single orbital but instead we choose to have a

slave mode per spin channel (i.e, the spin+orbital slave representation),

then we have two sets of slave bosons since now α = σ. The four physical

states are now

|0, 0〉f |0, 0〉s , |1, 0〉f |1, 0〉s , |0, 1〉f |0, 1〉s , |1, 1〉f |1, 1〉s .

A more complex set of examples has two spatial orbitals per site. Here
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we have four choices of spinon label mσ which we order as 1↑, 1↓, 2↑, 2↓.

For the number slave representation, we have the 16 physical kets

|0, 0, 0, 0〉f |0〉s , |1, 0, 0, 0〉f |1〉s , |0, 1, 0, 0〉f |1〉s ,

|0, 0, 1, 0〉f |1〉s , |0, 0, 0, 1〉f |1〉s , |1, 1, 0, 0〉f |2〉s ,

|1, 0, 1, 0〉f |2〉s , |1, 0, 0, 1〉f |2〉s , |0, 1, 1, 0〉f |2〉s ,

|0, 1, 0, 1〉f |2〉s , |0, 0, 1, 1〉f |2〉s , |1, 1, 1, 0〉f |3〉s ,

|1, 1, 0, 1〉f |3〉s , |1, 0, 1, 1〉f |3〉s , |0, 1, 1, 1〉f |3〉s ,

|1, 1, 1, 1〉f |4〉s .

An orbital slave representation has slave bosons counting the number of

electrons in each spatial orbital, so α = m. The 16 allowed kets are

|0, 0, 0, 0〉f |0, 0〉s , |1, 0, 0, 0〉f |1, 0〉s , |0, 1, 0, 0〉f |1, 0〉s ,

|0, 0, 1, 0〉f |0, 1〉s , |0, 0, 0, 1〉f |0, 1〉s , |1, 1, 0, 0〉f |2, 0〉s ,

|1, 0, 1, 0〉f |1, 1〉s , |1, 0, 0, 1〉f |1, 1〉s , |0, 1, 1, 0〉f |1, 1〉s ,

|0, 1, 0, 1〉f |1, 1〉s , |0, 0, 1, 1〉f |0, 2〉s , |1, 1, 1, 0〉f |2, 1〉s ,

|1, 1, 0, 1〉f |2, 1〉s , |1, 0, 1, 1〉f |1, 2〉s , |0, 1, 1, 1〉f |1, 2〉s ,

|1, 1, 1, 1〉f |2, 2〉s .

Alternatively, one can use the spin slave representation where the bosons

count the number of electrons of each spin, so α = σ. The allowed kets
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are

|0, 0, 0, 0〉f |0, 0〉s , |1, 0, 0, 0〉f |1, 0〉s , |0, 1, 0, 0〉f |0, 1〉s ,

|0, 0, 1, 0〉f |1, 0〉s , |0, 0, 0, 1〉f |0, 1〉s , |1, 1, 0, 0〉f |1, 1〉s ,

|1, 0, 1, 0〉f |2, 0〉s , |1, 0, 0, 1〉f |1, 1〉s , |0, 1, 1, 0〉f |1, 1〉s ,

|0, 1, 0, 1〉f |0, 2〉s , |0, 0, 1, 1〉f |1, 1〉s , |1, 1, 1, 0〉f |2, 1〉s ,

|1, 1, 0, 1〉f |1, 2〉s , |1, 0, 1, 1〉f |2, 1〉s , |0, 1, 1, 1〉f |1, 2〉s ,

|1, 1, 1, 1〉f |2, 2〉s .

The final point is to check that the original electron operators d̂mσ

have the same effect as the combination of spinon and slave f̂mσÔα in

the physical subspace. That this is in fact true follows directly from the

defining Equations along with the constraint on Nα in Eq. (3.36). It is

easy to check that the matrix elements of d̂mσ and f̂mσÔα must match:

〈n′mσ|d̂mσ|nmσ〉 = f〈n′mσ|f̂mσ|nmσ〉f · s〈N ′α|Ôα|Nα〉s .

The matching of the d̂ and f̂ matrix elements is clear because the occu-

pancies nmσ and n′mσ match by definition on both sides and both opera-

tors have identical behavior on the occupancies as per Eqs. (??) and (??).

Thus both sides are non-zero only if the n′ occupancy set has one fewer

total count than the n occupancy set. As long as Nα > 0, the matrix

element of Ôα is unity because N ′α = Nα − 1 must be true due to the oc-

cupancy matching of Eq. (3.36). If Nα = 0, it must be that nmσ = 0, so

that the matrix element of Ôα is irrelevant because the fermionic matrix

elements (of d̂ and f̂ ) are both zero.
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Chapter 4

Symmetry Breaking in

Occupation Number Based

Slave-Particle Methods

The effects of strong electronic interactions and electronic correlations

on materials properties is a subject with a considerable history. The most

celebrated textbook example is the Mott transition where by increasing

the strength of localized electronic repulsions, the electrons in the mate-

rial lose band mobility and instead localize on the atomic sites (i.e., loss

of wave behavior). However, electronic correlations also underlie many

other ordered electronic phases such as various forms of magnetism as

well as superconductivity. A canonical model Hamiltonian for correlated

electron is the (extended) Hubbard model where electrons can hop be-

tween localized orbitals centered on atomic sites but multiple electronic

occupancy of a given atomic site leads to a significant energy penalty U .

By varying the ratio of U to the band hopping parameters, one can cover

the range from weak to strong electronic interactions and correlations.[6]

The workhorse in realistic first principles calculations in crystal and
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electronic structure calculations, Density Functional Theory (DFT)[3], is

fundamentally based on a description of non-interacting electrons, i.e.,

band theory. Due to its simple structure, band theory approaches can

not capture the effects of dynamical electronic fluctuations and localized

correlations on electronic band spectra. Extensions of DFT to go beyond

local exchange-correlation potentials and to include non-local Hartree-

Fock type electronic behavior, such as the DFT+U or hybrid functional

approaches[21, 53], can capture certain effects of electron-electron inter-

actions especially for strongly symmetry-broken situations. Neverthe-

less, these are still band theory descriptions incapable of leading, e.g., to

electron localization without resorting to symmetry breaking.

More advanced computational many-body approaches for simula-

tion of electronic correlations are based on Green’s functions methods.

One type of approach is theGW approximation to the electron self-energy

[54–56] which is a fully ab initio approach that includes the physics of

non-local and dynamical electronic screening and produces accurate re-

sults for electronic band energies of a wide variety of materials [56, 57].

However, the GW method is based on summation of a subset of many-

body diagrams (RPA diagrams) and thus does not capture a number of

physical effects; separately GW calculations are notoriously expensive

in terms of computation time due to their fully ab initio nature and lack

of a particular basis set. Another avenue of approach is represented by

Dynamical Mean Field Theory (DMFT) [12, 36] which can include the ef-

fect of local interactions and dynamical fluctuations by solving a model
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Hamiltonian with local interactions exactly (i.e., all diagrams for the lo-

cal interactions are included). However, DFT+DMFT calculations on re-

alistic materials with large unit cells are still quite challenging as they

require large-scale parallel computations.

For all these reasons, approximate and efficient methods for solv-

ing correlated problems continue to be of interest to the computational

many-body community. One set of methods of recent interest for solving

Hubbard models are slave-particle (slave-boson) methods. This method

that has a long background in condensed matter theory. These method

have been used to study cases with infinitely strong repulsive interac-

tions. [5, 7, 37–41] Dealing with finite interaction strengths was enabled

by Kotliar-Ruckenstein approach[7] whose variants and modifications

have been applied to study high-temperature superconductors [42] as

well as multi-band models [43–45] to elucidate the effects of multiple or-

bitals, degeneracy and Hund’s coupling. [43, 44] In these approaches,

each bosonic slave degree of freedom tracks the occupancy of a particu-

lar electronic configuration of a correlated site: once multiple orbitals and

multiple electron counts can exist on a site, the number of require bosons

becomes large. These methods can and have been used to describe spon-

taneously broken electronic symmetry (e.g., magnetic) states.[7, 43]

A recent set of more economical slave-particle methods has been de-

veloped and have become of wider interest, such as the slave-rotor method

[8, 9] and its application to nickelate oxides [46] and the slave-spin method

[15, 16] and its application to iron-based superconductors [47]. Recently,

we have developed a generalized version of these methods that does

not require the analogy with spin or angular momentum and introduces
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multiple intermediate slave-particle models.[17] These recent approaches

use slave degrees of freedom to track the electron occupation number on

a site, and its distribution among orbital and spin channels, and thus

require a much smaller number of bosons per site.

However, in all the previous literature in which these occupation

number based methods has been used, spontaneous symmetry break-

ing has been achieved in multi-orbital systems where both a Hubbard U

as well as a non-zero Hund’s J interaction have been operative.[10, 15,

47] For a system where only the repulsion U operates, spontaneous sym-

metry breaking has not been displayed even when interaction-induced

magnetism is a feature of the actual ground state of the model Hamilto-

nian (e.g., ground-state antiferromagnetic order for a half-filled single-

band Hubbard model). Indeed, as we show, stabilizing a purely interac-

tion induced symmetry-broken phase is very difficult for slave-particle

methods without introduction of symmetry breaking fields. Our work

describes this issue in detail and provides a total-energy approach that

naturally produces symmetry breaking. We then show how one can

make slave-particle self-consistency between spinon and slave modes

much more efficient via a specific and exact decoupling of the two modes.

4.1 The Slave-Particle Approach

In this section we review the key aspects of the slave-particle formalism

used in previous work to set up the notation and language used in subse-

quent sections. The general correlated-electron Hamiltonian we consider
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is an extended Hubbard model given by

Ĥ =
∑
i

Ĥ i
int +

∑
imσ

εimσd̂
†
imσd̂imσ

−
∑

ii′mm′σ

timi′m′σd̂
†
imσd̂i′m′σ . (4.1)

The d̂ are canonical fermion annihilation operators. The indices i, i′ range

over the localized sites in the system (usually atomic sites), m,m′ range

over the localized spatial orbitals on each site, σ = ±1 denotes spin, Ĥ i
int

is the local Coulombic interaction for site i, εimσ is the onsite energy of the

state labeled by imσ, and timi′m′σ is the spin-conserving hopping element

term connecting orbital imσ to i′m′σ. A commonly used interaction term

is given by the Slater-Kanamori form [48]

Ĥ i
int =

Ui
2

(n̂2
i − n̂i) +

Ui − U ′i
2

∑
m 6=m′

n̂imn̂im′

− Ji
2

∑
σ

∑
m 6=m′

n̂imσn̂im′σ

− Ji
2

∑
σ

∑
m6=m′

(
d̂†imσd̂imσ̄d̂

†
im′σ̄d̂im′σ

+d̂†imσd̂
†
imσ̄d̂im′σd̂im′σ̄

)
(4.2)

While the Coulombic parameters Ui, U ′i and Ji can in principle depends

the site index i, in practice in most models they are assumed to be the

same for all correlated sites. Briefly, the U term describes repulsion be-

tween the same spatial orbitals on a site, U ′ repulsion between different

orbitals, and J measures the strength of the Hund’s interaction between
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different orbitals with the same spin state. The number operators are

n̂imσ = d̂†imσd̂imσ , n̂im =
∑
σ

n̂imσ , n̂i =
∑
mσ

n̂imσ .

