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The 21st century has seen enormous growth in the study of two-dimensional (2D) materials, be-

ginning with the isolation of graphene but rapidly expanding to include a wide variety of other

compounds. Due to their size, 2D materials have immediate appeal for applications in nanoscale

electronics. At the same time, uniquely low-dimensional phenomena such as the quantum spin Hall

effect, quantum confinement, and 2D superconductivity are of interest to basic physics researchers.

This dissertation presents ab initio investigations of three 2Dmaterials. First, we discuss the binding

of stanene on various substrates. Stanene, the buckled monolayer form of tin, is predicted to be

a 2D topological insulator with symmetry-protected helical edge states. We investigate the effects

of strain, chemical functionalization, and substrate–overlayer interactions on the topological band

structure of stanene, showing that Al2O3 is an ideal substrate for synthesizing a potential quantum

spin Hall insulator. Next, we examine the polymorphic structure of borophene sheets, the monolayer

form of boron. We report on research that revealed the complex atomic structure of borophene on

the Cu(111) and Cu(100) surfaces, including the crucial role played by simulated scanning tunneling

microscopy (STM) data. We discuss the effect of modulation by the substrate on the occurrence of

Dirac cones in the borophene band structure. Finally, we discuss the potential for Mg2TiO4 films to

host long-lived, strongly bound interlayer excitons. At the DFT level, we obtain the band structure

of Mg2TiO4 films grown on MgO and show how the polar films have a band offset favorable for

interlayer exciton formation. Motivated by this work, we present �, and �,-BSE calculations of

quasiparticle energies, exciton binding energies, and optical absorption spectra. These calculations

more clearly characterize the suite of excitons that exist in Mg2TiO4 and shed light on the impor-

tance of film thickness in controlling their relative binding energies. The materials studied in this

dissertation are diverse in chemical identity and properties, but are unified by their 2D structure and

the crucial role played by their growth substrates, which are discussed throughout.
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Chapter 1

Introduction

In 2004, Andre Geim andKonstantin Novoselov showed that graphene, the two-dimensional

(2D) hexagonal form of carbon, could be prepared by using tape to repeatedly peel layers

off of a sample of graphite [1]. Though graphite had long been known to have a layered

structure, the isolated graphene monolayer had previously been presumed to be unstable.

Geim and Novoselov demonstrated that this was not the case, sparking a flurry of interest

in graphene that soon spread to the study of other 2D materials. Today, well-characterized

2D materials include not only graphene (a semimetal) but also hexagonal boron nitride (a

wide-gap insulator), MoS2 (a semiconductor), and other transition metal dichalcogenides

(TMDs). 2D materials can be studied on their own, or they can be stacked into loosely-

bound “van der Waals heterostructures”; the latter have been proposed as a way of realizing

exotic types of field-effect transistors, optoelectronic devices, and other futuristic consumer

electronics [2].

Equally important to modern physics is the tremendous growth in the development of

first-principles (ab initio) computational tools, whose use is now ubiquitous. The most

widespread of these tools is density functional theory (DFT). The foundations of DFT
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were laid in the 1960s [3, 4], but its surge in popularity came with the broad availability of

powerful computers. In 2014, more than 16,000 paperswere published aboutDFT, a number

that has only continued to grow [5]. Ab initio calculations are used by researchers ranging

from chemical spectroscopists to theoretical physicists engaged in materials discovery. Of

particular relevance to this dissertation is their use by experimental physicists and their

collaborators; in this context, ab initio calculations can help guide, interpret, and confirm

efforts at materials synthesis and characterization.

In this dissertation, we present and analyze ab initio calculations of three materials:

stanene, borophene, and a thin film of Mg2TiO4. These materials exemplify both of the

trends mentioned above: in addition to being two-dimensional, each one is believed to

exhibit exciting new physics that was initially predicted from first principles [6, 7, 8].

Furthermore, the properties of each of these materials are shaped by the substrate on which

it is grown. Substrates are crucial to accurately describing 2D materials: they can strain a

material by enforcing an epitaxial lattice match, saturate its orbitals by forming chemical

bonds, dope it by donating electrons, ormodify its electronic properties by screening electric

fields. As a third throughline in our research, we aim to clearly identify and explicate these

substrate effects wherever they impact properties of interest.

Throughout this work, we have attempted to be methodologically flexible, learning

and using whatever theoretical methods are appropriate for the task at hand. Our various

projects have used overlapping but distinct sets of tools from ab initio theory, including

Wannier functions, hybrid functionals, and the �, method for self-energy calculations.

The collected suite of methods we use is outlined in some detail in Chapter 2, with cross-

references to the relevant research chapters where each method makes an appearance.

In Chapters 3 and 4, we discuss work on stanene, a buckled hexagonal monolayer of

2



elemental tin. Stanene is predicted to be a gapped 2D topological insulator (also known

as a quantum spin Hall insulator), hosting topologically protected edge states even at room

temperature [6]. However, its properties are highly sensitive to the choice of substrate. In

Chapter 3, we present theoretical calculations of the binding of stanene to the (0001) crystal

surface of alumina (Al2O3), a wide-gap insulator with a good lattice match. We carefully

investigate the effects of strain and dispersion forces, including the delicate interplay between

strain and functionalization of the stanene monolayer. We argue that Al2O3 presents a

promising substrate for synthesizing gapped, topologically nontrivial stanene, and briefly

discuss implications for device applications. In Chapter 4, we report on a collaboration with

experimentalists who grew tin films on Bi2Te3. Bi2Te3 is itself a 3D topological insulator.

Our primary contribution to this work was a theoretical investigation of the chemical Sn–

Bi–Te phase diagram, showing that Sn films on Bi2Te3 can be expected to spontaneously

decompose into films of SnTe and elemental Bi.

In Chapters 5 and 6, we move left along the periodic table to borophene, the monolayer

formof boron. To a physicist borophene is, depending on one’s perspective, either a dreamor

a nightmare. Boron sheets are expected to host a veritable zoo of exotic physical behavior,

including high-)2 superconductivity [7], massless Dirac fermions [9], and Dirac nodal

lines [10]. However, boron’s electron deficiency makes borophene highly polymorphic

[11, 12, 13], with a large variety of nearly degenerate possible structures. It is therefore

not surprising that the borophene ground state is sensitive to the choice of substrate; this

sensitivity is a major challenge for borophene synthesis and characterization [14, 15]. These

chapters reflect an extended collaboration with experimentalists who grew borophene on

the (111) and (100) surfaces of copper (Chapters 5 and 6, respectively). In each chapter,

we discuss a cross-correlation of experimental diffraction and STM data with theoretical

3



structural relaxations and STM simulations to resolve the borophene structure on an atomic

scale. We quantify the effect of the substrate on the borophene sheet, both by doping the

Fermi level and by inducing periodic modulations of the atomic structure and band energies.

In Chapters 7 and 8, we discuss a third collaboration with experimentalists, this one

concerning excitons in transition metal oxide films. An exciton is a bound state formed

from an optically excited electron and the hole it leaves behind in the valence band; stable,

long-lived excitons have potential applications in quantum computing. From a structural

perspective, this project represents a graduation from 2Dmaterials (i.e., atomic monolayers)

to “quasi-2D” materials with meaningful physical extent in the I-direction. Methodolog-

ically, Chapter 8 also requires a step up in complexity, supplementing the ground state

methods of DFT with many-body techniques that can handle various kinds of excited quasi-

particles. In Chapter 7, we show how a polar Mg2TiO4 film, grown on MgO(001) via

widely-used fabrication techniques, has an ideal band alignment for the production of long-

lived interlayer excitons. In Chapter 8, we extend this research with an analysis of how

this material’s properties vary with thickness and a quantitative treatment of its electronic

excitations and optical absorption spectrum. This project is ongoing, and we conclude by

discussing both its current status and our future research plans.

In Chapter 9, we briefly recap the dissertation and present a research outlook for each

topic covered.
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Chapter 2

Methods

This chapter introduces the computational methods used throughout the rest of the disser-

tation. Its contents are intended to be instructive for non-experts, especially the detailed

discussion of scaling the�, method to large systems in Section 2.2.6. Most of the tools we

discuss are fairly well-established, but we highlight modifications we have made to existing

techniques and software where appropriate.

2.1 Density functional theory (DFT): Ground-state prop-

erties

The main workhorse of electronic structure calculations is density functional theory (DFT),

a simple and widely-used tool for computing ground-state properties of materials. DFT is

motivated by the task of solving the Schrödinger equation of an #-electron system in the

Born–Oppenheimer approximation, which takes the form

� Ψ({r8}) = [) ++44 ++48] Ψ({r8}) = �0Ψ({r8}). (2.1)
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Here, ) is the kinetic energy operator, +44 is the Coulombic electron–electron potential, +48

is the Coulombic potential due to the material’s positively charged ionic cores, and �0 is the

ground-state energy. In atomic units (ℏ = 1, |4 | = 1, <4 = 1), the operators take the form

) = −1
2

#∑
9=1
∇2
9 , +44 =

1
2

#∑
9≠:

1
|r 9 − r: |

, +48 =

#∑
9=1
E(r 9 ), (2.2)

where E(r) is the ionic potential energy felt by a single electron:

E(r) = −
∑
�

/�

|r − R� |
(2.3)

for ions with charges /� at positions R� . The many-body wavefunction Ψ({r8}) is an anti-

symmetric function of # continuous position variables. The dimension of the Hilbert space

in which it lives grows exponentially with the number of electrons, so explicitly solving

Equation 2.1 rapidly becomes intractable for even modestly-sized systems.

Fortunately, many properties of a system’s ground state can be extracted from an al-

ternative formulation of the same problem that demands much less information to solve.

Following Hohenberg and Kohn [3], we write the ground-state energy as the expectation

value of the Hamiltonian in the ground state:

�0 = 〈Ψ|) ++44 ++48 |Ψ〉 = 〈Ψ|) ++44 |Ψ〉 +
∫

3r =(r) E(r), (2.4)

where =(r) is the ground-state electron density, given by

=(r) = #
∫

3r2 · · · 3r# |Ψ(r, r2, . . . , r# ) |2. (2.5)
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Equation 2.4 is a useful decomposition of the problem because the first term on the right-

hand side depends only on the electronicwavefunction (not the ionic potential or any external

perturbations), while the second term is expressed in terms of the total electron density, a

much less complex beast than the many-body wavefunction. In fact, the calculation of any

ground-state property of an #-electron system, including its total energy, can be formulated

as a variational problem in the electron density. This insight is the basis for DFT.

The transition to DFT is usually framed in terms of the twoHohenberg–Kohn theorems.

