Perturbation theory up to second order

Sohrab Ismail-Beigi

October 7, 2013

1 Setup

Here we work systematically in matrix notation for a Hermitian problem doing perturbation theory. The Hamiltonian is

$$
H=H_{0}+H_{1}
$$

where the perturbation is H_{1} is of first order and there is no higher orders. The eigenvectors V and eigenenergies E have series expansions

$$
V=V_{0}+V_{1}+V_{2}+\ldots, \quad E=E_{0}+E_{1}+E_{2}+\ldots
$$

The eigenvalue problem is

$$
H V=V E
$$

where the eigenvectors are columns of V, V is unitary $V^{\dagger} V=V V^{\dagger}=I$, and E is a diagonal matrix with eigenvalues on the diagonals. Plugging in the series expansions and collecting like orders to second order gives

$$
\begin{aligned}
H_{0} V_{0} & =V_{0} E_{0} \\
H_{1} V_{0}+H_{0} V_{1} & =V_{0} E_{1}+V_{1} E_{0} \\
H_{1} V_{1}+H_{0} V_{2} & =V_{0} E_{2}+V_{1} E_{1}+V_{2} E_{0}
\end{aligned}
$$

Now we analyze this order by order and worry about degenerate subspaces in particular.

2 Zeroth order

This seems silly but there is something to be said. Let us group degenerate states into degenerate subspaces labeled by D. All states in D have the same energy $E_{0 D}$. We can write

$$
\left(E_{0}\right)_{D, D^{\prime}}=\delta_{D, D^{\prime}} E_{0 D} I_{D}
$$

where I_{D} is the identity operator in the D subspace.
The main point is that we can't decide about unitary mixing of states in degenerate subspaces at all to zeroth order. So if we have some fixed set of eigenvector \bar{V}_{0}, then an equally good set is gotten by making arbitrary unitary rotations U_{D} in each subspace separately:

$$
V_{0}=\bar{V}_{0}\left(\begin{array}{cccc}
U_{D_{1}} & 0 & 0 & \cdots \\
0 & U_{D_{2}} & 0 & \cdots \\
0 & 0 & U_{D_{3}} & \cdots \\
\vdots & & &
\end{array}\right)
$$

and V_{0} is just as good as \bar{V}_{0}.

3 First order

We project the first order equation above onto the zeroth order vectors by left multiplying the equation by V_{0}^{\dagger} - and using $H_{0} V_{0}=V_{0} E_{0}$ - to get

$$
V_{0}^{\dagger} H_{1} V_{0}+E_{0} V_{0}^{\dagger} V_{1}=E_{1}+V_{0}^{\dagger} V_{1} E_{0}
$$

Computing the D, D^{\prime} component gives

$$
\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D^{\prime}}=\delta_{D, D^{\prime}}\left(E_{1}\right)_{D}+\left(V_{0}^{\dagger} V_{1}\right)_{D, D^{\prime}}\left(E_{0 D^{\prime}}-E_{0 D}\right)
$$

The diagonal components in a subspace simplify to

$$
\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D}=\left(E_{1}\right)_{D}
$$

This is a constraint: it says that the left matrix must be diagonal! Putting in the unitary matrices, we have in more detail

$$
\begin{equation*}
U_{D}^{\dagger}\left(\bar{V}_{0}^{\dagger} H_{1} \bar{V}_{0}\right) U_{D}=\left(E_{1}\right)_{D} \tag{1}
\end{equation*}
$$

This equation says that if the matrix H_{1} in the subspace is not trivially zero or a multiple or identity, then U_{D} must be chosen so that they diagonalize H_{1} in the subspace and the eigenvalues are the first order energy changes E_{1} in that subspace. We have recovered first order perturbation theory for the energy and wave functions in a degenerate subspace.

The off-diagonal elements for $D \neq D^{\prime}$ give the equation

$$
\left(V_{0}^{\dagger} V_{1}\right)_{D, D^{\prime}}=\frac{\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D^{\prime}}}{E_{0 D^{\prime}}-E_{0 D}} \quad \text { for } D \neq D^{\prime}
$$

which is the just first order shift of wave functions from standard textbooks but generalized for the degenerate case. Since the U_{D} have been fixed by the condition to get E_{1}, this equation is also definite and has no degrees of freedom.

Before going to second order, we must worry about two things. First of all, there is nothing we can say about the first order shift of wave functions in the degenerate subspace itself $\left(V_{0}^{\dagger} V_{1}\right)_{D, D}$. It drops out of the diagonal equation due to equal energies. All we are left with is the unitary condition $V^{\dagger} V=I$ which just translates into $\left(V_{0}^{\dagger} V_{1}\right)_{D, D}$ being anti-Hermitian or i times a Hermitian operator, i.e. generator of a unitary rotation. The traditional textbook choice is to set this to zero which we do below as well.