The interacting Hubbard problem is impossible to solve exactly and

even difficult to solve approximately. Some of the complexity is due to

the fact that the interacting fermions have both charge and spin degrees

of freedom. In slave-boson approaches[5, 7, 37–41], one separates the

spin from charge degrees of freedom at each site by introducing a spin-

less charged bosonic “slave” degree of freedom on each site along with

a spinful neutral fermion termed a spinon. The spinon and slave boson

annihilation operators are indicated by f̂ and Ô operators, respectively.

Specifically, the electron field operators is decomposed as

d̂imσ = f̂imσÔiα , d̂
†
imσ = f̂ †imσÔ

†
iα . (4.3)

The index α is part of our generalized notation [17] that permits us to

unify different occupation number based slave-particle models. The mean-

ing of α depends on the type of slave boson model chosen, and α refers

to a subset of the mσ indices that belong to a site i. For example, if we

use a slave-rotor model for the correlated orbitals on a site [8, 9], then α

is nil: Ôiα = Ôi. Namely, we have a single slave particle on each site i

that only tracks the total number of electrons on that site. At the opposite

limit, we can have a unique slave boson for each mσ combination on a

site (the “slave-spin” method[15, 16]), so that in this case α = mσ.

The introduction of slave bosons by itself does not make solution of

the Hubbard model any easier as more degrees of freedom have been
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introduced to further enlarge the Hilbert space. To avoid sampling of

unphysical states in the enlarged spinon+slave Hilbert space which have

no correspondence to in the original electronic Hilbert space, one must

ensure that the number of slave particles and number of spinons track

each other. More precisely, Eq. (4.3) shows, spinon and slave particles

are created or annihilated at the same time so that only state kets in the

extended Hilbert space that obey this condition are physical. Hence, one

must ensure that

d̂†imσd̂imσ = f̂ †imσf̂imσ

and also that the subset of physical states |Ψphys〉must obey

(4.4)n̂iα|Ψphys〉 = N̂iα|Ψphys〉

where N̂iα is the number counting operator for the slave particles and the

correspond particle count for spinons is

n̂iα =
∑
mσ∈α

f̂ †imσf̂imσ . (4.5)

This constraint on the physical states simply ensures that the number of

slave bosons matches exactly the number of spinons on each site.

The key approximation that makes the slave-boson approach more

tractable than the original problem is to assume a separable form for the

overall wave function of the system which takes a product form |Ψf〉|Φs〉

where |Ψf〉 is a spinor-only state ket and |Φf〉 is a slave-only state ket.

This means one can only enforce the above operator constraints on aver-

age:

〈n̂iα〉f = 〈N̂iα〉s (4.6)
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where the spinon and slave averages for any operator Â are defined via

〈Â〉f = 〈Ψf |Â|Ψf〉 , 〈Â〉s = 〈Φs|Â|Φs〉 .

This separability assumption means one must solve two separate and

easier eigenvalue problems

Ĥf |Ψf〉 = Ef |Ψf〉 , Ĥs|Φs〉 = Es|Φs〉

in a self-consistent fashion. The spinon Hamiltonian is given by

Ĥf =
∑
imσ

εimσf̂
†
imσf̂imσ −

∑
iα

hiαn̂iα

−
∑
ii′αα′

〈Ô†iαÔi′α′〉s
∑
mσ∈α
m′σ∈α′

timi′m′σf̂
†
imσf̂i′m′σ . (4.7)

The slave boson Hamiltonian takes the form

Ĥs =
∑
i

Ĥ i
int +

∑
α

hiαN̂iα

−
∑
ii′αα′

 ∑
mσ∈α
m′σ∈α′

timi′m′σ〈f̂ †imσf̂i′m′σ〉f

 Ô†iαÔi′α′ (4.8)

where the spinon averages 〈f̂ †imσf̂i′m′σ〉f renormalize the slave boson hop-

pings. The slave boson problem is one of interacting charged bosons

without spin on a lattice.

Self-consistency refers to the fact that the spinon Hamiltonian involves

averaged quantities involving the slave wave function and vice versa. In

addition, the values of the Lagrange multipliers hiα must be chosen to
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ensure average particle number matching as per Eq. (4.6).

4.2 Single-site mean-field approximation

In practice, the slave Hamiltonian of Eq. (4.8) represents a many-body

interaction bosonic problem that has no exact solution. In what follows,

when solving numerically for the ground state of a spinon+slave prob-

lem, we will use a simple single-site mean-field approach: when dealing

with site i in the salve problem, we replace the Ôiα slave operators on the

other neighboring sites by their averages 〈Ôiα〉s. For the spinon Hamil-

tonian, this boils down to the simple replacement

〈Ô†iαÔi′α′〉s → 〈Ô†iα〉s〈Ôi′α′〉s

in the hopping term. The slave Hamiltonian turns into

Ĥs =
∑
i

Ĥ i
int +

∑
α

hiαN̂iα

−
∑
ii′αα′

 ∑
mσ∈α
m′σ∈α′

timi′m′σ〈f̂ †imσf̂i′m′σ〉f

 ·
[
〈Ô†iα〉sÔi′α′ + h.c.

]
(4.9)

which is a simple many-body system of isolated sites where the bosonic

Ôiα and Ô†iα operators remove and add bosons to the site from an effec-

tive bosonic mean-field bath. We note that, for the simple model Hamil-

tonians we will be using below in this approach, the quasiparticle renor-

malization factor (or weight) Z is simply given by Ziα = 〈Oiα〉2s.
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4.3 Difficulties Obtaining Symmetry Broken Phases

In this section, we explain why the current implementation of mean-field

theory fails to obtain proper symmetry broken phases. We use the ex-

ample of the well-understood one-dimensional Hubbard model at half

filling. Consider the Hamiltonian:

Ĥ =
U

2

∑
i

(N̂2
i − N̂i)−

∑
i,σ

t(ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ) (4.10)

where i is the site index, there is a single orbital per site, there are two

spin channels per site, and we consider the case where we are at half

filling (〈N̂i〉 = 1). The ground state is well-known. For U = 0, the ground

state is non-magnetic and metallic. For U > 0 but finite, the ground state

is insulating and shows anti-ferromagnetic correlations [58] but has finite

quasiparticle weight Z > 0.

The U = 0 and U >> |t|, the model’s solutions are well-described by

existing slave-particle mean-field implementations. For the intermediate

region U ∼ |t|, we are aware of no published study using recent slave-

spin, slave-rotor or other formalisms from the same family that has cor-

rectly obtained the correct AFM phase for this model. Namely, the AFM

solution does not appear to be a self-consistent ground state solution of

the spinon+slave coupled Hamiltonians. In addition to being annoying,

this is very worrisome since even a simple uncorrelated approach such

as Hartree-Fock easily delivers an AFM ground state.

To understand where the problem lies, consider the spinon Hamilto-

nian of Eq. (4.7) and how one would achieve symmetry breaking, e.g.,
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spin symmetry breaking and ordering, due to electron interaction ef-

fects. Since the electron interaction is handled by the slave sector, the

only quantities that can be affected by the slave calculation that then

feed into the spinon Hamiltonian are the Lagrange multiplies hiα and

the rescaling factors 〈Ô†iαÔi′α′〉s of the spinon hopping.

In the simplest slave treatment, we have a single slave particle on the

site: for example, the slave-number or slave-rotor treatments. In such

a case, the α label is nil so our Lagrange multipliers are only indexed

by site hi and the rescaling factors as well 〈Ô†i Ôi′〉s. Obviously, no spin

symmetry breaking is possible in the spinon sector since these variables

do not depend on spin in any way.

When we move to more elaborate slave-particle models where there

are different slave modes for the different spin channels, then one can

imagine that symmetry breaking is possible. For example, in our single

orbital per site 1D Hubbard model, when we have one slave-particle for

each spin channel, then α = σ. We could now imagine that the hiσ shift

the on-site energies of the orbitals in such a way to break spin symmetry,

or that the hopping rescaling factors are also spin dependent. In practice,

however, we have not found this to be the case: starting from a strongly

symmetry broken initial guess, the self-consistency cycle between spinon

and slave sectors drives the system towards a paramagnetic solution and

the two spin channels become equivalent. Any initial magnetization dis-

appears upon self-consistent iteration.

We have analyzed this failure and discovered the following situation.

If at some point the spinon system has broken spin symmetry on a site

i with net spin up, then hi↑ > hi↓ is what makes this true. However,
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FIGURE 4.1: ∆n = n↑ − n↓ as a function of ∆h = h↑ − h↓
on one site of the 1D half-filled single band Hubbard model
with U = 2 and t = 1. Upper figure is for the FM phase,
and the lower figure for the AFM phase. The ∆h depen-
dence of the spinon and slave occupancies are shown sep-
arately. Self-consistency between the two requires zero oc-

cupancy difference.

although hi↑ > hi↓ favors higher spin ↑ occupancy in the spinon sector

(due to the negative sign in front of hiα in Eq. (4.7)), it favors higher oc-

cupancy of the spin ↓ channel in the slave sector (positive sign of hiα in

Eq. (4.8)). The two effects fight each other, and the final self-consistent

solution has hi↑ = hi↓. An explicit example is provided by the 1D single-

band Hubbard model at half filling where the dependence of slave and

spinon occupancies on h are shown in Figure 4.1. These plots are gen-

erated by providing ∆ni = ni↑ − ni↓ on some fixed site i as input to the

slave problem which yields ∆hi = hi↑−hi↓ and 〈Ôiσ〉which are then used

to solve the spinon problem to get the spinon ∆ni. The figures clearly

show that the only self-consistent solution where slave and spinon par-

ticle numbers match is for ∆hi = 0 which is the symmetric paramagnetic

state.
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4.4 Symmetry breaking fields

In this section, we show how manually adding small external symmetry

breaking terms (“fields”) to the on-site energies can lead to electronic

symmetry breaking and lower the energy of the self-consistent ground

state. In the next section, we will justify this apparently ad hoc approach.

Adding additional symmetry breaking (“magnetic field”) terms bimσ

to the on-site energies of the orbitals in the spinon Hamiltonian gives the

simple modification

Ĥf =
∑
imσ

εimσf̂
†
imσf̂imσ −

∑
iα

hiα
∑
mσ∈α

f̂ †imσf̂imσ

−
∑
ii′αα′

〈Ô†iαÔi′α′〉s
∑
mσ∈α
m′σ∈α′

timi′m′σf̂
†
imσf̂i′m′σ

−
∑
imσ

bimσf̂
†
imσf̂imσ . (4.11)

We do not modify the slave Hamiltonian in any way in this ad hoc ap-

proach.