The first theorem states that, given a fixed number of electrons # , and assuming that the

ground state is non-degenerate [16],

[H–K 1] There is a one-to-one correspondence between the ground-state elec-

tron density =(r) and the external potential E(r).

One direction of the proof is trivial: given a potential E(r), we can construct the Hamiltonian

in Equation 2.1, solve forΨ({r8}), and calculate the electron density fromEquation 2.5. The

other direction is a straightforward proof by contradiction presented in [3]: one imagines

two potentials that yield the same density and shows via the variational principle that they

must be identical everywhere. The first Hohenberg–Kohn theorem dramatically simplifies

the problem of solving Equation 2.1. It allows us to define a functional |Ψ0 [=]〉 that gives the

ground-state wavefunction of a system with ground-state electron density =(r)—effectively

inverting Equation 2.5. We can go further and speak of an energy functional

E[=; E] ≡ 〈Ψ0 [=] |) ++44 |Ψ0 [=]〉︸                        ︷︷                        ︸
� [=]

+
∫

3r =(r) E(r), (2.6)

where � [=] is a universal functional that is the same for all #-electron systems. Note that
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=(r) and E(r) do not necessarily correspond to one another, but if they do, then we see by

comparison to Equation 2.4 that E[=; E] gives the ground-state energy of the system. The

second Hohenberg–Kohn theorem strengthens that relation:

[H–K 2] For a given potential E(r), the functional E[=; E] is minimized at the

corresponding ground-state electron density, and its value is the ground-state

energy.

This proof, too, follows immediately from the variational principle [3].

The next step was made by Kohn and Sham [4], who further simplified the problem

by mapping a system of interacting electrons onto an equivalent system of non-interacting

electrons with the same density. The first Hohenberg–Kohn theorem applies equally well

to non-interacting particles (i.e., those with +44 = 0), so we can define a functional

)KS [=] = 〈ΨKS [=] |) |ΨKS [=]〉 = −
1
2

∑
9

〈k 9 |∇2
9 |k 9 〉, (2.7)

where |ΨKS [=]〉 is a Slater determinant of non-interacting electrons that has electron density

=(r), and |k 9 〉 are orthonormal single-particle Kohn–Sham orbitals that make up |ΨKS [=]〉.

In terms of the Kohn–Sham orbitals, the electron density is

=(r) =
∑
9

|k 9 (r) |2. (2.8)

We write the universal functional � [=] of the interacting system in terms of the non-

interacting kinetic energy term:

� [=] = )KS [=] ++H + �xc [=], (2.9)
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where +H is the Hartree energy,

+H [=] =
1
2

∫
3r 3r′

=(r) =(r′)
|r − r′| =

1
2

∑
9 :

∫
3r 3r′

|k 9 (r) |2 |k: (r′) |2

|r − r′| , (2.10)

and �xc [=] is the exchange–correlation functional. By definition, the exchange–correlation

functional captures all terms not included in )KS or +H, including a correction to the

kinetic energy for interacting electrons, the Fock exchange term for identical particles, and

“correlation” effects arising from the non-independent nature of the electron distribution.

(For example, the fact that the electron pair density %(r, r′), the probability density of

finding two electrons at r and r′, is not simply the independent product =(r)=(r′) is a

correlation effect.) With these definitions, we can write everything in Equation 2.6 in terms

of the Kohn–Sham orbitals:

E[=; E] = −1
2

∑
9

∫
3rk∗9 (r) ∇2k 9 (r) +

1
2

∑
9 :

∫
3r 3r′

|k 9 (r) |2 |k: (r′) |2

|r − r′|

+
∑
9

∫
3r |k 9 (r) |2 E(r) + �xc [=] .

(2.11)

Tominimize this functional, we apply a variational methodwith respect to small changes

Xk 9 and Xk∗9 in the orbitals and their complex conjugates. Setting XE = 0 and solving for

the coefficients of the variational parameters yields the Kohn–Sham equations:

[
−∇

2

2
+ E(r) +

∫
3r′

=(r′)
|r − r′| + Exc(r)

]
k 9 (r) = n 9k 9 (r), (2.12)

where

Exc(r) ≡
X�xc [=]
X=(r) (2.13)
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is a functional derivative of �xc [=] known as the exchange–correlation potential. Formally,

the n 9 are a set of Lagrange multipliers that enforce orthonormality of the Kohn–Sham

orbitals, but they are interpreted as single-particle energy levels due to the Schrödinger-

like form of Equation 2.12. The total ground-state energy is given exactly in terms of

Kohn–Sham quantities by [16]

�0 =
∑
9

n 9 −
1
2

∑
9 :

∫
3r 3r′

=(r) =(r′)
|r − r′| + �xc [=] −

∫
3r =(r) Exc(r), (2.14)

where the sums range over the # lowest-energy Kohn–Sham orbitals.

Since the Kohn–Sham orbitals appear implicitly in the bracketed term on the left-hand

side of Equation 2.12, the systemof equations is self-consistent. It cannot generally be solved

in one shot; rather, an initial guess for the orbitals is made, the density and exchange–

correlation potential are calculated from that guess, and the Kohn–Sham equations are

solved to yield an improved set of orbitals. This procedure is iterated until it converges to

within some numerical tolerance. Various schemes exist for optimizing the stability and

convergence of this calculation.

By calculating more than # orthonormal solutions to Equation 2.12, one can obtain

single-particle orbitals and energies for unoccupied states of the system. Or, in a periodic

crystal, one could calculate states at a particular point in k-space by specifying Kohn–Sham

orbitals that are Bloch functions, with k 9 (r + R) = 48k·R k 9 (r) for any lattice vector R.

However, it is important to note that the n 9 are not energy levels of the interacting system

in any rigorous sense. Treating them as such typically yields a reasonable description

of band dispersion, but band gaps of semiconductors and insulators are systematically

underestimated. Various methods for handling this issue exist, some of which we describe
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later in this chapter.

2.1.1 Exchange–correlation functionals

In order to solve Equation 2.12, we need to calculate the exchange–correlation functional

�xc [=]. This functional can be written down exactly for simple systems like a uniform

gas of electrons, but in general it is unknown. Various practical approximations have

been developed. In this section, we briefly describe three of them: the local density

approximation, the generalized gradient approximation, and the hybrid functional.

The local density approximation (LDA) is derived by assuming that the electron density

=(r) varies slowly in space. In that case, any small region of space 3r resembles a uniform

electron gas of density =(r), so we can estimate that

�xc [=] ≈ �LDA
xc [=] ≡

∫
3r =(r) YLDAxc (=(r)), (2.15)

where YLDAxc (=) is the exact exchange–correlation energy per electron of a uniform gas of

interacting electrons with density =. The exchange–correlation potential is given by

Exc(r) ≡
X�LDA

xc [=]
X=(r) = YLDAxc (=(r)) + =(r)

3YLDAxc (=)
3=

����
===(r)

. (2.16)

This expression simplifies Equation 2.14, with a cancellation between the two exchange–

correlation terms reducing them to one:

�0 =
∑
9

n 9 −
1
2

∑
9 :

∫
3r 3r′

=(r) =(r′)
|r − r′| −

∫
3r =2(r) 3Y

LDA
xc (=)
3=

����
===(r)

. (2.17)

YLDAxc (=) has been carefully tabulated [17] and parametrized [18]. The LDA is widely used
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in DFT calculations of materials with weak electron correlation. In this dissertation, we use

the Perdew–Zunger exchange–correlation functional for the borophene-on-Cu calculations

in Chapters 5 and 6.

In systems with stronger electron correlation (e.g., 3-band solids) or rapidly-varying

electron density (e.g., molecules), the assumptions of the LDA fail. In this case, it is

intuitive to build a model that depends on not only the local density, but also derivatives of

the density. Exchange–correlation functionals of the form

�xc [=] =
∫

3r =(r) YGGAxc (=(r),∇=(r)) (2.18)

are called generalized gradient approximations (GGAs). There is no universal choice for

YGGAxc ; in solid-state physics, widely-used GGAs include the PW91 functional by Perdew

and Wang [19] and the PBE functional by Perdew, Burke, and Ernzerhof [20]. GGAs

generally yield more accurate values for cohesive and binding energies than the LDA. In

this dissertation, we use the PBE GGA in Chapters 3, 4, 7, and 8.

The LDA and GGA are, respectively, local and semilocal: at a particular point in

space they depend on physical properties at that point and (in the case of the GGA) its

immediate surroundings. Electron–electron interactions are not necessarily local, though,

a fact that often contributes to errors when calculating band gaps, bond lengths, vibrational

frequencies, and other properties with local functionals. To tackle this problem, Becke [21]

proposed replacing some fraction of the exchange–correlation functional with the exchange

energy term �x used in Hartree–Fock theory:

�x = −
1
2

∑
9 :

∫
3r 3r′

k∗
9
(r) k∗

:
(r′) k: (r) k 9 (r′)
|r − r′| . (2.19)
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The resulting functional is called a hybrid functional. Widely used hybrid functionals

in solid-state physics include the PBE0 functional of Perdew, Burke, and Erznerhof, who

argued for replacing exactly 1/4 of their PBE functional’s exchange termwith exact exchange

[22]:

�PBE0
xc = �PBE

xc +
1
4

(
�x − �PBE

x

)
, (2.20)

where �PBE
x is the portion of the PBE functional that describes exchange. This functional

accurately calculates chemical properties of interest, often obtaining band gaps in better

agreement with experiment than LDA or GGA. However, since the exact exchange cannot

be expressed purely in terms of electron density, hybrid calculations are often expensive.

Heyd, Scuseria, and Ernzerhof (HSE) introduced a less costly version of the PBE0 functional

that uses a screened Coulomb potential, expediting convergence of the calculation without

sacrificing accuracy [23]. In this dissertation, we use a revised version of the HSE functional

[24] in Chapters 3 and 7.

2.1.2 Wannier functions

In a periodic crystal, the Kohn–Sham equations generate Bloch wavefunctions k=k(r)

that are wave-like and thus delocalized within a material. Bloch functions are useful for

many purposes, since they share the periodicity of the crystal lattice and they diagonalize

the Hamiltonian. However, they are often poorly suited for describing intrinsically local

processes like chemical bonding, polarization, and magnetism. Wannier functions, first

described in 1937 [25], repackage the information of Bloch functions in a localized form,

with the states k=k for a band = being replaced by a set of Wannier functions, one per unit

cell. Like atomic orbitals, to which they often bear a qualitative resemblance, Wannier
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functions can be used as basis functions for tight-binding models. However, unlike atomic

orbitals, Wannier functions are orthonormal, they preserve the crystal symmetries of their

material, and they can be used to exactly reconstruct the DFT bands from which they are

built.