Second, if for some reason $\left(\bar{V}_{0}^{\dagger} H_{1} \bar{V}_{0}\right)_{D, D}$ is zero or multiple of identity, we are not able to decide on the unitary rotations U_{D} and thus V_{0} are still somewhat arbitrary; here $\left(E_{1}\right)_{D}$ is either zero or just a multiple of identity (constant shift of all eigenvalues in D to first order).

4 Second order

Left multiplying the second order equation by V_{0}^{\dagger} gives

$$
V_{0}^{\dagger} H_{1} V_{1}+E_{0} V_{0}^{\dagger} V_{2}=E_{2}+V_{0}^{\dagger} V_{1} E_{1}+V_{0}^{\dagger} V_{2} E_{0}
$$

The D, D^{\prime} element is

$$
\left(V_{0}^{\dagger} H_{1} V_{1}\right)_{D, D^{\prime}}-\left(V_{0}^{\dagger} V_{1}\right)_{D, D^{\prime}}\left(E_{1}\right)_{D^{\prime}}=\delta_{D, D^{\prime}}\left(E_{2}\right)_{D}+\left(V_{0}^{\dagger} V_{2}\right)_{D, D^{\prime}}\left(E_{0 D^{\prime}}-E_{0 D}\right)
$$

We can eliminate $\left(E_{1}\right)_{D^{\prime}}$ using the first order result for it to get

$$
\left(V_{0}^{\dagger} H_{1} V_{1}\right)_{D, D^{\prime}}-\left(V_{0}^{\dagger} V_{1}\right)_{D, D^{\prime}}\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D^{\prime}, D^{\prime}}=\delta_{D, D^{\prime}}\left(E_{2}\right)_{D}+\left(V_{0}^{\dagger} V_{2}\right)_{D, D^{\prime}}\left(E_{0 D^{\prime}}-E_{0 D}\right)
$$

Looking at the diagonal $D=D^{\prime}$ leads to

$$
\left(V_{0}^{\dagger} H_{1} V_{1}\right)_{D, D}-\left(V_{0}^{\dagger} V_{1}\right)_{D, D}\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D}=\left(E_{2}\right)_{D}
$$

We now insert $V_{0} V_{0}^{\dagger}$ between H_{1} and V_{1} and break that into a sum over states $D^{\prime \prime}$:

$$
\sum_{D^{\prime \prime}}\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D^{\prime \prime}}\left(V_{0}^{\dagger} V_{1}\right)_{D^{\prime \prime}, D}-\left(V_{0}^{\dagger} V_{1}\right)_{D, D}\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D}=\left(E_{2}\right)_{D}
$$

Assuming that $\left(V_{0}^{\dagger} V_{1}\right)_{D, D}=0$ so the $D=D^{\prime \prime}$ part goes away, we get the simpler

$$
\sum_{D^{\prime \prime} \neq D}\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D^{\prime \prime}}\left(V_{0}^{\dagger} V_{1}\right)_{D^{\prime \prime}, D}=\left(E_{2}\right)_{D}
$$

Plugging in for $\left(V_{0}^{\dagger} V_{1}\right)$ between subspaces gives us

$$
\sum_{D^{\prime \prime} \neq D} \frac{\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D^{\prime \prime}}\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D^{\prime \prime}, D}}{E_{0 D}-E_{0 D^{\prime \prime}}}=\left(E_{2}\right)_{D}
$$

Putting the unitary matrices in gives

$$
\begin{equation*}
\left(E_{2}\right)_{D}=U_{D}^{\dagger}\left\{\sum_{D^{\prime} \neq D} \frac{\left(\bar{V}_{0}^{\dagger} H_{1} \bar{V}_{0}\right)_{D, D^{\prime}}\left(\bar{V}_{0}^{\dagger} H_{1} \bar{V}_{0}\right)_{D^{\prime}, D}}{E_{0 D}-E_{0 D^{\prime}}}\right\} U_{D} \tag{2}
\end{equation*}
$$

This equation is again a condition on U_{D} : they must make the right hand side diagonal, and then we can find the second order energy shifts. The expression in the braces looks very much like a generalization of the standard textbook second order expression.

The above expression is also the right thing to in the case that $\left(V_{0}^{\dagger} H_{1} V_{0}\right)_{D, D}$ vanishes so we must go to second order to get any energy shift. It tells us the eigenvalue problem we must solve to get the second order energy shifts in a degenerate subspace correctly.