Addition of non-zero symmetry breaking fields bimσ will modify the

self-consistent solution to the spinon+slave problem. To gauge if this

improves the solution, we monitor the total electronic energy and see if it

is lowered due to symmetry breaking. The total energy is the expectation

value of the original Hubbard Hamiltonian of Eq. (4.1) with respect to the

approximate spinon+slave wave function |Ψf〉|Φs〉, and is equal to

Etotal = 〈Ĥ〉 =
∑
i

〈Ĥ i
int〉s +

∑
imσ

εimσ〈f̂ †imσf̂imσ〉f

−
∑

ii′mm′σ

timi′m′σ〈f̂ †imσf̂i′m′σ〉f〈Ô†iαÔi′α′〉s . (4.12)
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We now apply this approach to the one-dimensional single band Hub-

bard model at half filling of Eq. (4.10). Without loss of generality, we

choose bi↑ = −bi↓ to break spin symmetry on each site i. For ferro-

magnetic (FM) order, we choose aligned symmetry breaking fields be-

tween neighboring sites bi+1,σ = biσ, while AFM order requires staggered

fields bi+1,σ = −biσ. Hence, the field strength b for spin up at one site

is sufficient so specify the fields at all sites. We numerically solve the

spinon+slave self-consistent equations using the single-site mean-field

approximation described Section 4.2.

We begin our analysis with the most coarse-grained slave-boson rep-

resentations that only describe the total electron count on each site (i.e.,

no information on the spin configuration). These are the slave-rotor and

number-slave methods. The chief difference between them is that the

number count on a site can be any integer in the slave-rotor method

while the number-slave corrects this by only permitting the electron count

to be among the physically allowed values (e.g., zero, one or two for the

single band Hubbard model). Figure 4.2 show the dependence of the

total energy and quasiparticle weight Z (i.e., renormalization factor) on

the field strength b within the slave-rotor approach. For the slave-rotor,

increasing b increases the total energy of both AFM and FM solutions:

the non-magnetic solution is the preferred ground state. The strength

of electronic correlations, measured by how much Z deviates from its

non-interacting value of unity, also increases with b. This b dependence

is opposite to what one would expect for the actual model system: a

more spin-polarized system should have smaller number fluctuations as
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FIGURE 4.2: Total energy per site and quasiparticle weight
Z (renormalization factor)versus symmetry breaking per-
turbation field strength b based on the slave-rotor method
for the half-filled single-band 1D Hubbard model with

U = 2 and t = 1.

occupancies are driven towards one or zero and the electron configura-

tion becomes better described by a single Slater determinant. Finally, the

slave-rotor predicts an abrupt transition to a Mott insulator at finite b

which is peculiar (and wrong).

The number-slave results for total energy and Z versus b, displayed

in Figure 4.3, are somewhat of an improvement over those of the slave-

rotor but are still fundamentally flawed. The energy is still minimized

by the non-magnetic solution at b = 0 (although the energy rises more

gently with b) and Z drops with b (albeit more modestly). The failure of

the slave-rotor and number-slave methods is tied to the fact that they do

not consider the spin degree of freedom.

Due to the simplicity of the single-band Hubbard model, the only

remaining slave model is the spin+orbital-slave approach (called “spin-

slave” in the literature [15, 16, 18]). On each site, the each spin channel

has its own dedicated slave particle. The energy versus b plot in Fig-

ure 4.4 shows that we obtain an AFM ground state since a minimum
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FIGURE 4.3: Total energy per site and Z versus field
strength b for the number-slave method for the single-band

1D Hubbard model at half filling with U = 2 and t = 1.

FIGURE 4.4: Total energy per site and Z versus field b
for the spin+orbital-slave approach for the single-band 1D
Hubbard model at half filling with U = 2 and t = 1.
Unlike the number-slave and slave-rotor, correlations de-
crease with increasing b for the AFM phase and slowly in-

crease with b for the FM phase.

FIGURE 4.5
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appears at finite b. The figure also shows that the degree of electronic

correlation is reduced with increasing b (and increasing strength of AFM

order) as the occupancies get closer to zero and one: the system becomes

less strongly interacting as b is strengthened. This is what we expect:

with increasing AFM spin-polarization, the electronic configuration of

the system is driven to extremes of occupation (zero or one for each spin

channel) meaning that one can describe the system more accurately with

a single (non-interacting) Slater determinant. More details on the ener-

getic behavior versus b is provided by Figure 4.5 where the individual

components of the total energy are shown versus b. The interaction en-

ergy (Hubbard U term) is reduced by the spin symmetry breaking since

for both FM and AFM order the occupancies move away from half-filling

where occupancy fluctuation is largest. The band (hopping or kinetic)

energy rises with b due to the splitting of bands upon symmetry reduc-

tion. Both behaviors are generic and as expected. However, the reason

the AFM order shows a minimum total energy versus b is due to the fact

that Z becomes larger with b in this case: a larger Z (i.e., larger 〈O〉) will

enhance hopping and widen the bands and thus offset the reduction of

total band energy due to the creation of spin polarization.

The take-home message of this section is that the introduction of sym-

metry breaking fields can succeed in stabilizing symmetry-broken ground

states due to electronic correlations as long as the slave approach being

used is able to describe the symmetry breaking degree of freedom (spin

in the 1D single band Hubbard model). We are thus motivated to im-

prove upon the ad hoc nature of the approach and put it on a firmer the-

oretical in the next section.
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4.5 Self-consistent total energy approach

In this section, we justify the successful but ad hoc approach of the pre-

vious section. Namely, we describe a total energy functional that can be

applied to any type of slave-particle problem and which permits easy in-

corporation of the various types of desired constraints. Specifically, we

show that the slave-particle approach is a variational approach to the in-

teracting ground-state problem, and we provide an explicit form for the

variational energy functional. We also show that this viewpoint provides

significant practical benefits for efficient solution of the self-consistency

problem between slave and spinon sectors.

The form of the energy functional F is given by

F = Etotal + constraints

where Etotal is from Eq. (4.12) and the constraint terms are enforced by

Langrange multipliers.

Prior to the introduction of symmetry breaking fields, the constraints

we have enforced are that 〈Niα〉s = 〈n̂iα〉f as well as the normalization of

the spinon and slave wave functions 〈Ψf |Ψf〉 = 〈Φs|Φs〉. To incorporate

symmetry breaking fields, we choose to parametrize the functional F by

target spinon occupancies νimσ: these numbers are the occupancies that

we are constraining the spinons to obey, i.e., the constraints are 〈nimσ〉f =

νimσ. The associated Lagrange multipliers are bimσ. Hence the energy
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functional has the form, where we write out Etotal explicitly,

F ({νimσ}) =
∑
i

〈Ĥ i
int〉s +

∑
imσ

εimσ〈f̂ †imσf̂imσ〉f

−
∑

ii′mm′σ

timi′m′σ〈f̂ †imσf̂i′m′σ〉f〈Ô†iαÔi′α′〉s

− λf [〈Ψf |Ψf〉 − 1]− λs[〈Φs|Φs〉 − 1]

−
∑
iα

hiα[〈n̂iα〉f − 〈N̂iα〉s]

−
∑
imσ

bimσ[〈n̂imσ〉f − νimσ] . (4.13)

The Lagrange multiplies λf and λs enforce normalization of the spinon

and slave wave functions, respectively. The hiα enforce particle num-

ber matching between slave and spinon sectors. The bimσ enforce spinon

particle matching to target values. As expected, when the constraints are

obeyed, F = Etotal.

The point of having a energy functional is that the minimizing varia-

tional conditions, which generate desired eigenvalue problems, are eas-

ily derived by differentiation. In addition, the value of F provides a vari-

ational estimate of the ground state energy. Setting the derivative versus

〈Ψf | to zero gives the spinon eigvenalue equation

0 =
δF

δ〈Ψf |
= Hf |Ψf〉 − λf |Ψf〉

where the spinon Hamiltonian is that of Eq. (4.11) which includes the

symmetry breaking fields. Similarly, the minimum condition for |Φs〉

gives a slave eigenvalue problem with the slave Hamiltonian of Eq. (4.8).

The above formalism shows that, once all the constraints are obeyed,
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F ({νimσ}) = Etotal({νimσ}). The remaining task it to search over the tar-

get occupancies νimσ to find the minimum total energy. While theoret-

ically straightforward, in practice such an approach is difficult and in-

efficient because for each specified {νimσ}, one must find the fields bimσ

that enforce those particular target occupancies: this requires solving the

spinon+slave problem a great many times.

Practically, it is better to use the bimσ as the independent variables and

to minimize the energy over the (formally, this corresponds to a Legen-

dre transformation of F ). Hence, we now view νimσ as whatever mean

spinon occupancies are generated by solution of the spinon+slave prob-

lem at fixed {bimσ} which makes that corresponding constraint form al-

ways vanish. Hence, in what follows, we will use the symmetry breaking

fields as independent variables and consider the total energy functional

F ({bimσ}). Since we will always be obeying the key constraints for a

physical solution, F ({bimσ}) = Etotal({bimσ}) will be true. Hence, mini-

mization of the total energy versus {bimσ} will coincide with minimiza-

tion of F .

4.6 Simplified and more efficient slave-particle

approach

Up to this point, the slave-particle approaches we have developed re-

quire self-consistency between spinon and slave sectors in a specific man-

ner: not only do the spinon expectations renormalize slave hopping terms

(and conversely for slave expectations and spinon hoppings), but a shared

set of Lagrange multipliers hiα enforce particle number matching 〈n̂iα〉f =
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〈N̂iα〉s. The process of finding the hiα is numerically challenging: the hiα

appear with opposite signs in the spinon Hf and slave Hs Hamiltonians

meaning that increasing hiα decreases 〈n̂iα〉f but increases 〈N̂iα〉s. Our

general observation is that this “fighting” over hiα between the slave and

spinon sectors leads to a time-consuming self-consistent process requir-

ing many iterations to reach convergence.

Accelerating this process requires a simple change of variables that is

motivated by three related observations: (i) in the total energy functional

of Eq. (4.13), the spinon and slave number constraints are not treated

symmetrically because the spinons have the added bimσ terms, (ii) in the

spinon Hamiltonian of Eq. (4.11), we can add the hiα and bimσ terms to-

gether into a single term whereas the slave Hamiltonian of Eq. (4.8) only

has the hiα terms, and (iii) in the end, these Lagrange multipliers hiα and

bimσ do not appear in the total energy so rearranging them in various

ways does not change the total energy.

For the spinon Hamiltonian, we consider instead the new symmetry

breaking field given by the sum Bimσ = hiα + bimσ. The spinon Hamilto-

nian is now

Ĥf =
∑
imσ

εimσf̂
†
imσf̂imσ −

∑
imσ

Bimσf̂
†
imσf̂imσ

−
∑
ii′αα′

〈Ô†iαÔi′α′〉s
∑
mσ∈α
m′σ∈α′

timi′m′σf̂
†
imσf̂i′m′σ (4.14)
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while the slave Hamiltonian is unchanged

Ĥs =
∑
i

Ĥ i
int +

∑
α

hiαN̂iα

−
∑
ii′αα′

 ∑
mσ∈α
m′σ∈α′

timi′m′σ〈f̂ †imσf̂i′m′σ〉f

 Ô†iαÔi′α′ .

The slave Hamiltonian Hs no longer shares a common Lagrange multi-

plier with the spinon Hamiltonian Hf .

Operationally, this means that when we solve the slave Hamiltonian

problem, we are given specified 〈n̂iα〉f as input, and we solve the slave

problem while adjusting the hiα so as to ensure that the slave-particle

counts match the input: 〈N̂iα〉s = 〈n̂iα〉f . However, when solving the

spinon problem in the presence of symmetry breaking fields Bimσ, there

is no need to do particle number matching: the Lagrange multiplierBimσ

simply make the spinon particle counts match some free floating values.