The simplest case to consider is that of a single isolated band =. The textbook definition

of a set of Wannier functions |R=〉, where R is a real-space lattice vector, is in terms of a

Fourier transform of the band’s Bloch functions:

|R=〉 = 1
√
#

∑
k
4−8k·R |k=k〉, (2.21)

where # is the number of points in the k-mesh being used to cover the Brillouin zone.

Wannier functions are orthonormal (〈R=|R′=〉 = XRR′), and they form a complete basis for

the same subspace spanned by the band’s Bloch functions:

%= ≡
∑

k
|k=k〉〈k=k | =

∑
R
|R=〉〈R=|. (2.22)

Most importantly, they are translations of one another in real space:

,=R(r) ≡ 〈r|R=〉 = 〈r − R|0=〉 = ,=0(r − R), (2.23)

where |r〉 is a X-function state that we use here to obtain the wavefunction of a ket. This

fact can be shown easily using Equation 2.21 and the periodicity of Bloch functions, which

satisfy k=k(r − R) = 4−8k·R k=k(r) if R is a lattice vector. Even in the single-band case,

Wannier functions are not unique. This fact comes from the gauge freedom that we have

to assign an arbitrary phase to each Bloch function: k=k(r) → 48i= (k)k=k(r), for i= (k)
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periodic in k-space. Altering the phase convention alters the Wannier functions; generally,

to obtain highly localized Wannier functions, one should choose a smoothly-varying phase

convention [26].

The above gauge freedom is actually just a special case of the gauge freedom that arises

for a set of multiple bands. Consider a set of � bands that are separated in energy from

higher or lower bands, but may have band crossings or degeneracies among themselves.

The subspace spanned by these bands is also spanned by any set of states |k̃=k〉 defined by

|k̃=k〉 =
�∑

<=1
*
(k)
<= |k<k〉, (2.24)

where* (k)<= is a family of unitarymatrices, one for each k, that is periodic in reciprocal space.

In general |k̃=k〉 are not eigenstates of the Hamiltonian, though one could imagine nontrivial

unitary transformations among states, e.g., in the presence of degeneracies. Nevertheless,

they can still be used to define a set of Wannier functions for the whole manifold:

|R=〉 = 1
√
#

∑
k
4−8k·R |k̃=k〉 =

1
√
#

∑
k

�∑
<=1

4−8k·R* (k)<= |k=k〉. (2.25)

Indeed, the best-localized Wannier functions often involve nontrivial mixing of a system’s

Bloch functions.

The ambiguities that arise in defining Wannier functions likely contributed to their

relative disuse for several decades after their initial discovery [26]. However, researchers

in the 1990s made major advances in selecting well-chosen Wannier functions, culminating

in Marzari and Vanderbilt’s 1997 proposal of the maximally localized Wannier function

(MLWF) scheme [27]. The MLWF procedure is based on minimizing a spread functional
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Ω, defined as

Ω =
∑
=

[
〈0=|A2 |0=〉 − 〈0=|r|0=〉2

]
=

∑
=

[
〈A2〉= − r̄2

=

]
, (2.26)

which intuitively captures the spatial extent of eachWannier function about its charge center.

It is common to decompose the spread functional into two terms: Ω = ΩI + Ω̃, where

ΩI =
∑
=

[
〈0=|A2 |0=〉 −

∑
R<
|〈R< |r|0=〉|2

]
, (2.27)

Ω̃ =
∑
=

∑
R<≠0=

|〈R< |r|0=〉|2. (2.28)

Both terms are individually positive definite, butΩI is also gauge invariant for a given set of

bands. Marzari and Vanderbilt defined a straightforward iterative procedure to select the set

of transformations* (k)<= that minimize Ω̃; theWannier functions obtained from such a gauge

choice are deemed maximally localized. The only ingredients needed for the minimization

scheme are a set of Bloch functions and an set of overlap matrices " (k,b)<= = 〈D<k |D=k+b〉,

where D=k(r) = 4−8k·rk=k(r) is the cell-periodic part of k=k.

The discovery ofMLWFshas greatly expanded the uses ofWannier functions. Soluyanov

and Vanderbilt [28] proposed a method that uses “hybrid” functions, which are Wannier-

ized along one dimension but not others, to compute the /2 topological invariant of systems

without inversion symmetry. Their approach works by tracking how the Wannier charge

centers r= = 〈0=|r|0=〉 evolve as a function of wave vector k in a non-Wannierized direc-

tion. It is conceptually related to the Berry-phase-based “modern theory of polarization”

developed by King-Smith and Vanderbilt [29, 30] and based on earlier work by Resta [31].

Wannier functions can also be used to affordably interpolate band structures when a full
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DFT calculation at each point along the k-path is infeasible. Briefly, a set of Wannier

functions |R=〉 is constructed from a DFT calculation on a coarse k-grid. The Hamiltonian

matrix elements 〈0=|�̂ |R<〉 in this basis are computed, and taken to be the hopping and

on-site terms of a tight-binding model. The bands of this tight-binding model can then be

calculated at an arbitrary point k by defining a new Bloch Hamiltonian

�̂W
k,=< =

∑
R
48k·R〈0=|�̂ |R<〉 (2.29)

and diagonalizing it. Effectively, we have performed a double Fourier transform from the

Bloch basis to the Wannier basis and back again; mathematically, this is often referred to as

“Fourier interpolation.” The procedure depends on the smoothness of the Hamiltonian in

k space, which directly stems from to the locality (i.e., short-ranged nature) of the Wannier

functions and matrix elements 〈0=|�̂ |R<〉.

The desire to calculate band structures for complexmaterialsmotivates the finalWannier-

function topic we will discuss, that of disentangling bands. Often, we want to build a model

for a subset of bands in an entangled manifold; for example, we might want to isolate

the ?I-like orbitals from monolayer graphene or borophene, or the surface states of a slab

material. The relevant bands may mix with or cross over irrelevant bands that we want to

exclude. To build suitable Wannier functions for this purpose, we need a prescription to

choose which bands are relevant at each k-point. Souza et al. [32] addressed this issue by

noting that, while Ω̃ captures the smoothness of individual Wannier functions, ΩI captures

the “smoothness” of the Hilbert space in which those functions live, considered as a function

of k. Given a set of Jk ≥ � Bloch states at each k-point, they defined an iterative procedure

to select the �-dimensional subspace at each k that minimizes ΩI. Often, the search is

17



further constrained by defining a “frozen” energy window in which all bands are necessarily

retained; this can help to define the character of the desired bands so that they can be readily

selected outside of the frozen window.

This dissertation uses maximally localized Wannier functions constructed using the

Wannier90 package [33]. In Chapter 3, we use these functions and the WannierTools

package [34] to compute topological invariants of materials without inversion symmetry

using the method of Soluyanov and Vanderbilt [28]. In Chapter 6, we use tight-binding

models built fromWannier functions to unfold electronic band structures (see Section 2.1.4).

2.1.3 Scanning tunneling microscopy (STM)

Scanning tunneling microscopy (STM) is a commonly used technique for high-resolution

real-space imaging of atomically structured surfaces. First developed in 1981 at IBM [35],

the STM technique led its developers, Gerd Binnig and Heinrich Rohrer, to share a portion

of the 1986 Nobel Prize in Physics. Since then, STM has been used to image a wide variety

of metals, insulators, and molecules, even being used to manipulate individual xenon atoms

on a nickel surface to spell out “IBM” [36].

The active element of a scanning tunnelingmicroscope is an atomically sharp conducting

metal tip, which is brought into near contact with a surface of interest and held at a specified

bias voltage. When the tip is sufficiently close to the surface, electrons quantum tunnel

between surface and tip, producing an electric current that is measured by the microscope.

The tip scans laterally over the surface, being held either at a constant height or at a constant

tunneling current. The latter mode is implemented by a piezoelectric feedback mechanism

that moves the tip towards the surface when the tunneling current is lower than the desired

set point, and farther from the surface when the opposite is true. In this way, a high-
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resolution topographic image of the surface is produced. By adjusting the bias voltage,

different near-�� states can be imaged, producing information about the system’s electronic

structure as well.

Tersoff and Hamann introduced a simple widely-used approach to theoretical STM

calculations in the mid-1980s, shortly after the development of the STM technique itself

[37, 38]. They built on earlier work by Bardeen [39], who showed generally that the

tunneling current � can be expressed in terms of the tunneling matrix element "`a by

� =
2c4
ℏ

∑̀
,a

5 (�`) [1 − 5 (�a + 4+)] |"`a |2 X(�` − �a), (2.30)

where 5 (�) is the Fermi function, + is the bias voltage (the voltage of the surface with

respect to the tip), and �` and �a are the energies of the tip and surface states, respectively.

Bardeen further showed that the tunneling matrix element can be computed in terms of the

initial and final wavefunctions k`, ka as

"`a =
ℏ2

2<

∫
3 ®( ·

(
k∗`∇ka − ka∇k∗`

)
, (2.31)

where the integral is taken over a surface within the vacuum separating the initial and final

regions.

Tersoff and Hamann made two crucial simplifying assumptions: first, that the wave-

functions for electrons in the metal tip are spherically symmetric with respect to the center

of the tip (i.e., they are B-type states), and second, that the work functions of the surface

and the tip are identical: qsurface = qtip ≡ q. Under these assumptions, they expressed the

19



tip wavefunctions k` and surface wavefunctions ka as

k` (r) =
2C

Ω
1/2
C

^' 4^'

^ |r − r0 |
exp [−^ |r − r0 |] , (2.32)

ka (r) =
1

Ω
1/2
B

∑
G
0G exp

[
−(^2 + |k‖ +G|2)1/2I

]
exp

[
8(k‖ +G) · x

]
, (2.33)

where r0 is the tip’s center of curvature, ' is its radius of curvature, 0G are the expansion

coefficients of ka in a plane-wave basis with reciprocal lattice vectors G, and ^ =
√

2<q/ℏ

is a decay constant set by the vacuumwork function. In the low-temperature limit, the Fermi

functions in Equation 2.30 can be replaced by step functions, and the requisite integrals

carried out to obtain

� =
32c34

ℏ

'2q2

^4

∫ 4+

0
3n �C (�� + n)

∑
a

|ka (r0) |2X(�a − (�� − 4+ + n))︸                                          ︷︷                                          ︸
d(r0;��−4++n)

, (2.34)

where �C (n) is the tip density of states. The local behavior is captured by the underbraced

expression, which is the surface local density of states evaluated at the tip center of curvature,

d(r0, n). This quantity can be easily calculated from ab initio calculations, readily allowing

for accurate simulation of STM experiments. If the bias voltage is sufficiently small that

each system’s density of states is roughly constant over the relevant range, then the integral

in Equation 2.34 can carried out to obtain

� =
32c342+

ℏ

'2q2

^4 �C (��) d(r0, ��). (2.35)

Tersoff and Hamann used their crude B-wave approximation for the tip wavefunctions

partly because the physical nature of the STM tip was not well understood in the early
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1980s. Subsequent research revealed that these assumptions may have been ill-founded; in

particular, ?- and 3-type states play a major role in the near-�� tip states [40, 41]. Chen [40]

revisited the problem of STM calculations using a more general Green’s function approach.

