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Choose an orthonormal basis of one-particle states φn(x). We will work in this basis with an
N electron system with ground state |0, N〉 of energy EN

0 and with N ± 1 electron excited
states |m,N±1〉 of energy EN±1

m . The Green’s matrix in the Källen-Lehmann representation
is given by

Gnm(ω) =
∑
p

fp(n)fp(m)∗

ω − εp + i0+
+
∑
h

fh(n)fh(m)∗

ω − εh − i0+
.

The particle or “conduction” (p) and hole or “valence” (h) states are just labels for many-
body states for N + 1 and N − 1 electrons:

fp(n) = 〈0, N |ân|p,N + 1〉 , fh(n) = 〈0, N |â†n|h,N − 1〉 ,

εp = EN+1
p − EN

0 , εh = EN
0 − EN−1

h .

The amplitudes fj(n) are overlaps of many-body and single-particle type states: e.g.

|fp(n)|2 = |〈p,N + 1|
{
â†n|0, N〉

}
|2

is the amount of the single-particle type state obtained by adding an electron in state n to
the ground-state in the actual many-body excited state p. We have the simple sum rules∑

p

|fp(n)|2 = 〈0, N |ânâ†n|0, N〉 = 1− 〈0, N |â†nân|0, N〉∑
h

|fh(n)|2 = 〈0, N |â†nân|0, N〉∑
p

|fp(n)|2 +
∑
h

|fh(n)|2 = 1

which directly relates to the occupancy of the state n. The off diagonal generalizations tell
us about the ground-state one-particle density matrix, e.g.∑

h

fh(n)fh(m)∗ = 〈0, N |â†nâm|0, N〉 .
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At any rate, these sum rules tell us the “amount” of an added or subtracted single particle
in all of the many-body Hilbert space which is a simple question with a simple answer.

What we really want is the converse: to what extent does an actual many-body excitation
look like it is made from various combinations of adding single electrons to |0, N〉? Here we
are taking the many-body ground state and adding an electron in a single-particle state to
it which does not give us an eigenstate in general. We want the sum

Sp =
∑
n

|fp(n)|2 =
∑
n

〈0, N |ân|p,N + 1〉〈p,N + 1|â†n|0, N〉

This is not very easy to understand as written. To see the role of Sj , set n = m and sum
over all n for the Green’s function matrix to get∑

n

Gnn(ω) =
∑
p

Sp
ω − εp + i0+

+
∑
h

Sh
ω − εh − i0+

.

If Sp is very close to unity, then we can say that the many-body excited state looks like
some linear combination of single-electron states added to the ground state (and by doing a
unitary transform we can change that to a single electron state). In the usual quasiparticle
approximation, we assume the Sj are unity for our one-particle band states and zero other-
wise. Note that there are many more many-body states than single-particle states (the latter
always can be counted with a discrete integer index at some crystal momentum whereas the
former become a continuum above some energy).

To make more progress, we use an alternate form of the Green’s matrix. The Dyson equation
gives us an energy dependent “Hamiltonian”. Specifically,

Gnm(ω) = [ωI −H(ω)]−1nm ,

where all the matrices are in the φn basis, and H(ω) is our “Hamiltonian” matrix from
Dyson’s equation: H = T + Uion + UHartree + Σ(ω). We diagonalize H(ω) at a given ω with
eigenvectors V and eigenvalues e and label the eigenstates with a discrete index α:

Gnm(ω) =
∑
α

V (ω)nαV (ω)−1αm
ω − eα(ω)

. (1)

We do not assume orthonormal eigenvectors for H(ω) so we must use of the inverse matrix
V (ω)−1. This particular form is more useful than choosing left and right eigenvectors.

We find solutions to the mathematical equation

ω = eα(ω) .

for a given a fixed α over complex ω. Let a solution be ω̄α, ω̄α = eα(ω̄α). Good physical
solutions are quasiparticles which have small imaginary parts for ω̄α (i.e., long lifetimes) and
are isolated from other solutions. When scanning over real ω, this means that G(ω) will
have a sharp and narrow peak in the form of an isolated pole around Re(ω̄α).
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Close to such a pole, we can isolate the contribution from ω̄α from the remaining background,

Gnm(ω) =
ZαV (ω̄α)nαV (ω̄α)−1αm

ω − ω̄α
+Bα(ω) ,

where the background Bα(ω) is a smooth and analytic function of ω about ω̄α coming from
other states in the sum in Equation (1) as well as subleading terms from expanding about
the α term itself about ω̄α. The quasiparticle renormalization factor is defined as

Zα ≡
(

1− deα(ω̄α)

dω

)−1
.

Setting n = m and summing over n gives a simple pole and a new background about ω̄α,∑
n

Gnn(ω) =
Zα

ω − ω̄α
+ Cα(ω) .

Comparing to our previous result, we see that

Zα ∼= Sj

when we can make a good identification of a quariparticle state. To the extent that Zα ≈ 1,
we can replace our many-body excited states by simple states coming from adding electrons
into single-particle states above the ground state.
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