In this way, particle number matching between the slave and spinon sec-

tor is decoupled which grealy simplifies the self-consistency process. Put

another way, the symmetry breaking fields Bimσ specify a set of desired

spinon particle counts {νimσ}, and the slave sector is required to match

this particle numbers via the hiα Lagrange multipliers.

We find that this simplified approach, which is equivalent to the stan-

dard approach of having hiα appear in both Hamiltonians, is much more

efficient in numerical calculations as it greatly speeds up self-consistency.

In this new approach, one achieves rapid self-consistency for a given set

of {Bimσ} which specify the spinon Hamiltonian and the target spinon

occupancies νimσ. One can then minimize Etotal({Bimσ}) over the Bimσ to
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FIGURE 4.6: Comparison of the ground state energies (in
units of t) for the single-band 1D Hubbard model at half
filling based on the AFM Hartree-Fock solution, the PM
slave-spin solution, the symmetry broken (AFM) slave-
spin ground state solution, and the exact Bethe Ansatz

(AFM) solution as calculated by the method of Ref. [59].

find the symmetry-broken ground state. In our experience, this new ap-

proach requires∼5-10 times fewer self-consistent steps to reach the same

level convergence.

Using this method, we can rapidly scan overB in a stable, self-consistent

way to obtain ground state energies. Figure 4.6 shows the dependence of

the ground state energy of the half-filled single-band 1D Hubbard model

as a function of U/t: for each U/t, we easily scan over the new symme-

try breaking field strength B to find the AFM ground state energy. The

figure shows energy versus U/t for the AFM state as well as the B = 0

non-magnetic solution compared to the exact Bethe ansatz solution for
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this problem.[58] Overall, the comparison between the AFM slave-spin

solution (which is insulating in the spinon sector) and the exact Bethe

ansatz is satisfactory given the simplicity of the single-site mean field

slave model used here. As expected, the AFM slave-spin method be-

comes very much like AFM Hartree-Fock in the large U/t limit of very

strong spin polarization since both approaches essentially describe the

system as a single Slater determinant. We note that the non-magnetic

ground state has an incorrect evolution from a metallic system at small

U/t to a Mott-insulating phase at U/t ≥ 10.

4.7 Conclusion

We’ve shown how occupation-based slave particle methods can be used

to obtain spontaneously symmetry-broken electronic phases based on a

total-energy approach. We have described and tested our ideas on the

classic 1D Hubbard model Hamiltonian and showed both the difficulty

of breaking symmetry without extra fields or a Hund’s J. Furthermore,

we have shown how to enable symmetry breaking via the use of auxil-

iary symmetry breaking fields in a self-consistent way that greatly lowers

the computational burden and stability from the standard slave-particle

calculation. Further, we have demonstrated that in order to obtain spon-

taneously symmetry-broken phases in the spinon sector, the slave-sector

must be allowed to break the corresponding symmetry explicitly by hav-

ing different slave-modes for the different degrees of freedom which may

undergo symmetry breaking.
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Chapter 5

Ionic Potential and Band

Narrowing as a Source of Orbital

Polarization in

Nickelate/Aluminate

Superlattices

In this chapter we explore the underlying mechanism behind orbital po-

larization in another interface, that of NdNiO3/NdAlO3. The experi-

mental reason to study this material was to see whether, in a thin film,

the long range NdNiO3 order is supressed for thin enough NdNiO3 layer

thickness. Our experimentalist collaborators have shown (currently un-

der second round of review at Phys. Rev. X, Disa, Georgescu et al.),

this is the case. This material also seems to be a good testing ground

for our DFT+Slave calculation on a heterostructure, as DFT predicts an

orbital polarization in reverse compared to what experiment predicts.

This difficulty with DFT, however, is also what makes the application
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of the slave-particle methods particularly relevant. In conjunction with

phenomena DFT did predict accurately, this materials system shows the

importance of simple, beyond-band-theory calculations.

5.1 Methodology

The theoretical calculations have been done within the density-functional-

theory (DFT) approach using the Quantum Espresso software [22], using

the generalized gradient approximation (GGA) in the PBE form [21], and

ultrasoft pseudo potentials as implemented in the Quantum Espresso

package [23]. All the super cells in our simulations have the form of an

infinite periodic superlattice with formula (NNO)m/(NAO)n along the

(001) direction, where m = 1, 2 and n = 3, 4 with the condition that m+n

is even in order to allow for full relaxation of the octahedral rotations in

the simulation supercell. The experimental system is grown on a LaAlO3

substrate which has an experimental lattice constant of aLAO =3.79 Å,

while aNAO =3.74 Å and aNNO =3.81 Å. Our experimental collaborators

have noted relaxation of the lattice unit cell compared to the substrate

unit cell, leading to an estimated compressive strain on the NNO layers

of around 0.5% on the NNO. As we will show, this small strain has very

little effect on orbital polarization as computed by DFT in the context of

this heterostructure. We have performed relaxation calculations by us-

ing a 1×1 in-plane unit cell in the xy plane as well as c(2×2) relaxation

calculations.
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In order to define orbital polarization of the eg bands, we use the sim-

ple definition

r =
2− n3z2−r2

2− nx2−y2
(5.1)

which measured the ratio of holes in the two different eg orbitals (ni is

the electron count in orbital i). We choose to measure orbital polarization

as a function of the number of holes per orbital in order to compare di-

rectly with experiments that measure holes (unoccupied states) via x-ray

absorption spectroscopy (XAS).

In order to get an average local (on-site) energy per orbital, we first

calculate the projected density of states (PDOS) for each orbital and then

perform integrals. For an orbital labeled by nmσ, the average energy is

given as

Ēnmσ =

∫∞
−∞ PDOSnmσ(E) · E · dE∫∞
−∞ PDOSnmσ(E) · dE

. (5.2)

To focus on the main aspects of the physics around the Fermi level,

particularly that of the d-bands, we have found it helpful to build a tight

binding model. Since bulk NdNiO3 is a charge-transfer insulator, we in-

clude the O 2p orbitals explicitly in our tight-binding model. Hence, we

have both Ni 3d states and the Oxygen 2p states for the NNOm/NAOn

superlattice in our p-d model. The Wannierization process used to find

these orbitals was performed using the open-source code Wannier90 soft-

ware [60] to post process the results of our DFT calculations.

Finally, to model the effects of band narrowing on orbital polariza-

tion, we have used the slave-particle approach as described in previous

chapters for the p-d model while keeping the on-site energies at the value

calculated from DFT (this is equivalent to setting all B = 0 as defined in
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Structure Lattice Constant (strain) n3z2−r2 nx2−y2 r
1x1 3.71 (0.5% compressive) 0.634 0.715 1.28
c(2x2) 3.79 (1% tensile) 0.626 0.719 1.33
c(2x2) 3.71 (1 % compressive) 0.631 0.715 1.29

TABLE 5.1: Electron occupation and orbital polarization
of eg orbitals as a function of strain and with and without

octahedral distortions based on DFT calculations.

Chapter 4).

5.2 Results

Within standard crystal-field theory, orbital polarization on the cation

in a perovskite is driven by structural distortions of the cation-O bonds

around the cation. For example, strain can lead to such distortions. At an

interface, another source of orbital polarization that is often discussed in

the literature is from quantum confinement: electrons are confined in the

out-of-plane superlattice direction by insulating layers (in our example)

when compared to unimpeded motion in the in-plane directions.

Based on our DFT calculations for these NNO-NAO superlattices, we

notice that the effect of octahedral distortions and experimental strain

ranges of ±0.5% on the orbital polarization is quite small. (The sign of

the strain depends on whether NNO is strained epitaxially to the LAO

substrate or relaxes to that NAO lattice parameter if epitaxy is lost.) Ta-

ble 5.1 shows numerical results for a few variant calculations. In all cases,

r ≈ 1.3 which is not only qualitatively different from the experimentally

measured r = 0.9 but also in the opposite direction (computed nx2−y2 >

n3z2−r2 while the measured n3z2−r2 > nx2−y2). We note from table 5.1 that
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U(Ni) U(O) n3z2−r2 nx2−y2 r Ē3z2−r2 Ēx2−y2 ∆Ē
0 0 0.558 0.641 1.23 -2.712 -2.471 -0.241
3 0 0.554 0.663 1.32 -2.745 -2.717 -0.028
6 0 0.539 0.693 1.50 -2.696 -3.093 0.397
0 3 0.541 0.627 1.23 -2.636 -2.389 -0.247
0 6 0.523 0.612 1.23 -2.568 -2.316 -0.252

TABLE 5.2: Electron occupation numbers and average en-
ergies for Ni eg orbitals for the (NNO)1/(NAO)4 1x1 struc-
ture calculation for different values of U within DFT+U

theory.

within a range of 2% in strain, the change of orbital polarization for the

fully relaxed c(2×2) structure is very small and the change when adding

or removing octahedral rotations (1×1 versus c(2×2)) is also small. This

allows use the 1×1 structure for the rest of the chapter as a model system

to understand orbital polarization in the superlattice.

Since nickelates are electronically correlated materials, an obvious

next step is to include some type of local interaction effects within the

DFT+U approximation by adding a Hubbard U to the Ni 3d orbitals. For

reasons that will become obvious below, we separately apply a Hubbard

U to the O 2p orbitals as well.

Adding a U to the Ni 3d orbitals does not drive the orbital polariza-

tion towards experimental results. When the U is applied to the Ni 3d in

DFT+U calculations, it further increases the orbital polarization, exacer-

bating the trend above. This is something we expect since the correction

to the on-site energies for orbital nlmσ in DFT+U takes the form

εnmlσ = εU=0
nmlσ + U

(
1

2
− nnmlσ

)
(5.3)

which has a tendency to push down in energy states that are more than
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FIGURE 5.1: 1x1 structure of (NNO)1/(NAO)4 and fully
relaxed c(2x2) (NNO)1/(NAO)3 as simulated in Quantum
Espresso. We only use 3 layers of NAO in order to have an
even number of octahedra and allow for octahedral distor-

tions
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half filled (and push up in energy states below half filling). This generally

exaggerates the pre-existing patterns of occupations at U = 0. Since both

eg states are more than half-filled, their occupation number tends to be

further increased by the addition of a U and their energies are reduced.

As a by product, this ends up reducing the p-d energy splitting.

We proceed to add a U to the O 2p orbitals as a numerical exercise

and thought experiment. Since DFT+U in effect only changes the on-site

energies, this results in an effective increase in the p-d splitting by low-

ering the relative energy levels of the Oxygen p states (which are much

more than half filled). As expected, this decreases the orbital occupancy

of the eg orbitals by reducing their covalent bonding. This is, as it will

become clear later in this chapter, due to the band narrowing induced by

the increase in p-d splitting.

Looking at the average energies in Table 5.2, we observe something

interesting. The on site energies at U = 0 show a splitting of Ēx2−y2 −

E3z2−r2 = 0.24eV . This compares well with the experimental value of

Ēx2−y2 − E3z2−r2 = 0.3eV . What is puzzling is that the 3z2 − r2 orbital

has a lower energy but has a smaller occupancy than the x2 − y2 orbital.