Chen’s results replicate the Tersoff–Hamann result in the case of an B-wave tip, but find that

ℓ ≠ 0 states contribute terms to the tunneling matrix element that depend on derivatives of

surface wavefunctions:

"B ∝ ka (r0), "?8 ∝
1
^

mka

mA8

����
r0

, 8 = G, H, I. (2.36)

Thus, the tunneling current contains terms proportional to the squares of derivatives of

surface states, as well as the surface LDOS term of Equation 2.35. Subsequent researchers

have noted that these terms are especially important when the STM tip is functionalized

by adding a single molecule with non-B-wave tunneling orbitals [42]. For example, in

experiments with a CO-functionalized tip in a vertical configuration, the 2c∗ orbitals open

a tunneling channel described by a rotationally-invariant combination of ?G- and ?H-wave

states [41]:

�?G+?H ∝
∑
a

[����mkamG ����2 + ����mkamH ����2]
r0

X(�a − ��) (2.37)

In this dissertation, STM calculations were carried out using Quantum Espresso’s post-

processing executable pp.x, which calculates the B-wave STM current from the Tersoff–

Hamann formula. We modified the code to also calculate ?I-wave STM currents and the

rotationally-invariant ?G + ?H current described above.
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Figure 2.1: Demonstration of band folding for a simple two-dimensional crystal. For the
4 × 4 (red) and 16 × 16 (blue) supercells of the black primitive cell depicted in (a), the
first Brillouin zone is reduced to the sizes shown in (b). (c) Band structure of a one-band
tight-binding model in the primitive cell. (d,e) The band structure from (c), folded into the
first Brillouin zone of the supercells. Panels (c-e) are adapted from [43].

2.1.4 Band unfolding

One powerful application of density functional theory is to compute a material’s electronic

band structure, which encodes information that is useful for analyzing transport, optical,

and scattering properties. This can be done easily using the Kohn–Sham equations, which

describe the one-particle energy levels at any arbitrary k-point in the Brillouin zone. For a

crystalline material with a small unit cell and perfect periodicity, this procedure is concep-

tually simple and quite tractable. Often, though, one wants to study the effects of localized

defects or long-period modulations in crystal structure. These structures can be studied by

simulating a large “supercell” containing many copies of the primitive unit cell, which is

then perturbed to include the imperfection of interest. In such a system, the size of the

Brillouin zone is dramatically reduced, resulting in bands that are “folded” over themselves

(Figure 2.1). These band structures can be made easier to interpret by “unfolding” them

back into the larger primitive Brillouin zone.

Various band unfolding schemes exist; in this dissertation, we use and expand on a
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technique described by Ku, Berlijn, and Lee [43], with occasional support from a similar

method proposed shortly afterward by Popescu and Zunger [44]. The procedure of Ku et

al. uses maximally localized Wannier functions [27] to map states from a commensurate

supercell onto a smaller primitive cell. Our extension applies this technique to cases where

the primitive cell–supercell relation is not perfectly commensurate and examines the ways

in which the band unfolding procedure is still meaningful.

Properly speaking, the quantity calculated by band unfolding is not the band structure

but rather the spectral function, most generally defined as �(l) = − 1
c
Im� (l), where � is

the retarded one-electron Green’s function. For a system with well-defined quasiparticles,

the spectral function is nearly diagonal in momentum–energy space and exhibits X-function

peaks. For example, the spectral function for a crystalline systemof non-interacting fermions

in reciprocal space is

�(k, l) =
∑
9

X(�k 9 − l), (2.38)

where �k 9 is the energy of the 9 th band at k. For a given path through k-space, a heat map

of this function on (k, l) axes perfectly overlaps with a plot of the energy bands (perhaps

with some energy broadening applied to make the spectral function easily visible).

Before continuing, we define some terminology and notation. Bloch states in the

primitive cell are denoted |k 9〉, where k is a point in the primitive Brillouin zone (PBZ) and

9 is a band index. In the supercell, Bloch states are denoted |K�〉 for a supercell Brillouin

zone (SBZ) point K. A SBZ point K is said to unfold into a PBZ point k if there is a

supercell reciprocal lattice vector G such that k = K +G. In the primitive cell (supercell),

we can also introduce a basis of Wannier functions |r=〉 (|R#〉), where r (R) is a real-space

lattice vector and = (#) is an orbital index. For well-localized Wannier functions and a
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weak perturbation, it is expected that supercell Wannier functions can be approximated by

correctly indexed primitive cell Wannier functions:

|R#〉 ≈ |r = R + r′(#), = = =′(#)〉 (2.39)

for maps r′ and =′ that can be constructed by inspection. It is also useful to define Fourier-

transformed Wannier functions:

|k=〉 =
∑

r
|r=〉〈r=|k=〉 = 1

√
;

∑
r
|r=〉48k·r, (2.40)

where ; is the number of k-points in the PBZ, and likewise for supercell Wannier functions.

In the primitive cell, we define the unfolded spectral function

�(k, l) =
∑
� 9

|〈k 9 |K�〉|2 X(�K� − l), (2.41)

where K is the SBZ point that unfolds into k. This function can also be expressed in terms

of Fourier-transformed Wannier functions:

�(k, l) =
∑
�=

|〈k=|K�〉|2 X(�K� − l). (2.42)

A simple calculation detailed in [43] shows that the matrix elements 〈k=|K�〉 can be

expressed purely in terms of Bloch states and Wannier functions in the supercell:

〈k=|K�〉 =
√
!

;

∑
#

4−8k·r
′(#)X=,=′(#)X[k],K〈K# |K�〉, (2.43)

24



where X[k],K = 1 if and only if K unfolds into k. Thus, the unfolded spectral function

can be computed simply by constructing Wannier functions in the supercell and defining a

coherent mapping between primitive cell and supercell sites.

In the standard picture of band unfolding, the supercell is commensurate to the primitive

cell; that is, the primitive cell basis vectors a8 and supercell basis vectors A8 are related by

a matrix of integers [44]:

©­­­­­­«
A1

A2

A3

ª®®®®®®¬
=

©­­­­­­«
<11 <12 <13

<21 <22 <23

<31 <32 <33

ª®®®®®®¬
·

©­­­­­­«
a1

a2

a3

ª®®®®®®¬
<8 9 ∈ Z. (2.44)

However, in Chapter 6, we discuss a borophene structure with a domain-wall dislocation

that defines a supercell for which some<8 9 are non-integer rational numbers. In this system,

SBZ points can still be unfolded into PBZ points, and supercell Wannier functions sites can

still be mapped to primitive cell sites. In principle, the latter map depends on the choice of

origin and shape for the real-space unit cells, but the difference is only meaningful in the

vicinity of the domain-wall boundary. More details on the procedure and results for this

calculation are available in Section 6.5.

In this dissertation, band unfolding calculations were performed using a basis of max-

imally localized Wannier functions constructed with the Wannier90 code [33]. The con-

struction of the spectral function itself was carried out by code written in MATLAB.
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2.2 �,-BSE method: Electronic excitations and interac-

tions

TheDFT-basedmethods outlined in Section 2.1 describe ground-state properties of interact-

ing electrons in solids. They are much less successful at describing excited-state properties

such as band gaps and optical absorption spectra. Hybrid functionals like those described in

Section 2.1.1 can yield more accurate band gaps, but fundamentally they still only produce

single-particle energy levels. To properly describe quasiparticles, excitons and light–matter

interactions, a more elaborate many-body theory is necessary. One such approach, the �,

method for quasiparticle properties, was developed first for the electron gas by Hedin [45]

and applied to real materials in a modern form by Hybertsen and Louie [46, 47]. We outline

its basics in this section.

2.2.1 Screening in solids

To describe how electrons in materials interact with both one another and optical probes,

we need a framework for describing electric fields and potentials in solids. For example,

consider the simple case of a uniform (or at least slowly-varying) applied electric field Eext.

In the presence of this field, a solid’s ions and electrons rearrange to produce a polarization

P that screens (i.e., reduces) the net electric field E within the solid. The relation between

these three vectors is Eext = E+4cP. Often, the polarization is linear in the internal electric

field, so we can write Eext = nE. The quantity n is called the dielectric constant.

We can think about the same phenomenon in terms of the screening of electric potentials,

rather than fields. Consider adding an electron to an insulating solid at a point r. If the
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screening in the solid is isotropic and uniform, then the screened potential , (r, r′) at a

point r′ due to the electron will take the form

, (r, r′) = E(r, r
′)

n
, (2.45)

where E(r, r′) = 1/|r − r′| is the unscreened Coulomb potential. In reality, screening in

materials at the microscopic level is more complicated. Valence electrons are often highly

localized to bonding orbitals, and so they screen potentials in an inhomogeneous manner.

Wemust consider a nonlocal model that takes into account the variability of the polarization

response at all third points r′′:

, (r, r′) =
∫

3r′′ n−1(r, r′′) E(r′′, r′). (2.46)

The response function here, no longer constant, is often called the dielectric function. In

full generality, this expression is difficult to work with, so for crystalline systems it is more

productive to take a Fourier transform and work in reciprocal space. We use the following

conventions:

, (r, r′) =
∑

qGG′
48(q+G)·r,GG′ (q) 4−8(q+G

′)·r′, (2.47)

n−1(r, r′) =
∑

qGG′
48(q+G)·r n−1

GG′ (q) 4
−8(q+G′)·r′, (2.48)

E(r, r′) =
∑
qG
E(q +G) 48(q+G)·(r−r′) , (2.49)

where G and G′ are reciprocal lattice vectors and q is a wave vector in the first Brillouin

zone. The Fourier transform of the bare Coulomb potential has the well-known form
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E(q) = 4c/@2. After Fourier transforming Equation 2.46, we obtain

,GG′ (q) = n−1
GG′ (q) E(q +G′). (2.50)

It is important to note that,GG′ (q) and n−1
GG′ (q) are now matrices, with rows and columns

labeled by reciprocal lattice vectors. When there are nonzero off-diagonal (G ≠ G′) ele-

ments, termed local-field effects, it will not generally be the case that n−1
GG′ = 1/nGG′. This

becomes relevant when consider spatially-averaged macroscopic quantities, for which the

relevant dielectric function is not n00(q) but rather nmac(q) ≡ 1/n−1
00 (q).

