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This is a simple spring model for the AFD mode in STO. The main idea is to forcefully crank
one particular unit cell by some amount and allow the rest of the unit cells to relax and see
how the perturbation decays away from the constraint. The model is the simplest possible
one of a 1D chain (could be 3D but with planar periodic displacements so we describe the
behavior in the orthogonal direction).

Let uj be the (scalar) displacement of the jth unit cell. This could be the angle of the AFD
mode in that cell away from its equilibrium value. A “cell” could be a primitive unit cell or
a larger cell with coherent rotation or twisting. A harmonic model gives us the energy

E =
1

2

∑
j,k

ujKj,kuk .

In a nearest neighbor model, let the diagonals be Kj,j = a > 0 and the off-diagonal be
Kj,j+1 = Kj,j−1 = b. This particular model has Bloch waves uj = Real{Constant× eijθ} for
some real θ as eigenmodes with eigen spring constants Kθ = a + 2b cos θ. The values of θ
depend on the boundary conditions but there will be N of them.

The big assumption is that these AFD modes are some type of generalized “optic” mode:
they have positive restoring force no matter what type of displacement pattern is made (they
are not acoustic for θ → 0.) So Kθ > 0 and thus a > 2|b|.

The main question is how a perturbation at some site, say j = 0, decays away. There are
two ways to do this.

(1) The elementary method is to constrain u0 = 1 to be a fixed value. Then we’re interested in
how uj behaves at equilibrium for j > 1. We’ll assume the chain ends at site N . Equilibrium
means zero net force or ∂E/∂uj = 0 so we have the conditions

u0 = 1 , buj−1 + auj + buj+1 = 0 for 0 < j < N , buN−1 + auN = 0 .
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Let’s start at the end j = N and work inwards towards j = 1. The end conditions solves to
uN−1 = −(a/b)uN which is one unknown uN . The remaining conditions can be written as
2× 2 matrix iteration (

uj−1

uj

)
=

(
−a/b −1

1 0

)(
uj
uj+1

)
.

The eigenvalues of the matrix are λ± =
−a/b±

√
(a/b)2−4

2
. These are approximately −b/a

and −a/b for |a/b| � 1. Both are real since |a/b| > 2 as per our main assumption above.
Furthermore, λ+λ− = 1 so |λ−| > 1 and |λ+| < 1. Upon iteration inwards from the boundary,
the λ− will be exponentiated by N and completely swamp λ+ (unless |a/b| is extremely close
to 2 which means a soft mode which we exclude). So then working back to match u0 = 1
gives us basically an exponentially damped envelope uj ≈ u0(λ+)j going forwards.

As a sanity check consider |a/b| � 1 which gives λ+ ≈ −b/a which means the on-site spring
is much stronger than the springs linking the neighboring sites. Then if we fix site u0 = 1,
this creates a force −b on the j = 1 site and it displaces by an amount mainly given by its
on-site spring constant stretching to accommodate and this gives uj ≈ −b/a. The pattern
then continues with a further factor of −b/a to the next site and so on.

(2) A more fancy variant is not to fix the displacement but instead to put an external force
fj on each site. The energy is instead

E =
1

2

∑
j,k

ujKj,kuk −
∑
j

fjuj .

Equilibrium means Ku = f or u = K−1f in vector-matrix notation. Say we put a fixed
force on the j = 0 site so fj = δj,0. Then we can use the eigenmode description to invert K
and get

uj =
1

N

∑
θ

eijθ

a+ 2b cos θ
.

For very large N , we can turn the sum into an integral over θ and then do contour methods
by realizing the θ integral is a contour integral over the unit circle z = eiθ:

uj =
1

2π

∫ 2π

0

dθ
eijθ

a+ 2b cos θ
=

1

2πi

∮
|z|=1

dz

z

zj

a+ bz + b/z
.

The denominator has a pole when cos θ̂ = −a/(2b). This means complex θ since |a/b| > 2.
Set θ̂ = π+ iγ which gives then cosh γ = a/(2b) and we know cosh−1 z = ln(z+

√
z2 − 1). So

the key factor in the residue of the pole determining the j dependence is just the exponential
evaluated at θ̂ which is

eijθ̂ = (−1)je−jγ = (−1)j ·
(
a/(2b) +

√
(a/2b)2 − 1

)−j
= (λ+)j

as expected. Again, we get exponential decay away from the perturbation site with each site
dropping by a factor of λ+ compared to the previous when N is very large.
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