Hence, this is an unusual case where the DFT occupancies are wrong but

the on site orbital energies are correctly ordered (i.e., the self-consistent

potential seems to be correct but the occupancies coming from that po-

tential are not correct).

To better understand what is happening, we return to our model 1×1

system, and plot the eg projected density of states (PDOS). As we can

see in Figure the x2 − y2 band is significantly wider than the 3z2 − r2

band, despite the already discussed marginal effect of strain. To explain



94
Chapter 5. Ionic Potential and Band Narrowing as a Source of Orbital

Polarization in Nickelate/Aluminate Superlattices

FIGURE 5.2: Projected density of states of the Ni eg orbitals
for the (NNO)1/(NAO)4 heterostructure.
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how the confinement leads to band narrowing and less covalence, even

in the context in which bond lengths are not affected, we appeal to a

simple physical picture shown in Figure 5.3. The picture shows that even

for identical orbital energies and inter-orbital hoppings, confinement in

the superlattice direction will reduce electron propagation. This in turn

narrows the bands. A corollary of this band width reduction is that the

Ni 3z2 − r2 and O 2p orbitals mix less (i.e., the associated conduction

bands have stronger Ni 3d character) which is what is meant by reduced

covalence.

While the above picture explains the difference in covalence and the

origin of the band narrowing, it does not explain why the orbital occu-

pancies should differ (and opposite to those in experiment) nor why the

on-site energies of the Ni eg orbitals are different (and match experiment).

We will deal with the two issues separately as they are interrelated but

distinct and require separate types of analysis.

The on-site energy difference can be explained by the different ion-

icity of the two materials. Namely, NAO is a wide gap insulator and

should be quite ionic: the Al cation in NAO should be very solidly in the

3+ state due to the high energy of its unoccupied orbitals. On the other

hand, NNO is much more covalent since the states near the Fermi energy

have strongly mixed Ni 3d-O 2p character: we expect the Ni to be less

close to a formal 3+ charge state and closer to 2+. The point is not the

precise values, but simply that Al will be more positively charged than

Ni. From here, the path forward is directed by basic electrostatics: as we

near the Al site, its more positive charge will make the filled states of the

nearby oxygens become lower in energy (a Madelung potential effect)
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FIGURE 5.3: Simplified picture of how confinement
changes inter-orbital hoppings, band widths, and cova-
lence. Top: a p-d Hamiltonian that includes alternating
higher and lower energy orbitals in a periodic way (simi-
lar to bulk NNO in any axial direction or Ni x2− y2 orbital
and in-plane oxygens in NNO/NAO). Bottom: a similar
Hamiltonian with the same hopping terms and on-site en-
ergy differences that, however is not periodic due to the
confinement (insulating layers surround this subsystem).
This describes the 3z2 − r2 orbital in the (NNO)1/NAO
system. While the immediate environment around the d
orbitals is the same, the hoppings to father sites are not

and this modifies band widths and covalence.
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FIGURE 5.4: Schematic representation of the NNO/NAO
interface. Note that hopping is energetically costly (i.e.,
forbidden) onto the Al in the NAO from Ob (due to the
high energy of the local states on Al). As one proceeds
away from the NiO2 layer, the oxygens become more
occupied as the environment becomes more ionic, i.e.
n(Oa)<n(Ob)<n(Oc). Image from Disa, Georgescu et al (un-

der review).
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n(Oa) n(Ob) n(Oc)
1.68 1.78 1.92

TABLE 5.3: Occupation numbers for oxygen apical 2p or-
bitals (2p orbitals pointing along the local cation-O-cation
direction on each oxygen). Oxygens are defined by Fig-
ure 5.4. The increased occupancy going from NNO to NAO

indicating increased ionicity & decreased covalence.

and thus more occupied. This physical pictures is directly supported by

our DFT results. Table 5.3 shows that, indeed, as we approach the Al site,

the O anion 2p states become systematically more occupied by electrons.

The anisotropic layout of ionicities can also affect the Ni orbitals.

The differnce in ionicity should reflect itself in an anisotropic electro-

static potential profile near the Ni site. In order to isolate this effect,

we have compared a number of idealized model calculations: a 1×1

10-atom per unit cell (NNO)1/(NAO)1 superlattice with the same lat-

tice constant in the x-y plane as our 1×1 (NNO)1/(NAO)4 superlattice

as well as a 10-atom per unit cell 1×1 (NNO)2 ’superlattice’ (i.e., pure

NNO). We did not allow any relaxations of these model systems and en-

forced full cubic symmetry for each oxygen octahedron. We note that we

obtain the same ∆E = 0.24eV in the (NNO)1/(NAO)1 supercell as in the

(NNO)1/(NAO)4 supercell, proving that the energy splitting is not due

to structural distortions in the full superlattice. Next, we take average

of the potential in the x-y plane in both 10 atom theoretical superlattices,

obtaining a 1-D potential for both superlattices. We can then subtract the

potentials, VNNO/NAO − VNNO/NNO, and plot the resulting potential dif-

ference. The resulting plot (Figure 5.5) shows that the average potential
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FIGURE 5.5: Potential difference averaged in the x-y
direction in the NNO layer between NNO/NAO and
NNO/NNO as a function of z position offset from the
Ni (arbitrary horizontal linear axis units). The 3z2-r2 or-
bital (red) samples a lower potential than the x2-y2 orbital
(blue), leading to an energy splitting between the two or-

bitals.

sampled by the 3z2−r2 potential is lower in energy than that of the x2−y2

orbital, as expected from the the fact that the 3z2 − r2 orbital points to-

wards the more positive Al, and thus explaining the electrostatic origin

of the energy splitting.

We now summarize our understanding of what is happening in the

material. In brief:

• the ∆E energy splitting between the two eg orbitals is mainly due

to the different electrostatic potential sampled by the two differnet

eg orbitals. The potential difference stems from the different ion-

icity of Al and Ni. ∆E matches well with experiment in the full
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supercell calculation (0.27 eV in theory vs 0.3 eV in experiment)

• the 3z2 − r2 is narrower than the x2 − y2 band due to the quantum

confinement effect along the superlattice direction since NAO is a

wide gap insulator.

The final aspect to be understood is the electron occupancy. A ba-

sic fact we must keep in mind is that the final electron occupancy on an

atom is determined by both the on-site energies on that atom as well as

the inter-atomic hopping terms to nearby neighbors (in a tight-binding

view). We know, however, that the electronic bands in nickelates are

broader in DFT calculations than in experiment due to electronic corre-

lations. For example, bulk LaNiO3 has m*/mDFT ≈ 3.0 [13]. We then

theorize that the discrepancy in orbital occupation could be due to the

fact that our bands are much broader than in experiment.

The basic idea is simple and is highlighted in Figure 5.6 (see the cap-

tion for the explanation of the basic mechanism). In what follows, we

will flesh out and verify this hypothesis.

5.3 Test Case: Band Narrowing in SrVO3

Before applying the DFT+Slave-Boson method as above to the super-

lattice, we test this method on a transition metal oxide, namely SrVO3

(SVO), where the band structure is known. We pick this material as its eg

bands are empty, while the t2g bands at the Fermi level are degenerate.

Further, SrVO3 is a correlated metal [14, 61], making it an ideal testing

ground for our theory.
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FIGURE 5.6: Simple physical picture of how band nar-
rowing can reverse the direction of orbital polarization.
Left: the average energy of the 3z2 − r2 is lower than that
of x2 − y2, however the x2 − y2 is quite broad and thus
more of it is under the Fermi level, leading to a higher
occupancy. Right: narrowing both bands by a significant
amount leads to a higher occupancy of the band that has an
average lower energy. In the limit of bands of zero width,
the x2−y2 would have zero occupancy, and we would have

maximum orbital polarization.

Our slave-boson method is implemented as follows: we start by com-

puting within DFT the relaxed atomic and electronic structure of SrVO3,

extract the Wannier bands for the p and d bands using Wannier90 to

build a tight-binding “p-d” model, and finally implement a self-consistent

slave-boson calculation on this model. See Figure 5.7 for an overview of

this process.

Here, we keep the on-site energies from DFT (i.e., all Bimσ = 0). The

reasoning is that, due to the t2g degeneracy and large p-d splitting, added

on-site energy terms (B) for the t2g orbitals would be equivalent to chang-

ing the p-d splitting and thus renormalize the band width, which in this

particular material generates a very similar to changing the U but for

different physical reasons. Namely, U creates dynamic electronic renor-

malization (Z < 1) which narrows the d bands, whereas increasing the
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FIGURE 5.7: Basic schematic of the software used for the
slave-particle calculation on real materials, starting with
Quantum Espresso, continuing with Wannier90 and finish-
ing with slave-particle calculations done with our software

FIGURE 5.8: Spectral functions for SrVO3. Left:
ARPES [61] and Right: DMFT [14] calculations, Middle:
LDA+Slave. Despite a much simpler, faster approach, we
reach very good agreement with DMFT and experiment.

p-d splitting will also narrow the d-bands even at U = 0 but will keep

Z fixed. Hence, the underlying reason for the band narrowing is differ-

ent. Here, we are inquiring if correlations can lead to the significant band

narrowing observed in this system.

The DFT calculations were done using a 7× 7× 7 k-point mesh sam-

pling the Brilluoin zone, a Gaussian smearing with width 0.05 eV when

integrating over the Brillouin zone, a kinetic energy cutoff of 35 Ry for the

wave functions and an energy cutoff for the charge and potential of 280

Ry. The Wannierization was done allowing a frozen window 20 eV wide
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which included the oxygen 2p and vanadium 3d dominated valence and

conduction bands. The slave-particle calculation was done allowing for

different slave-modes for each vanadium d orbital, and the Hubbard U

was chosen to be U = 12 eV. We picked the U value of 12 eV in order to

include an amount of correlations comparable to DMFT U=10 eV and J=1

eV (as we do not use a J in this calculation) as well as to get the effective

masses from experiment. Our effective masses m*t2g/mDFT=1.95 and

m*eg/mDFT=1.4 are both in good agreement with experiment and avail-

able DMFT results [14, 61] of 2.0 and 1.3, while the LDA+slave spinon

bands are in good agreement with the spectral functions from experi-

ment and DMFT as shown in Figure 5.8.

5.4 Band narrowing in NAO/NNO

Emboldened by the success of our slave-boson approach for SrVO3, we

now use it to study band narrowing effects in NAO/NNO. In order to

test our hypothesis, we first create a Wannier p-d model from the super-

lattice calculation using Wannier90, retaining only the Ni 3d and O 2p

Wannier orbitals. Furthermore, we perform self-consistent slave-particle

calculations on this model, using slave particles only for the Ni eg states

and keeping the on-site energies unchanged from DFT. We begin by man-

ually fixing the effective mass of both eg orbitals to be m*/mDFT=0.33,

assuming the effective mass renormalization is the same as that in bulk

LNO to check our theory. We implement this by setting the value of

all 〈Ô〉 = 0.33 by hand. In this case we obtain n(3z2 − r2)=0.63 and

n(x2 − y2)=0.59, leading to r = 0.9, matching the experimental value.
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U (eV) n(3z2-r2) n(x2-y2) r m∗/mDFT

0 0.523 0.58 1.14 1
5 0.541 0.574 1.08 1.43

10 0.581 0.578 0.99 2.15
20 0.624 0.5852 0.91 2.8883

’manual’ 0.63 0.53 0.9 3

TABLE 5.4: Slave-number calculations on the 1×1
NNO/NAO superlattice. Note that around U = 10 and
m∗/mDFT = 2.15, the orbital polarization starts matching

the direction from experiment

Table 5.4 shows how the predictions depend on U.