Our discussion so far has concerned static perturbations, but when treating light–matter

interactions, we are often interested in the response to a harmonically varying field at

frequency l. Assuming that time-translation invariance holds, we can treat individual

frequencies separately and write

,GG′ (q, l) = n−1
GG′ (q, l) E(q +G′). (2.51)

to describe the response to photons of energy � = ℏl. We work in ℏ = 1 units, so we can

use � and l interchangeably. Below, we will generally use � to emphasize our focus on

electronic band structures and quasiparticle energies.

2.2.2 The Green’s function

Information about a system’s excitation spectrum is encoded in an object called the Green’s

function. The general theory of Green’s functions is a rich mathematical topic, and there

are many subtly different objects referred to as Green’s functions. In Sections 2.2.2 and
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2.2.3, we discuss the time-ordered one-particle Green’s function [48]:

8� (r, C, r′, C′) = 〈# |) [k̂(r, C) k̂†(r′, C′)] |#〉 =


〈# |k̂(r, C) k̂†(r′, C′) |#〉 for C > C′,

−〈# |k̂†(r′, C′) k̂(r, C) |#〉 for C < C′,
(2.52)

where |#〉 is the #-particle ground state, and the field operator k̂(r, C) removes an electron

from position r at time C. This object describes the amplitude for (if C > C′) an electron to

be created at position r′ and time C′, propagate to (r, C), and be destroyed, or (if C < C′) a

hole to be created at (r, C) and propagate to (r′, C′). For a time-independent system, we can

Fourier-transform to an energy representation of the Green’s function, � (r, r′; �). In the

case of a non-interacting system with a local one-particle Hamiltonian �̂ (r), this object is

the function that produces a X-function response at energy � [49]:

[
� − �̂ (r)

]
� (r, r′; �) = X(r − r′). (2.53)

In its spectral representation or Lehmann representation, the Green’s function also encodes

information about the system’s wavefunctions k8 and energies �8 [48, 49]:

� (r, r′; �) =
∑
8

k8 (r) k∗8 (r′)
� − �8

. (2.54)

Here, 8 indexes an intermediate eigenstate with an added electron or hole, the addition

and removal amplitudes are k8 (r) = 〈# |k̂(r) |# + 1, 8〉 for an electron state and k∗
8
(r) =

〈# − 1, 8 |k̂(r) |#〉 for a hole state, �8 = �#+1,8 − �# for an electron, and �8 = �# − �#−1,8

for a hole. This is an exact formula, but for physically well-defined quasiparticles with very

long lifetimes, the index 8 corresponds to the usual band index for real energies �8 with
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orthornomal one-particle states k8 (r).

For a typical many-body problem of interacting fermions, Equation 2.53 takes the

modified form [45, 48]

[� − ) −+ext] � (r, r′; �) −
∫

3r′′" (r, r′′; �)� (r′′, r; �) = X(r − r′), (2.55)

where " is a mass operator that couples the Green’s function across space. The mass term

can be decomposed into the Hartree potential+H and a remainder called the self-energy that

is denoted Σ(r, r′; �):

[� − ) −+] � (r, r′; �) −
∫

3r′′ Σ(r, r′; �)� (r′′, r; �) = X(r − r′), (2.56)

where + ≡ +ext ++H.

If we denote the Green’s function for Σ = 0 by �0, then in the time domain � satisfies

a form of the Dyson equation:

� (1, 2) = �0(1, 2) +
∫

3 (34)�0(1, 3) Σ(3, 4)� (4, 2), (2.57)

where 1 ≡ (r1, C1), etc. Hedin [45] derived a further set of coupled equations for relevant

physical quantities:

Σ(1, 2) = 8
∫

3 (34)� (1, 3+), (1, 4) Λ(3, 2, 4), (2.58)

Λ(1, 2, 3) = X(1 − 2) X(2 − 3) +
∫

3 (4567) mΣ(1, 2)
m� (4, 5) � (4, 6)� (7, 5) Λ(6, 7, 3), (2.59)

, (1, 2) = E(1, 2) +
∫

3 (34) E(1, 3) %(3, 4), (4, 2), (2.60)
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where Λ(1, 2, 3) ≡ −X�−1(1, 2)/X+ (3) is the vertex function, , (1, 2) is the screened

Coulomb potential, n−1(1, 2) ≡ X+ (1)/X+ext(2) is the inverse dielectric function, E is the

bare Coulomb interaction, and %(1, 2) ≡ Xd(1)/X+ (2) is the irreducible polarizability [47].

Equations 2.57–2.60 can be greatly simplified by truncating at first order in the screened

Coulomb interaction, just as an introductory perturbation theory problem might involve

working to first order in some bare interaction. This is equivalent to retaining only the first

term on the right-hand side of Equation 2.59. Plugging that result back into Equation 2.58

yields the GW approximation:

Σ(1, 2) = 8 � (1, 2), (1, 2). (2.61)

Transforming back to the energy domain, this can be written

Σ(r, r′; �) = 8

2c

∫
3�′ 4−8X�

′
� (r, r′; � − �′), (r, r′; �′), (2.62)

where X = 0+. This is the form inwhich the self-energy can bemost lucrativelymanipulated.

2.2.3 The �, approximation

The self-energy enters into the eigenvalue equation for quasiparticle energies in the following

form:

[) ++ext ++H] k8 (r) +
∫

3r′ Σ(r, r′; �) k8 (r′) = �8k8 (r). (2.63)

The self-energy plays an analogous role to the exchange–correlation functional in DFT. Its

real part contributes a term to quasiparticle energies, while its imaginary part gives the

quasiparticle lifetime. In this work, we focus on the real part.
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It is fruitful to express the screened Coulomb potential, in its own spectral represen-

tation [48]:

, (r, r′; �) = E(r, r′) +
∫ 0

−∞
3�′

� (r, r′; �)
� − �′ − 8X +

∫ ∞

0
3�′

� (r, r′; �)
� − �′ + 8X , (2.64)

where

� (r, r′; �) = −1
c
Im [, (r, r′; �) − E(r, r′)] sgn(�). (2.65)

This decomposition is particularly useful because it enables the real part of the self-energy

to be split into two physically meaningful parts, the screened exchange term ΣSX and the

Coulomb hole term ΣCH: ReΣ = ΣSX + ΣCH. Using Equations 2.54, 2.62, and 2.64, we can

define them as follows:

ΣSX(r, r′; �) = −
occ∑
8

k8 (r) k∗8 (r′) Re, (r, r′; � − �8), (2.66)

ΣCH(r, r′; �) =
∑
8

k8 (r) k∗8 (r′) %
∫ ∞

0
3l′

� (r, r′; �′)
� − �8 − �′

. (2.67)

The meaning of “screened exchange” is straightforward enough: it is the typical Fock

exchange energy termwith the bare Coulomb interaction replaced with a screened potential.

To elucidate the meaning of the “Coulomb hole” term, suppose that we are interested in

an energy scale much lower than the pole of the screened interaction, which appears near

the material’s plasma frequency. This assumption is well-justified for states near the Fermi

level. It allows us to set � − �8 ≈ 0 in Equation 2.67 and compute the principal value with
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the Kramers–Kronig relation, yielding

ΣCH(r, r′; � ≈ ��) =
∑
8

k8 (r)k∗8 (r′)
1
2
[, (r, r′; 0) − E(r, r′)]

=
1
2
X(r − r′) [, (r, r′; 0) − E(r, r′)] .

(2.68)

In the second line, we used a completeness relation for the wavefunctions to replace them

with a X-function. We see that the Coulomb hole represents a local response to the

rearrangement of nearby electrons that screens the Coulomb potential (in this static limit).

Having somewhat demystified the self-energy, the next task is to actually compute the

screened Coulomb potential. Screening in insulators is a complex, highly inhomogeneous

process that must be studied at short length scales, or equivalently, over a large region of

reciprocal space. It is described quantitatively by the inverse dielectric function n−1(r, r′; �)

of Section 2.2.1, whose results can be framed in the notation of Equations 2.57–2.60 in the

following way:

, (1, 2) =
∫

3 (3) n−1(1, 3) E(3, 2). (2.69)

For our purposes, it will be more useful to Fourier-transform to reciprocal space, as we did

in Section 2.2.1. Then, the above convolution becomes simple multiplication:

,GG′ (q; �) = n−1
GG′ (q; �) E(q +G′), (2.70)

where G and G′ are reciprocal lattice vectors and q is a wave vector in the first Brillouin

zone. The choice in the previous section to retain only one term in the vertex function,

which was called the �, approximation there, is equivalent to making a random phase

approximation (RPA) for the dielectric function. Under this approximation, the (normal,
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non-inverse) dielectric function can be written

nGG′ (q; �) = XGG′ − E(q +G) %GG′ (q; �), (2.71)

where % is the irreducible polarizability. In the RPA, the static limit of the irreducible

polarizability was derived independently by Adler [50] and Wiser [51]:

%GG′ (q; � = 0) =
∑
=,=′,k
〈=k + q|48(q+G)·r |=′k〉〈=′k|4−8(q+G′)·r′ |=k + q〉

5 (�=,k+q) − 5 (�=′,k)
�=,k+q − �=′,k

,

(2.72)

where 5 (�) is a Fermi occupation function. For semiconductors and insulators, the Fermi

factors become 0 or 1, and we can restrict the = and =′ sums to range over either occupied

or empty bands:

%GG′ (q; � = 0) = 2
occ∑
=

emp∑
=′

∑
k

〈=k + q|48(q+G)·r |=′k〉〈=′k|4−8(q+G′)·r′ |=k + q〉
�=,k+q − �=′,k

. (2.73)

We can plug this into Equation 2.71 to obtain the static dielectric function:

nGG′ (q; 0) = XGG′ −
8c

|q +G|2
occ∑
=

emp∑
=′

∑
k

〈=k + q|48(q+G)·r |=′k〉〈=′k|4−8(q+G′)·r′ |=k + q〉
�=,k+q − �=′,k

.