5.5 Conclusions

Throughout this chapter, we have isolated a series of factors that are rele-

vant to orbital polarization and that have not been previously reported in

the literature. Given the growth rate of this field of study in the complex

oxide community, a better understanding of what actually causes orbital

polarization in a material can be used to design novel materials systems.

After a brief review of how quantum confinement can narrow the Ni

3z2 − r2 bands in a NNO/NAO superlattice, the main contributions of

this work are the study of how an on-site orbital potential difference can

appear without any strain effect, purely due to the different ionicity of

the two materials used to build the heterostructure. Finally, we’ve ex-

plained how orbital polarization in such a case can be wrongly predicted

by density functional theory and DFT+U and corrected by band narrow-

ing which is not possible to describe in DFT calculations (and band the-

ory more generally).
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EELS Spectra in

Manganite-Ferroelectric

Interfaces

An important characteristic of transition metal oxides are the electroni-

cally active d-orbitals on the transition metal cations [62] and their rela-

tive energies in both bulk and interfaces [63–68]. A rich variety of phys-

ical phases arise from these, including magnetism, ferroelectricity, colos-

sal magnetoresistance and, most famously, high temperature supercon-

ductivity.

Manganites are a classical example of a transition metal oxide class in

which the filled t2g orbitals are low in energy while the eg orbitals near

the Fermi level (d3z2−r2 , dx2−y2) play an active role in transport and mag-

netism [69, 70]. An important area of research in transition metal oxides,

including manganites, has been that of orbital engineering. The energetic

ordering of the eg orbitals on the manganites has been shown to be im-

portant in the bulk as well as at manganite surfaces and interfaces [71–
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77]. One aspect of orbital control involves the lifting of orbital degen-

eracy (orbital polarization). Jan-Teller-like distortions due to epitaxial

strain are a common, albeit weak, tool for creating orbital polarization

in manganites[70]. In terms of interfacial orbital control, the interface

between the manganite La0.2Sr0.8MnO3 (LSMO) and ferroelectric BaTiO3

(BTO) offers, in principle, a system showing interfacial orbital polariza-

tion [26] that is, in principle, switchable via external electric fields.

A key aspect of understanding the physics of transition metal oxides

is being able to relate theoretical predictions from calculations to various

spectroscopic measurements. More specifically, new spectral phenom-

ena specific to interfaces can occur that are not understood by superpos-

ing various reference bulk spectra (the typical experimental approach)

and require direct theoretical modeling.

Electron Energy Loss Spectroscopy (EELS) has been used to under-

stand electronic states at interfaces of transition metal oxides, including

manganites [30, 31, 78, 79]. The most common approach is to study the

oxygen K-Edge spectra (which correspond to electron excitation from the

O 1s to unoccupied O 2p orbitals). In a purely ionic model and with oxy-

gens being in their O2− state in the oxide, the O-K edge spectrum would

be zero as no empty O 2p orbitals would be available. In transition metal

oxides, however, covalency between the oxygen atoms and the nearby

transition metal cations is not negligible. This means that the unoccu-

pied states of the material, while dominated by cation orbitals, have a

substantial O 2p component which permits O K-edge excitations. Hence

these types of spectra provide valuable information about the degree of
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metal-oxygen hybridization and O 2p hole states. In terms of first princi-

ples DFT modeling of EELS spectra, the state of art tools are the so called

“Z” and “Z+1” approximations, described below.[30–32]

In this work, we describe the relation between the computed spectra

and the measured EELS O-K edge spectra in detail in a spatially resolved

manner for the LSMO/BTO interface. We will show how EELS spectra

and theoretical calculations can provide us insight into the local electric

fields at the interface as well as information about the local core-hole

screening.

6.1 Methodology

The experimental methods used for sample fabrication and EELS mea-

surements have been mentioned in another publication [26]. The theo-

retical calculations have been done within the density-functional-theory

(DFT) approach using the Quantum Espresso software [22] using the

generalized gradient approximation (GGA) [21] and ultrasoft pseudo po-

tentials as provided by the Quantum Espresso library [22]. We have used

a 5×5×1 k-point mesh for a c(2×2) unit cell in the x-y plane, a kinetic en-

ergy cutoff for the wavefunction of 30 Ryd, while for the potential and

density we’ve used a cutoff of 350 Ryd. For the electron occupation func-

tion, we used a Gaussian smearing width of 5×10−3 eV. All the super-

cells in our simulations are of the form (Pt)n/(BTO)m/(LSMO)l/vacuum

along the (001) direction, where m is often a half integer due to the fact

that we start and end the BTO structure with a BaO layer. (Please see
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FIGURE 6.1: (A-C) Schematic of the BaTiO3/LSMO in-
terface where the purple part represents LSMO and light
blue represents BTO. The oxygen octahedron changes its
ratio with ferroelectric polarization. (D-F) Relaxed atomic
structures from first-principles calculations. The structure
is strained to an STO substrate (not shown) and uses Plat-
inum as an electron reservoir (not shown). This figure was

first published in a previous work[26]

reference [26] for details of the supercell and see Figure 6.1 for some il-

lustrations.)

The periodic (100) and (010) dimensions of the supercell were fixed

to the experimental SrTiO3 size of a=3.905 Å, as the experimental system

was grown epitaxially on SrTiO3. The La1−xSrx doping was implemented

using the virtual crystal approximation (VCA) [24]. We have performed

calculations by using a relaxed 1 × 1 structure in the xy plane, as well

as relaxed c(2 × 2) calculations including octahedral rotations where all

but a unit-cell thick region of the BTO were allowed to relax; the fixed

atoms in BTO were used to impose a bulk-like polarization in the BTO

layers. For the purposes of isolating different electronic factors through

numerical experiments, we have also used 1 × 1 bulk supercells of the

form (BTO)m/(LSMO)l whose structure we did not relax.
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Our approach to computing the EELS is standard [30–32]. Fast elec-

trons passing through a material can excite a variety of modes in the ma-

terial. Electrons with sufficient kinetic energy can excite core electrons

into the unoccupied valence manifold. Since core electrons are highly

localized in space, we assume that the transition operator for the excita-

tion is a traditional dipole transition operator. Furthermore, we assume

that the transition matrix element is essentially independent of energy

over the few eV range of interest for the spectra (e.g., O-K edge spectra

in metal oxides are near 530 eV of excitation energy while the physically

interesting feature of the spectrum appear over a range of about 5-10 eV)

[30, 31]. What all these approximations mean is that, within band theory,

the measured spectrum at energy should be proportional to the number

of unoccupied O 2p states at that energy (i.e., the O 2p density of states).

In what follows, the density of states projected onto atomic orbitals will

be denoted as the PDOS (projected density of states).

We have used two methods of calculating EELS, known as the “Z”

and “Z+1” approximations [32]. The difference between them regards

how the core hole (i.e., the missing electron in the 1s shell of the excited

oxygen) is treated. In the Z approximation, we assume that the states

available for the excited electron are the band states from the ground

state calculation: namely, no modification of the density of states should

happen above the Fermi level EF . This approximation is very good if the

other electrons can screen the core hole effectively and very rapidly. In

the Z+1 approximation, we first self-consistently calculate the electronic

structure after we add a core-hole to the system on a chosen O atom. In

practice, we add the core hole by either generating a specialized oxygen
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pseudopotential with a core hole in its 1s state or more traditionally by

adding a proton to the nucleus of this special atom; in practice, we find

the difference between the two methods is negligible. Hence, the Z+1 ap-

proximation has the electron excited into electronic states corresponding

to a fully and self-consistently screened core hole. The Z+1 approach has

the merit of including the core hole and its associated screened potential,

but it does assume that the core hole screening is essentially instanta-

neous compared to the process of electron excitation itself.

In order to check that our calculations are reliable and believable

when compared to bulk experimental reference spectra, we have com-

puted O-K edge spectra for a variety of dopings x in bulk La1−xSrxMnO3

(x=0,0.2,0.4,0.6,0.8,1.0). We find that Z+1 is consistently a good approx-

imation which delivers high quality spectra from both previous theory

[30, 31] as well as from our calculations in Fig 6.3.

6.2 Results

O-K edge spectra can be used to understand the nature of bonding be-

tween the O 2p states and the neighboring cation d states. At our LSMO/BTO

interfaces, there are two polarization states. When the BTO ferroelectric

polarization points towards the interface, electrons accumulate in the in-

terfacial LSMO region to screen the ferroelectric surface charge: this is

called the “accumulation” state since holes are the dominant carrier type

in LSMO. The opposite polarization state accumulates electrons and is

the “depletion” state.
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FIGURE 6.2: Z+1 calculations for two different doping
levels of bulk La1−xSrxMnO3. Computed O 2p PDOS are
in black and cation d PDOS are below them in blue and
green. Note the two main effects of the change in doping:
hole doping leads to an increased Mn-prepeak, while the
change in element from La to Sr increases the relative en-
ergy of the La/Sr prepeak as Sr d states are higher in energy

than La d states.

FIGURE 6.3: Z+1 calculations for fully relaxed LaMnO3

and SrMnO3 versus experimental data. Both show good
agreement between theory and experiment.
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Briefly, the two main effects caused by the existence and switching of

the ferroelectric polarization are:

• The hybridized interfacial Mn 3d-O 2p states in the LSMO (domi-

nated by Mn 3d as they are “conduction band” states) at the Fermi

level accommodate almost all of the screening charge, as expected.

• The energy levels of the different cation dominated states aboveEF

shift in energy in different ways. The Mn 3d states shift in energy

in order to accommodate the screening carriers (holes or electrons).

However, the energy of the La/Sr d states and the Ba d states shifts

according to the electrostatic potential profile in the interfacial re-

gion that is created by the ferroelectric field effect (i.e., ferroelectric

surface charge and associated screening carriers).

This leads to the following effects on the computed EEL spectra:

• The low-energy part of the O-K edge spectrum, the “pre-peak”, is

dominated by Mn 3d-dominated states right aboveEF . As these are

filled by electrons or holes, we see the associated spectral weight

decrease or increase, respectively. However, the energy position of

this prepeak does not shift much since the Mn 3d-dominated states

are essentially pinned to the Fermi level.

• The higher energy spectral weight is the “main peak” and is domi-

nated by La/Sr d states (hybridized with O 2p). These states are not

fixed to be near the Fermi level and are thus free to “slide” along

the energy axis depending on the local electrostatic potential. They

shift in energy and also separate in energy by different amounts in

the two polarization states.
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FIGURE 6.4: Z+1 calculations from a 1× 1 supercell inter-
face for LSMO/BTO. What are plotted are projected den-
sities of states (PDOS) onto O 2p (the “O-K edge” data in
black) and the various cation d orbitals at the interface. The
normalization of the plots is arbitrary. Top two plots are for
depletion and bottom two plots are for accumulation. No-
tice the upward shift in energy of the Ba d states and the
La/Sr d states in the accumulation state compared to the
depletion state as well as the increase in the Mn 3d density

of states above EF for accumulation.



114 Chapter 6. EELS Spectra in Manganite-Ferroelectric Interfaces

Computed spectra illustrating these key points are shown in Figure 6.4.

The main spectral features that we wish to analyze further are the rel-

ative shifts in energy of the different cation d projections. Please note

that the shape of the main peak is quite different in the two different

states primarily because the La/Sr d and Ba d states have different rela-

tive energy shifts in the two polarization states. This means that if one

uses the pre-peak to main peak spectral ratio as a way to track the local

electronic properties (a standard experimental approach), one must be

cautious in interpreting the data since the interfacial ratio is modified by

effects not present in bulk materials (multiple cation peaks moving by

differing amounts).

We have done our analysis of spectral shifts in two ways. First, we

can examine plots like Figure 6.4 and find the shift of the peaks of the

cation PDOS. Second, we can compute the DFT self-consistent electro-

static potential and average it on each plane of atoms and compute the

shift of averaged potentials. Figure 6.5 shows a comparison between the

two methods showing that they agree quite closely.

These shifts are understood most simply via a simple electrostatic

model. Figure 6.6 shows a schematic of the expected charge distributions

for the accumulation configuration where the BTO polarization points

away from the interface drawing holes into the interfacial LSMO. The

fact that the interfacial LSMO is hole doped means its local potential

must higher than deeper in the bulk of LSMO: pictorially, the presence

of the negative BTO surface charge has “repelled away” electrons from

the interface. The opposite situations hold for accumulation.

Finally, we compare our computed DFT spectra to measured EELS



6.2. Results 115

FIGURE 6.5: Energy shifts of various cation states across
the LSMO/BSTO interface computed in two different
ways. The blue dots show shifts of the layer-averaged elec-
trostatic potential going from accumulation to depletion.
They are compared to shifts of the cation PDOS peaks for
the BaO and La/SrO layers as well showing close agree-
ment. As expected, deep inside the metallic LSMO the

shifts go to zero.

O-K edge spectra for the O atom in the MnO2 layer at the interface. We

compare the two experimental spectra (for the two polarization states)

to both Z and Z+1 theoretical models in Figure 6.7. The four way com-

parison shows that the accumulation case is well described by the Z+1

approximation. Prior work in the bulk manganites [30, 31] for a large

range of dopings as well as our bulk simulations would naturally make

us expect Z+1 to work well. In addition, the computed spectra for the

second MnO2 layer in the LSMO (Figure 6.8) as well as the nearest TiO2

layer in the BTO agree between theory and experiment for both polariza-

tion states when Z+1 is used, again as expected.

What is surprising is that the depletion spectrum is clearly much in

closer agreement with the Z approximation and the Z+1 spectrum is poor

by comparison. This is hard to understand given all the successes of Z+1

listed above.
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FIGURE 6.6: Simple electrostatic model of the LSMO/BTO
system for the Accumulation State. Due to the ferroelec-
tric field effect, electrons “run away” from the interface be-
tween the LSMO and the BTO, and the remaining holes act
as the screening charge. The electrode on the other side of
the BTO is the reservoir accepting the electrons. Hence, the
energy shifts in the Ba d and La/Sr d PDOS and local po-
tential correspond this effect. The depletion depletion state

corresponds to the opposite of this effect.
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FIGURE 6.7: Comparison of DFT-computed and measured
O-K edge EELS spectra for the O atoms in the interfacial
MnO2 layer at the LSMO/BTO interface. The columns la-
bel the interfacial state and the rows show a comparison

between the Z and Z+1 theoretical models.
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Physically, one expects the Z approximation to be more relevant when

the core hole is well screened by a robust metal with a short screening

length. If this were the case in the theory, then the Z and Z+1 would

have produced very similar results since the Z+1 includes the screening.

Given the qualitative difference, we must conclude that if in fact this line

of reasoning is correct, then the screening as computed by DFT for this

interface is incorrect in some basic way but only for depletion and only

for this interface (as opposed to the bulk at the same doping level). While

possible, this seems unusual.

Another possibility is that since the depletion state has more electrons

at the interface, the lifetime of the core hole is reduced significantly due

to enhanced Auger recombination processes making for a better match

to the no-core-hole Z approach. Again, while possible, it is hard to un-

derstand why the bulk at the same doping levels would not see the same

overall reduction.

A final possibility is experimental “error”: perhaps the theoretical

simulation is not being performed on the same system as the experiment.

Since the theoretical interface is ideal and atomically sharp, one could

guess that the depletion state suffers from an interface that is not quite

sharp. For example, intermixing of cations across interface would make

theory and experiment differ. We note that the experimental prepeak in

depletion is tall relative to the main peak in depletion (and oppositely in

accumulation) which is contrary to what would expect based on the dop-

ing level at the interface. By contrast, both Z and Z+1 theoretical spectra

show higher prepeaks for the hole doped (accumulation) interface, as

expected.
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In an effort to resolve this discrepancy, we have first carefully checked

a number of potential theoretical issues and verified that they do not

change our theoretical conclusions.

First, this interface shows a change of magnetic structure of the Mn

spin states when going from accumulation to depletion [25, 26]. We have

computed O-K edge spectra with and without including the magnetic

structure change and have not seen any significant changes in the com-

puted spectra.

Second, we have checked for finite size effects. We have computed

Z+1 spectra in both 1×1 and c(2×2) unit cells. The computed PDOS do

show changes, but the energy shifts of the PDOS and overall patterns do

not change nor do these spectra agree any better with the experiment.

Third, in going from 1×1 to c(2×2) unit cells, we permit for oxygen

octahedral rotations to take place. Again, some changes are observed in

the computed PDOS but no major qualitative changes are seen.

Fourth, we have tested for possible direction dependence of the O-K

edge transitions. Namely, perhaps only dipole transitions perpendicular

to the narrow electron beam are allowed to occur. This is easily modeled

by only computing the oxygen PDOS for selected O 2p orbitals. How-

ever, the computed spectra do not show any real changes that help re-

solve the above disagreement.

Since we have exhausted a large variety of possible electronic expla-

nations for the discrepancy, we turn to structural differences between ex-

periment and theory. Perhaps there are ’steps’ at the interface reflecting

steps on the SrTiO3 surface on which the interfacial system is grown epi-

taxially (steps in the direction along the electron beam). This would lead
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FIGURE 6.8: Comparison of DFT-computed and measured
O-K edge EELS spectra for O atoms in the second MnO2

layer of LSMO. The spectra are already bulk-like in this
layer and show good agreement between theory and ex-
periment. Shown here are depletion (left) and accumula-

tion (right)

to a mixture of the interfacial spectra of La1−xSrxMnO3 and BaTiO3 in the

experimental results as the electron beam would sample both layers as it

traverses the sample. See Figure 6.10 for an illustration.

Indeed, after Energy Dispersive X-ray Spectroscopy (EDS) was per-

formed on the sample by our collaborators at University of Illinois at

Chicago (Figure 6.11), we can infer that steps in the substrate do exist are

a potentially a likely explanation for layer mixing. In order to further ex-

plore this possible avenue, we have asked our experimental colleagues

to further explore this sample.

Separately, as illustrated in Figure 6.12, one can get a good match

to the measured spectrum for depletion by empirically mixing in 30% of

the computed spectrum for the TiO2 layer with 70% of the spectrum from

the interfacial MnO2 layer. Hence, if there are steps such that the electron

beam samples both MnO2 and TiO2 layers as it crosses the sample, it is

very possible to see unexpected spectra.
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FIGURE 6.9: Comparison of DFT-computed and measured
O-K edge EELS spectra for the O atoms in the second TiO2

layer in BTO, depletion (left) and accumulation (right). The
spectra are already bulk-like and match experiment well.

FIGURE 6.10: Steps in the STO substrate can lead to defects
in the interface. An incoming electron samples both the
TiO2 layer and the MnO2 layer, requiring an interpolation
of the spectra of the two layers to appropriately describe

the EELS spectra.
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FIGURE 6.11: EDS image of the sample from our exper-
imental collaborators at University of Illinois at Chicago.
Note that as one follows the red line upwards, the atoms
to the right are shown as darker. This signals that there is
an increased amount of LSMO. A beam passing through
the LSMO/BTO layer would see intermixing at that inter-

face, as described in Figure 6.10.
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FIGURE 6.12: Experimental O-K edge compared to theo-
retical O-K edge simulated by linear superposition of 70%
of the interfacial LSMO O-K edge obtained from the MnO2

layer and 30 % of BTO TiO2 layer for the depletion interfa-
cial layer.
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6.3 Conclusions

Our present work highlights a number of important factors when at-

tempting to understand interfacial O-K edge EELS spectra at oxide in-

terfaces. The first is that the energies of different cation orbitals across

the interface can shift in different and independent ways depending on

the electrostatic potential profile across the interface. In our example,

the Ba d states on the BTO side move by a different amount than the

La/Sr d states on the other side, and this makes the structure and en-

ergetic spread of the “main peak” of the O-K edge EELS behave in a

non-straightforward manner.

Second, the energetic shifts of the various cation d states can be un-

derstood relatively easily from electrostatic considerations of how the

potential profile changes across the interface in response to the polariza-

tion state of the ferroelectric.

Third, interfacial roughness can change the measured spectra due to

the sampling of multiple interfacial environments as the electron beam

goes through the sample. In fact, one can estimate the amount of layer

intermixing by empirically fitting the theoretical results.
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Chapter 7

Dimer Mott Insulator State in a

Cobaltate-Titanate

Heterostructure

In this chapter we study a cobaltate/itanate interface within the limits

of DFT and DFT+U. As with previous systems, the main goal of looking

at such a system is to devise new materials at the interface, as well as to

’orbitally engineer’ the materials by creating orbitally-polarized materi-

als. Surprisingly, in this case, DFT+U was able to provide an apparently

accurate band gap and orbital polarization number r at the same time.

This seems to be related to the fact that an interesting type of insula-

tor in which nearby cobalt atoms form molecular-like bonds is formed.