(2.74)

The next step is to build a model for the dielectric function at nonzero energies. The

simplest standard approach is the generalized plasmon pole (GPP) model of Hybertsen and

Louie [47]. The imaginary part of the screened Coulomb potential is known to exhibit a

strong peak at the plasmon frequency; the GPPmodel assumes that this is the only important

feature of the spectrum. Since self-energy calculations typically involve integrating the

screened Coulomb potential over a large energy range, this is a reasonable assumption.
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Hybertsen and Louie postulated that the imaginary part of the inverse dielectric function

takes the form

Im n−1
GG′ (q; �) = �GG′ (q) {X[� − l̃GG′ (q)] − X[� + l̃GG′ (q)]} (2.75)

for two unknown parameters �GG′ (q) and l̃GG′ (q). We need two constraints to solve for

these parameters. The first comes from requiring that the dielectric function be causal and

applying a Kramers–Kronig relation at zero energy:

Re n−1
GG′ (q; 0) = XGG′ +

2
c
%

∫ ∞

0
3�

Im n−1
GG′ (q; �)
�

. (2.76)

The second is a version of the 5 -sum rule from linear response theory derived in [47]:

∫ ∞

0
3� Im n−1

GG′ (q; �) = −c
2
l2
?

(q +G) · (q +G′)
|q +G|2

d(G −G′)
d(0)︸                                     ︷︷                                     ︸

Ω2
GG (q)

, (2.77)

where l? =
√

4cd(0)42/< is the bulk plasma frequency and d(G) is a Fourier component

of the ground-state charge density. The underbraced term defines a q-dependent effective

bare plasma frequency ΩGG(q). Using these constraints, the amplitude �GG′ (q) and mode

frequency l̃GG′ (q) can be determined with no further adjustable parameters:

l̃2
GG′ (q) =

Ω2
GG′ (q)

XGG′ − n−1
GG′ (q; � = 0)

, (2.78)

�GG′ (q) = −
c

2
ΩGG′ (q)
l̃GG′ (q)

, (2.79)
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and the real part of the inverse dielectric function can be written as

Re n−1
GG′ (q; �) = XGG′ +

Ω2
GG′ (q)

l2 − l2
GG′ (q)

. (2.80)

For materials with inversion symmetry, the GPP matrix elements of the screened ex-

change and Coulomb hole self-energies can now be written down explicitly:

〈=k|ΣSX(r, r′; �) |=′k〉 = −
occ∑
=′′

∑
qGG′
〈=k|48(q+G)·r |=′′k − q〉〈=′′k − q|4−8(q+G′)·r′ |=′k〉

×
[
XGG′ +

Ω2
GG′ (q)

(� − �=′′,k−q)2 − l̃2
GG′ (q)

]
E(q +G′), (2.81)

〈=k|ΣCH(r, r′; �) |=′k〉 =
1
2

∑
=′′

∑
qGG′
〈=k|48(q+G)·r |=′′k − q〉〈=′′k − q|4−8(q+G′)·r′ |=′k〉

×
Ω2

GG′ (q)
l̃GG′ (q)

[
� − �=′′k−q − l̃GG′ (q)

] E(q +G′). (2.82)

For materials without inversion symmetry, Ω2
GG′ (q) and l̃GG′ (q) are not necessarily real,

so slight corrections must be made to obtain real-valued eigenvalues [52, 53]. The basic

structure holds, however: the screened exchange involves a sum over occupied bands, while

the Coulomb hole involves an infinite sum over all bands in the system.

Having set up this machinery, we return to our actual goal: calculating quasiparticle

energies and states. In principle, Equation 2.63 is entirely self-consistent, and swapping out

the exchange–correlation functional for the self-energy produces a new set of wavefunctions.

One could solve for them by starting with an initial guess based on DFT wavefunctions,

constructing and diagonalizing the resulting energy-dependentHamiltonian in somemanner,

and iterating until self-consistency is achieved, as is done for the electron density and

Kohn–Sham wavefunctions in DFT (see Section 2.1). However, for most systems, the DFT
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wavefunctions are a very good approximation to the quasiparticle wavefunctions [47], and

it suffices to correct their energies by computing matrix elements of the �, Hamiltonian

in the DFT basis:

�
QP
=k = �DFT

=k + 〈=k|Σ(�
QP
=k ) −+xc |=k〉. (2.83)

This approach is a diagonal-only approximation to the Dyson equation. Typically, it is

combined with the single-shot �, or �0,0 approach, in which both the Green’s function

and the screened Coulomb potential are constructed from the input (DFT) wavefunctions.

The low number of self-energy matrix elements and the fact that the calculation is done

in one shot combine to substantially reduce the required workload. The self-energy still

depends self-consistently on the quasiparticle energies, but this dependence is close to linear

[47] and can be well-approximated by taking a first-order expansion around the DFT energy

values:

�
QP
=k ≈ �

DFT
=k + 〈=k|Σ(�

DFT
=k ) −+xc |=k〉 + (�

QP
=k − �

DFT
=k )

m〈=k|Σ(�) |=k〉
m�

����
�=�DFT

=k

. (2.84)

Solving for the quasiparticle energies, we obtain

�
QP
=k = �DFT

=k +
1

1 − mΣ(�)
m�

���
�=�DFT

=k

〈=k|Σ(�DFT
=k ) −+xc |=k〉. (2.85)

Up to a question of where to evaluate it along the energy axis, the prefactor
[
1 − mΣ

m�

]−1 is

the quasiparticle renormalization factor / of Fermi liquid theory [47]. We should always

have / < 1; when / is close to 1, energy corrections are large and the system’s collective

excitations are well-described by the particle-like picture we are using here.
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2.2.4 Excitons and optical absorption with the Bethe–Salpeter equa-

tion

Having discussed the use of the �, method to calculate quasiparticle energies, we now

turn to the question of describing optical phenomena. The �, method does an excellent

job of describing single-particle experiments such as X-ray or ultraviolet photoemission

spectroscopy (XPS or UPS), in which an electron is removed from or added to a single

energy level in a system [47]. However, optical absorption processes at lower energies often

promote an excited electron to the conduction band, leaving a positively charged hole in

the band that the electron vacates. Since the electron and hole have nonzero and opposite

charges, they may form a bound state known as an exciton. Such two-particle processes are

not fully treated by the one-body Green’s functions of Sections 2.2.2 and 2.2.3. As a result,

theoretical absorption spectra computed within the RPA are often quite poor, even when

corrected with �, quasiparticle energy levels [54].

The source of these problems is the correlation between the quantum states of the

electron and the hole. We account for this correlation quantitatively using the two-body

Green’s function, generally denoted by �2 or, for historical reasons, !. ! has a spectral

representation analogous to Equation 2.54:

! (12; 1′2′; �) = 8
∑
(

[
j( (x1, x′1) j

∗
(
(x′2, x2)

� −Ω(
−
j( (x2, x′2) j

∗
(
(x′1, x1)

� +Ω(

]
, (2.86)

where ( indexes a set of electron–hole excitations with energies Ω( whose two-particle

wavefunctions can be expanded in terms of single-particle electron and hole states as
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follows:

j( (x, x′) =
occ∑
E

emp∑
2

∑
k

[
�(E2k k2k(x) k

∗
Ek(x

′) + �(E2k kEk(x) k
∗
2k(x

′)
]
. (2.87)

In the non-interacting case, the spectrum includes all possible valence–conduction tran-

sitions, and the non-interacting Green’s function !0 can be written directly in terms of

single-particle states:

!0(12; 1′2′; �) = 8
∑
E,2

[
k2 (x1) k∗E (x′1) kE (x2) k∗2 (x′2)

� − (�2 − �E)
−
kE (x1) k∗2 (x′1) k2 (x2) k∗E (x′2)

� + (�2 − �E)

]
.

(2.88)

! is subject to a Dyson equation analogous to Equation 2.57 called the Bethe–Salpeter

equation (BSE):

! (12; 1′2′) = !0(12; 1′2′) +
∫

3 (3456) !0(14; 1′3)  (35; 46) ! (62; 52′), (2.89)

in which the role previously held by the self-energy is played by the interaction kernel  .

In the basis of of the single-particle states of Equation 2.87, the kernel has a block-diagonal

structure, with blocks  �� and  �� describing interactions among �(
E2k terms and among

�(
E2k terms, respectively, and blocks  �� and  �� describing cross-couplings. However,

the off-diagonal blocks are typically negligible in strength, so it is common to apply the

Tamm–Dancoff approximation of setting  �� =  �� = 0 [54]. In this case, the information

provided by the �(
E2k terms turns out to be redundant, so we ignore them and focus on the
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�(
E2k terms. Under these simplifications, the BSE is rendered as an eigenvalue problem:

(�2k − �Ek)�(E2k +
∑
E′2′k′

 ��
E2k,E′2′k′ (Ω() �

(
E′2′k′ = Ω( �

(
E2k, (2.90)

where

 ��
E2k,E′2′k′ (ΩB) ≡ 8

∫
3 (3456) kEk(x4) k∗2k(x3)  (35, 46;Ω() k∗E′k′ (x5) k2′k′ (x6). (2.91)

In the limit that  = 0, we see that Equation 2.90 is already diagonalized, with eigenvalues

simply consisting of interband transition energies (which could be DFT energies or quasi-

particle energies obtained from �,). The kernel is responsible for coupling between these

transitions to produce correlated exciton states.

The BSE kernel can be calculated as a functional derivative of the Coulomb and self-

energy interaction terms with respect to the one-particle Green’s function [54]:

 (35; 46) = X [+Coul X(3, 4) + Σ(3, 4)]
X� (6, 5) . (2.92)

Applying the �, approximation and further assuming that the screened Coulomb interac-

tion, is independent of �, this expression can be decomposed into two terms:

 (35; 46) = −8 X(3, 4) X(5−, 6) E(3, 6)

+ 8 X(3, 6) X(4, 5), (3+, 4).
(2.93)

These terms are labeled the exchange term  G and the direct term  3 , respectively. The

direct term provides most of the electron–hole attraction that produces bound states, while
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the exchange term is spin-dependent and results in a splitting between singlet and triplet

excitations. In the static limit, which is usually sufficient for describing solids but not

necessarily atoms or molecules, the matrix elements are given by

 
��,G

E2k,E′2′k′ =

∫
3x 3x′ k∗2k(x) kEk(x) E(r, r

′) k2′k′ (x′) k∗E′k′ (x
′), (2.94)

 
��,3

E2k,E′2′k′ = −
∫

3x 3x′ k∗2k(x) k2′k′ (x) kEk(x
′) k∗E′k′ (x

′), (r, r′; � = 0). (2.95)

However, upon transforming to a basis that decouples spin singlets and triplets, the kernel

reduces to just  3 for each triplet state and  3 + 2 G for the singlet state, explaining the

origin of the spin splitting.