Further, this material shows a dramatic interaction between the amount

of charge transfer (as dictated by the Hubbard U on titanium) and the

structural distortions at the interface.
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Heterostructure

7.1 Methodology

The theoretical calculations have been done within the DFT+U approach

using the Quantum Espresso software, the local density approximation

(LDA), and ultrasoft pseudo-potentials. The supercells are infinite super-

lattices with formula (LTO)2/(LCO)2 along the (001) direction. We have

done calculations without (1×1 in plane unit cell) and with (c2(2×2) in

plane unit cell) octahedral rotations. All calculations reported here are

performed for the non-magnetic configuration. While we’ve sampled

a variety of strains and so did experiment (LSAT and STO substrates),

our results do not seem strongly strain-dependent and for the rest of this

chapter we will refer to calculations that impose 0% strain on the LCO

using the theoretical lattice constant of LCO of aLCO = 3.65Å; this also

allows us to isolate the effects of the superlattice as opposed to those of

strain. Our fully-relaxed superlattices are shown in Figure 7.1 with oc-

tahedral distortions allowed (c(2x2) structure in the xy plane) and not

allowed (1x1 structure in the xy plane). We used a 5x5x3 k-mesh, a ki-

netic energy cutoff for the wavefunction is 35 Ry and for the density 280

Ry, and a Gaussian smearing of 0.01 eV

7.2 Results

In order to appropriately simulate the (LaCoO3)2/(LaTiO3)2 superlattice,

we use DFT+U using a Hubbard U on the Co and the Ti 3d orbitals. Us-

ing a U of 4 eV on Co for bulk LaCoO3 (LCO), we find an insulating

electron configuration of t6
2ge0

g for the Co with a band gap matching that
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of experiment at 0.7 eV [80]. Using a U of 8 eV on Ti in the superlat-

tice leads to a Ti4+ valence with a t0
2ge0

g configuration. The U value for

Co has been calibrated to reproduce bulk LCO properties since we do

not know the electron configuration in the superlattice ahead of time (or

from experiment). The relevant physical property we are trying to model

by adding a U on Ti is the degree of electron transfer across the interface

from Ti to Co. A U of 8 eV provides essentially full electron transfer (in

agreement with experiment) as found previously in similar systems con-

taining electron transfer from Ti when using the LDA+U approach [81]

This particular choice of U values for the full structural relaxation turns

out to capture many of the experimental physical observations, matching

both the experimentally measured band gap of 0.5 eV (from transport ex-

periments done by Ankit Disa, however under the assumption that the

material is a semiconductor) and the orbital polarization value of the Co

eg

r =
2− n3z2−r2

2− nx2−y2

with rDFT+U=0.6 and rexp = 0.6 (experimental number obtained by Mark

P.M. Dean at Brookhaven National Labs via XAS).

The interface between LCO and LTO is a charge-transfer interface due

to the difference in electronegativity between Ti and Co. In bulk LTO, Ti

has the 3+ valence with configuration (t2g)
1(eg)

0, and Co in bulk LCO has

the 3+ valence with configuration (t2g)
6(eg)

0. At the interface, the elec-

tron leaves Ti and migrates to Co. Figure 7.2 shows the electron transfer

process across the interface together with projected densities of states

(PDOS) for the Ti and Co atoms at the interface. The PDOS show a fully

ionized Ti and an Co accepting electrons into its eg states.
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Heterostructure

FIGURE 7.1: (LCO)2/(LTO)2, fully relaxed with a c(2×2)
in-plane unit cell (left) and 1×1 (right). Periodic boundary
conditions are imposed in theoretical calculation along the
superlattice direction, whereas experiment uses 20 repeti-

tions of the unit cell.
.
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The experimentally measured valence of the Ti atom is 4+ (from XPS

spectral matching to bulk references such as LTO and SrTiO3 done by

Ankit Disa), so clearly the electron has left the Ti in the experiment. XAS

measurements (done by Mark P.M. Dean at Brookhaven National Labs)

of the Co reveal a Co valence close to 3.5+ when comparing to reference

bulk spectra which is confusing based on our theoretical findings. We

note that, as we will show below, that the Co in the superlattice has a

very unusual 3d electronic configuration which is not very close to any

bulk compound that we are aware of.

As is visible in the computed structure shown in Figure 7.1 and as

highlighted schematically in Figure 7.3, the interfacial oxygens are ’pulled’

towards the Ti atoms and away from the Co atoms. We can modify the

degree of charge transfer between Ti and Co by changing the value of U

on the Ti atom in order to establish that charge-transfer is, indeed, the

cause of the oxygen being ’pulled’ towards the Co. As Table 7.1 shows,

changing the U on Ti (but not on Co), leads to increased electron transfer,

as well as to an increased distortion in the La-O plane.

We now turn to the electronic structure of the interface system. As

stated above, the DFT+U calculation yields a nonmagnetic insulator with

an energy gap of 0.5 eV (U=8 eV on Ti and 4 eV on Co). This is some-

what surprising since the singly electron doped Co 2+ ion with configu-

ration (t2g)
6(eg)

1 is an open shell ion so we would expect a metallic non-

magnetic state while an insulating state would tend to require magnetic

ordering. To analyze this situation further, we first examine the Co 3d

PDOS projected onto the separate eg Co orbitals. As Figure 7.4 shows,
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FIGURE 7.2: Right: a visual illustration of charge transfer
in the superlattice, as one electron is transferred across the
interface. Left: projected densities of states (PDOS) for all
Ti d states (top) showing primarily unoccupied Ti d states
and hence a 4+ valence (the conduction band is empty).
PDOS for Co eg states (bottomw), showing a narrow filled
band below the Fermi level and more unoccupied states
above the Fermi level. Note that bulk LCO has all eg char-

acter states are above the Fermi level
.
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FIGURE 7.3: Left: schematic representation of the Co octa-
hedron at the LCO/LTO interface. The O atom at the top is
’pulled’ towards the Ti atom with a 4+ valence instead of

the 2+ Co. Right: the resulting distorted structure.

U (Ti) U (Co) Energy gap (eV) zO − zLa (Å) nd(Co) nd(Ti)
2 4 0.0327 0.44 7.940 3.146
4 4 0.0582 0.50 7.956 3.040
6 4 0.184 0.56 7.971 2.918
8 4 0.541 0.58 7.973 2.791
8 2 0.270 0.57 7.973 2.789
8 4 0.541 0.58 7.973 2.791
8 6 0.648 0.65 7.968 2.795

TABLE 7.1: Band gap, displacement along the z direction
between O and La in the interfacial LaO layer between Ti
and CO, and Löwdin electron count of the d orbitals on Co
and Ti as a function of the U on Co and Ti. Increasing the U
on Ti (but not on Co) significantly affects both charge trans-
fer and interfacial distortions. Calculations done allowing
full a full c(2x2) unit cell in the x-y plane, allowing for full

octahedral distortions
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FIGURE 7.4: Top: projected density of states of Co eg or-
bitals in bulk LCO. Bottom: projected density of states for
Co eg orbitals in the LCO/LTO superlattice. Both valence
bands are empty in the bulk, however after charge transfer
that is mainly isolated to the 3z2 − r2 (denoted as z2 in the
legend) orbital in the superlattice, the eg states show large
orbital polarization and a narrow band gets filled right be-

low the Fermi level.
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FIGURE 7.5: Right: plots of the unoccupied state right
above the Fermi level (top) and the occupied state right
below the Fermi level (bottom) at k = 0. What is shown
are isosurfaces |Ψk=0(r)|2×sign(Ψk=0(r)). The in-phase
and out-of-phase nature is easily visible as is the dominant
3z2 − r2 character on each Co site. We identity this pair as
a bonding and anti bonding pair (left) of a simple diatomic

molecular system.
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FIGURE 7.6: “Particle in a box” picture: understanding
of the bonding-anti-bonding pair in the interfacial LCO bi-
layer. Since the transferred electron on each Co is confined
to the bilayer system of Co (due to insulating band offset
with the LTO), we get confined electronic states. The two
nearby Co 3z2−r2 pair and form bonding and antibonding

states, essentially forming a diatomic molecular system.
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most of the electron transfer to the Co atom occurs into the 3z2 − r2 or-

bital, leading to a very large orbital polarization (r=0.63). Interestingly,

the energy gap occurs in the 3z2 − r2 band itself. The PDOS shows that

two electrons are filling a very narrow band right below the Fermi level

primarily of 3z2 − r2 character.

Next, we plot the band eigenstates at the Γ point (k = 0) that are

mostly 3z2− r2 in character, right below and right above the Fermi level.

These are shown in Figure 7.5. The phases and the overall structure are

consonant with a simple physical picture: the two 3z2 − r2 orbitals on

the to Co combine in phase and out of phase to create bonding and anti-

bonding states. The narrow bonding band is filled with two electrons.

We end up with what is essentially a molecular insulator. This state is

called a ’Dimer Mott State’ in the literature [82], although a molecular

insulator would probably be an appropriate name as well. Figure 7.6

shows a simple picture of how the confinement provided by the neigh-

boring ionized (and insulating) LTO layers spatially isolates the two Co

layers and permits formation of the “diatomic molecular” state.

7.3 Conclusions

Within these calculations, we have found electron transfer at the interface

from Ti to Co and proved that it has a strong effect on the structure of

the material (verified by modifying the amount of charge transfer via

a change in U ). The electron transfer and structural distortion leads to

a strong orbital polarization and, indirectly, to a ’pairing up’ of nearby

Cobalt atoms to form a quantum state that, due to the localization of the
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electrons, behaves similarly to a Mott insulator with an upper and lower

Hubbard band (or, more simply, a two-atom molecule).
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Chapter 8

Outlook

In this thesis, we’ve improved the formalism and the computational scheme

for a class of slave-particle methods for use in the study of large com-

plex oxides, as well as shown its potential in sample cases in both model

Hamiltonians and in computations based on large-scale electronic struc-

ture calculations. We’ve developed an algorithm that greatly improves

the numerical stability of this class of method while allowing for spon-

taneous symmetry breaking. We’ve shown the usefulness of our method

in the context of understanding band narrowing in a bulk material, as

well as helped elucidate new mechanisms leading to orbital polariza-

tion in a heterostructure where standard crystal field theory and Density

Functional Theory failed. This result in itself gives new guidelines in the

search for orbitally-polarized materials through heterostructure growth.

Where possible, we’ve used ’classic’ electronic structure theory (DFT,

DFT+U) to understand materials grown by our experimental colleagues,

revealing both the possibility of a new class of insulating heterostruc-

ture in the cobaltates as well as insights into interfacial phenomena at a

manganite-ferroelectric interface.
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While the class of slave-boson theory we’ve expanded is not as com-

prehensive as more established methods such as Dynamical Mean Field

Theory, it can however make predictions that pure band theory methods

such as DFT and DFT+U cannot. Further, it can be used in calculations

to make simple predictions that at the moment would be computation-

ally prohibitive within DMFT, while in cases where DMFT can be used,

slave-particle methods give an avenue to do a quick check on the effect

of correlations on spectral properties before deploying more expensive

methods.

Theoretical issues remain, however, which are general to this class

of method: throughout our calculations we did account for the double

inclusion of electron-electron interactions in both DFT and the slave-

particle method model glued on top, usually known as ’double count-

ing’. In order to appropriately model materials such as charge-transfer

insulators, the choice of double counting has been of outmost impor-

tance for both electronic and atomic structure predictions [83, 84]. With-

out a way to appropriately include the double counting terms, this type

of method remains a post-processing method without the ability to cal-

culate atomic structures. Further, as with all ’Hubbardism’, this type of

calculation does not have predictive power a priori, rather it depends on

an empirically fitted parameter U and sometimes J and, in some cases,

an empirically fitted double counting that relies on a different parameter

U’ [83, 84] as well. An appropriate way to self-consistently determine the

parameter U from ab-initio remains an important question in this class of

models. What our method can do, however, is give guidelines as to what

the effect of correlations can be.
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The study of correlated complex oxides remains a rich field, and as

our study in previous chapters has shown, there is much room for dis-

covery, whether it’s in the discovery of new phases or in the explanation

of ubiquitous phenomena such as orbital polarization or in the under-

standing of spectroscopy. And, within this large space, there is room for

theory to guide the discovery process as well as explain what is actually

being discovered.
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