Once constructed, Equation 2.90 can be diagonalized to obtain the exciton eigenstates

�(
E2k and their corresponding energy eigenvalues Ω(. There is physical insight to be gained

by studying the exciton wavefunctions in either real space or reciprocal space, but their

most immediate experimental use is in the construction of a more accurate formula for the

system’s optical absorption spectrum, given by the imaginary part n2(l) of its dielectric

function. In the RPA, the optical spectrum is given by [54]

n
(0)
2 (l) =

8c242

l2

∑
E2k
|e · 〈Ek|v|2k〉|2 X(l − (�2k − �Ek)), (2.96)

where e is the polarization of the impinging light and v = 8[�, r] is the single-particle

velocity operator. As mentioned, this spectrum is often qualitatively inconsistent with

experiment. The absorption spectrum obtained from the BSE is analogous in structure but
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encodes information about transitions to exciton states:

n2(l) =
8c242

l2

∑
(

|e · 〈0|v|(〉|2 X(l −Ω(), (2.97)

where the excitonic optical transition matrix is computed in terms of hole–electron transi-

tions:

〈0|v|(〉 =
∑
E2k

�(E2k〈Ek|v|2k〉. (2.98)

There are several ways to compute the non-interacting transition matrix elements, but in

crystals the simplest derives from k · p perturbation theory. For a small but finite reciprocal-

space shift q, the matrix elements are given by

〈Ek|v|2k〉 = (�2k − �Ek) lim
q→0

〈Ek + q|48q·r |2k〉
@

. (2.99)

Other schemes are possible, but they must account for subtleties involving the commutator

[+ps, r] of the possibly-nonlocal pseudopotential with the position operator, as well as a

renormalization of the transition matrix element that appears when quasiparticle energy

corrections are applied [54]. These corrections are handled implicitly in k · p theory.

2.2.5 �, calculations

�, and�,-BSE calculations yield accurate results, but at substantial computational cost.

The computational work of a DFT calculation generally scales with #3, where # is the

number of atoms in the system. In contrast, the work needed for the �, method typically

scales with #4, while post-processing with the BSE often scales with #6. In practice, the

�, step is usually the more expensive of the two, since the number of bands it requires
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Self-consistent DFT calculation

→Ground-state charge density ρ(G)

WFN

• Coarse grid

• Many empty states

→Matrix elements Vxc

WFNq

• Coarse +shift

• Occupied states

WFN_co

• Less coarse grid

• Absorption window

WFN_fi

• Fine grid

• Absorption window

WFNq_fi

• Fine +shift

• Occupied states

epsilon

→Dielectric matrix


ϵ−1
G,G′￼(q)

sigma

→QP energies


EQP
nk

kernel

→BSE kernel


Kvck,v′￼c′￼k′￼ absorption

→Absorption spectrum 



→Exciton eigenstates 

ε(ω)
AS

vck, ΩS

inteqp

→Interpolated QP energies 

EQP
nk

Figure 2.2: Flowchart of steps for performing a �,-BSE calculation. A mean-field
technique such as DFT should be used to generate the WFN, WFNq, WFN_fi, WFNq_fi,
and (optionally) WFN_co files. Quasiparticle energies are generated using the epsilon,
sigma, and (optionally) inteqp executables, while �,-BSE calculations are done with
the kernel and absorption executables.
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can be orders of magnitude higher. Even so, the rapid scaling of the BSE step may mean

that only a few eV of an absorption spectrum can be satisfactorily converged without a very

expensive calculation.

In Chapter 8, we perform �, and �,-BSE calculations on systems with up to 45

atoms. Some of these systems are 2D slabs that require vacuum spacing at least as large as

the slab itself (see discussion of Coulomb truncation below). Since the number ofG-vectors

in the system scales with the total unit cell volume, these 2D systems effectively have ∼100

atoms for the purposes of some terms in the �, calculation. To handle these calculations,

we use BerkeleyGW [53], a software package designed to scale efficiently to massively

parallel calculations.

BerkeleyGW breaks the �,-BSE workflow down into four main executables:

1. epsilon calculates nGG′ (q) and n−1
GG′ (q) via the Adler–Wiser polarizability sum of

Equation 2.73. Minimally, it computes the static l = 0 dielectric matrix, but it can

also do finite-l calculations.

2. sigma calculates quasiparticle energies �QP
=k from an expression such as Equa-

tion 2.85, using Equations 2.81 and 2.82 (or equivalent expressions for a frequency

model other than the GPP) to compute the self-energy. In addition to interpolating

with Equation 2.85, sigma can apply a static “scissors” shift to DFT energies or be

run multiple times to achieve self-consistency.

3. kernel calculates the matrix elements  E2k,E′2′k′ of the BSE kernel on a coarse grid

of k-points using reciprocal-space forms of Equations 2.94 and 2.95.

4. absorption interpolates the BSE kernel to a finer grid of k-points, diagonalizes it

to obtain exciton states �(
E2k and energies Ω(, and computes the optical absorption
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spectrum n2(l).

Figure 2.2 shows how these steps interact with one another, as well as with preceding DFT

calculations. Both epsilon and sigma use a large number of unoccupied DFT states on

a relatively coarse k-grid. epsilon also uses occupied states on a slightly shifted coarse

grid to calculate its q→ 0 terms in a non-divergent way, while sigma depends on the DFT

calculation to provide +xc matrix elements for Equation 2.85 and the charge density d(G)

for the GPP. kernel can use the same coarse grid as the �, steps, but if the �, step

is prohibitively expensive, it may be useful to run sigma on a very coarse grid and then

interpolate to an intermediate grid (WFN_co in Figure 2.2) using the auxiliary inteqp

executable. In that case, epsilon and kernel must be run on the intermediate grid.

absorption uses DFT calculations on both the grid used by kernel and the finer grid to

which it interpolates the kernel; in each case it needs enough unoccupied states to capture

all interband transitions in the intended energy window of the absorption spectrum. Finally,

absorption also uses a shifted set of occupied states to calculate the RPA matrix elements

from Equation 2.99.

2.2.6 Scaling �, calculations to large systems

This section reviews various considerations that are important for efficiently performing

plane-wave �, calculations in large-scale systems.

Memory usage

The limiting factor in large-scale�, calculations is often not processor time, but rather the

memory needed to store the calculation’s enormous wavefunctions, polarizability matrices,

and Bethe–Salpeter kernels. Therefore, we want to take a moment to discuss how memory
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usage in BerkeleyGW depends on parallelization of the calculation. Some steps, such as the

summation in Equation 2.73 that computes the polarizability, are distributed over the entire

set of CPUs in a block-cyclic manner [53]. This requires intermittent MPI communication

between cores but allows the total memory usage to be essentially fixed. As a result, the

memory per core needed for this step decreases linearly with the number of cores.

Other steps are more complicated, however. The epsilon executable provides a case

study in large-scale parallelization [53]. The first task carried out by epsilon is to compute

a large number of matrix elements of the following form:

"==′ (k, q,G) = 〈=k + q|48(q+G)·r |=′k〉, (2.100)

where = is the index of an occupied band, =′ is the index of an unoccupied band, k and q are

points in the Brillouin zone, and G is a reciprocal lattice vector. These matrix elements first

appear when evaluating Equation 2.73, but are used at several points throughout the �,

calculation. The computation is distributed among the #? processors by grouping them

into %E “pools,” each of which is responsible for a fraction of the valence bands. Each of the

%2 = #?/%E processors in a pool is then assigned some share of the conduction bands. If

there are #E valence bands and #2 conduction bands (#2 � #E), then each processor must

compute matrix elements that couple roughly #E/%E valence bands to #2/%2 conduction

bands. If the memory required to store a single band is <0, then the memory needed to

store a single processor’s wavefunctions is

"? = <0

(
#E

%E
+ #2
%2

)
= <0

(
#E

%E
+ #2%E

#?

)
, (2.101)
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Table 2.1: Optimal memory distribution for the BerkeleyGW epsilon code in both the
low-parallelization (#? < #2/#E) and high-parallelization (#? � #2/#E) limits.

#? < #2/#E #? � #2/#E

Number of valence pools, %E 1

√
#E#?

#2

Average memory per processor, "? <0

(
#E +

#2

#?

)
2<0

√
#E#2

#?

Total memory, "tot <0
(
#E#? + #2

)
2<0

√
#E#2#?

and the total memory used is

"tot = #?"? = <0

(
#E#?

%E
+ #2%E

)
. (2.102)

For a large, fixed number of processors, the memory usage per processor is minimized when

3"?

3%E
= <0

(
−#E
%2
E

+ #2
#?

)
= 0, (2.103)

which yields

%E ≈

√
#E#?

#2
. (2.104)

This choice splits thememory each processor evenly between valence and conduction bands.

However, it is only a coherent prescription for #? > #2/#E; otherwise we are obligated to

choose %E = 1.

The memory per processor and total memory in each regime are shown in Table 2.1.

We see that "? scales roughly with 1/#? for small #?, but the scaling softens to 1/
√
#?

as #? becomes larger. In addition, the total memory usage is not fixed, but grows with

#? even for a small number of processors. Therefore, when performing a calculation on

an entire node, a choice must be made between efficient memory usage (distributing the
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node’s entire memory to just a few processors) and performance (using more of the node’s

processors).

Converging sums with the static Coulomb hole remainder

In principle, both the static dielectric matrix (Equation 2.74) and the Coulomb hole portion

of the self-energy (Equation 2.82) involve infinite sums over unoccupied states, which

converge slowly with the number of terms in the sum. Various approaches have been

developed to alleviate this problem. Some authors have proposed linear-response methods

that avoid the need to sum over empty states altogether [55, 56], while other have proposed

schemes for approximating the contribution from the truncated remainder in closed form

[57, 58, 59]. In this dissertation, we use a particularly simple and effective remainder

term first proposed by Deslippe et al. called the static Coulomb hole (CH) approximation

[60]. With this remainder added, sums can be converged with an order of magnitude fewer

explicitly included terms, greatly reducing the cost of calculations.

The static CH approximation focuses on the Coulomb hole self-energy sum, since it

generally converges more slowly than the dielectric screening matrix. It is based on the

“static” (energy-independent) expression for the Coulomb hole, whose first # terms are

〈=k|ΣCoh/#
CH (r, r′; 0) |=′k〉 = 1

2

#∑
=′′

∑
qGG′
〈=k|48(q+G)·r |=′′k − q〉〈=′′k − q|4−8(q+G′)·r′ |=′k〉

×
[
n−1

GG′ (q; � = 0) − XGG′
]
E(q +G′).

(2.105)

The key insight is that, when # → ∞, the sum over =′′ can be eliminated by applying a
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completeness relation:

〈=k|ΣCoh/∞
CH (r, r′) |=′k〉 = 1

2

∑
qGG′
〈=k|48(G−G′)·r |=′k〉

[
n−1

GG′ (q; 0) − XGG′
]
E(q +G′).

(2.106)

This fact was already discussed in Section 2.2.3 to provide a physical interpretation for the

name “Coulomb hole.” The difference between Equations 2.106 and 2.105 is the static

remainder—the contribution that the omitted bands would have made to the Coulomb hole

energy had they been included. Since the matrix elements in Equation 2.105 must already

be computed for the GPP Coulomb hole self-energy, this remainder can be calculated in a

non-static calculation at essentially no additional cost. The static CH correction that results

is the following, where Σ#CH is the standard GPP self-energy from Equation 2.82 with #

terms evaluated:

〈=k|Σ∞CH(r, r
′; �) |=′k〉 = 〈=k|Σ#CH(r, r

′; �) |=′k〉

+ 1
2

(
〈=k|ΣCoh/∞

CH (r, r′; 0) |=′k〉 − 〈=k|ΣCoh/#
CH (r, r′) |=′k〉

)
.

(2.107)

The factor of 1/2 is included for consistency with previous work by Kang and Hybertsen

[59].

In our experience, including the static Coulomb hole remainder brings convergence of

the CH summation roughly in line with the convergence of the dielectric function. It is used

in all the �, calculations cited in this dissertation.

State generation with simple approximate physical orbitals (SAPOs)

The cost of calculating sums over unoccupied states can be further reduced if the wave-

functions themselves can be generated cheaply. To construct # states in DFT, we must
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extract the # lowest eigenvalues and their eigenstates from the Kohn–Sham equations at

every k-point of interest. As # grows into the thousands for large systems treated with�, ,

this task becomes daunting even if efficient iterative diagonalization techniques are used.

Fortunately, this is overkill. The states high in the continuum that must be accounted for in

�, calculations are well approximated by individual plane waves, even in the vicinity of

ionic cores [61]. As a result, various schemes have been proposed to simply replace them

with plane waves in �, calculations. We discuss one of these schemes, dubbed the simple

approximate physical orbital (SAPO) approach by its creators [61].

In solid materials, the SAPO approach supplements a modest number of explicitly-

calculated DFT states with plane-wave continuum orbitals. The energy of the plane-wave

state k=k(r) = exp[8(k +G) ·r], where k lies in the first Brillouin zone and G is a reciprocal

lattice vector, is initially estimated by

Y=k = 〈+DFT〉 + (k +G)2, (2.108)

where 〈+DFT〉 is the averaged DFT potential and (k +G)2 is the plane wave’s kinetic energy

in Rydberg atomic units. When combined with the actual DFT states, these states form

an overcomplete basis, so they must be orthogonalized. The collection of states is sorted

by energy eigenvalue and the Gram–Schmidt process is applied to produce a new set of

orthonormal wavefunctions Ψ=k. This set includes both the original DFT states and a

new orthogonalized set of plane-wave-like states, the latter of which are the technique’s

namesake SAPOs. To assign energies to the new states, two assumptions are made: (1) the

energies Y=k assigned in Equation 2.108 are the matrix elements of the Hamiltonian in the

plane-wave basis, 〈k=k |�̂ |k=k〉 = Y=k, and (2) the newwavefunctionsΨ=k(r) are eigenstates
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of the Hamiltonian. Neither of these assumptions is exactly true, but assuming them allows

one to assign a reasonable value for the SAPO energy eigenvalues:

�=k = 〈Ψ=k |� |Ψ=k〉

= Y=k +
∑=−1
<=1 |〈Ψ<k |k=k〉|2(Y=k − �<k)

1 −∑=−1
<=1 |〈Ψ<k |k=k〉|2

.

(2.109)

As long as enough DFT wavefunctions are included to account for states with substantial

atomic character, this procedure accurately reproduces energy eigenvalues. It also allows

converged �, results to be obtained for dramatically less computational cost in the DFT

step.

In this dissertation, SAPOs are used in all �, calculations with more than ∼10 atoms.

Typically, at least 15 Ry of DFT states are calculated by iterative diagonalization of the

Kohn–Sham Hamiltonian, and SAPOs are used for the remaining states.

Handling low-dimensional systems with Coulomb truncation and nonuniform neck

subsampling (NNS)

The materials described in this dissertation are either two-dimensional (2D) or quasi-

two-dimensional (quasi-2D), surrounded in principle by a semi-infinite substrate beneath

and a semi-infinite vacuum above. However, they are treated in plane-wave DFT and �,

calculations by assuming periodic boundary conditions, meaning that they are surrounded by

an infinite number of copies of themselves in the vertical direction. It is important to ensure

that these periodic copies do not interact in unphysical ways. Electronic wavefunctions

decay exponentially in vacuum, so overlap between electronic states can be eliminated

with a modest amount of layer spacing. However, long-range Coulomb interactions can be
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substantial, especially when describing spatially separated holes and electrons.

The typical remedy is to truncate the Coulomb interaction in the confined direction. For

a slab geometry this takes the form

Esl(r) = \ (I2 − |I |)
A

(2.110)

for some truncation length I2. Sharp truncations like this can present problems in reciprocal

space due to ringing effects. For example, the Fourier transform of Equation 2.110 is

Esl(k) = 4c
:2

{
1 + 4−:GHI2

[
:I

:GH
sin(:II2) − cos(:II2)

]}
, (2.111)

where :GH =
√
:2
G + :2

H. For general I2, this expression diverges for :I ≠ 0 and :GH → 0,

whereas before the potential only diverged for : → 0. Ismail-Beigi [62] noted that this

problem can be avoided by choosing I2 = !I/2, where !I is the periodicity in the I-direction.

This is because when k is a reciprocal lattice vector we have :I = c=I/I2 = 2c=I/!I for

some integer =I, and hence sin(:II2) = 0. The problematic term in Equation 2.111 drops

out, and we have

Esl(k) = 4c
:2

[
1 − 4−:GHI2 cos(:II2)

]
, (2.112)

This expression is finite as :GH → 0 for :I ≠ 0, and diverges as 1/: for :I = 0, a softer

divergence than the 1/:2 behavior seen in the 3D case. Thus, calculations using the

Ismail-Beigi truncation scheme are generally well-behaved.

However, slab Coulomb truncation does not fully handle anomalous 2D behavior. The

“neck” elements of the inverse dielectric matrix n−1
GG′ (q) (i.e., elements for reciprocal lattice

vectors G⊥,G′⊥ in the confined direction) display sharp structure as @ → 0. In particular,
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a b

Figure 2.3: Low-@ behavior of the inverse dielectric matrix. (a) Static inverse dielectric
constant n−1

00 (q) plotted as a function of |q| for a slab of Mg2TiO4 on an MgO substrate (see
Chapter 8). The blue line is a fit of the form 1/n−1

00 (q) = 1 + W |q|2Esl(q) exp(−U |q|) used
in [62]. As in all 2D materials, the inverse dielectric constant is exactly 1 at q = 0, but for
finite q it quickly drops by nearly 50% before recovering. (b) Schematic of the subsampling
scheme used to partition the q = 0 Voronoi cell into annuli, taken from [63].

the G = G′ = 0 entry exhibits a steep drop and local minimum at low @ (Figure 2.3(a)).

As a result, �, observables like quasiparticle energies and ionization potentials converge

slowly with the size of the k-grid.

da Jornada, Qiu, and Louie [63] proposed a clever solution to this issue that involves

subsampling the Voronoi cell of the Brillouin zone surrounding q = 0. Their procedure

divides the q = 0 cell into #B annular regions and selects a point qB within each region at

which nGG′ (qB) is calculated (Figure 2.3(b)). Then, the q = 0 neck matrix elements of the

screened Coulomb potential are calculated by

, sub
GG′ (q = 0, l) =

#∑
B=1

FB n
−1
GG′ (qB, l) E(qB +G′), (2.113)

where FB is a weight equal to the fraction of the Voronoi cell area covered by annulus B.

This procedure, dubbed “nonuniform neck subsampling,” or NNS, accelerates convergence

with respect to q-grid size in a dramatic fashion. For bilayer MoSe2, the band gap can be

converged to within 10 meV using a 6 × 6 × 1 q-grid with #B = 10 subsampled points [63].
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For comparison, a uniform calculation on a 36 × 36 × 1 requires two orders of magnitude

more computer time to get a result with 40 meV of error.

In this dissertation, the Ismail-Beigi slab truncation scheme is used for all �, calcula-

tions on two-dimensional materials. We note when we use nonuniform neck subsampling,

and compare the results to those obtained using a uniform q-grid where appropriate.
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Chapter 3

Epitaxial binding and strain effects in
monolayer stanene on the Al2O3(0001)
surface

This chapter is adapted from an article originally entitled “Structure and binding of stanene
on the Al2O3(0001) surface” co-authored with Sohrab Ismail-Beigi that has been submitted
for publication [64]. I performed the calculations and did the analysis, and SIB provided
guidance.

Stanene, the two-dimensional monolayer form of tin, has been predicted to be a 2D topo-

logical insulator due to its large spin–orbit interaction. However, a clear experimental

demonstration of stanene’s topological properties has eluded observation, in part because

of the difficulty of choosing a substrate on which stanene will remain topologically nontriv-

ial. In this chapter, we present first-principles density functional theory (DFT) calculations

of epitaxial monolayer stanene grown on the (0001) surface of alumina, Al2O3, as well as

free-standing decorated stanene under strain. By describing the energetics and nature of

how monolayer stanene binds to alumina, we show a strong energetic drive for the mono-

layer to be coherently strained and epitaxial to the substrate. By analyzing the electronic

structure of strained stanene, we find it to be a quantum spin Hall insulator on Al2O3.
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3.1 Introduction

Two-dimensional topological insulators (2DTIs) have received attention in recent years due

to their potential for hosting robust symmetry-protected current-carrying edge states [65].

The buckled hexagonal monolayer form of tin, known as stanene, is of particular interest

[66, 67] since its band gap (∼0.1 eV) is large enough for room-temperature applications

[68, 6]. Stanene’s band gap can be further enhanced by functionalization, in particular

with halogen atoms. Proposed uses of stanene include spintronic nanoribbon devices

[69, 70], tunable field-effect transistors [71], a surface for adsorption of molecules including

CH2O, CH4, CO, NO, N2O, and NH3 [72, 73], and the possibility of room-temperature

demonstration of the quantum spin Hall effect [6, 74] and quantum anomalous Hall effect

[75, 76, 77].

However, the electronic structure of epitaxial stanene is sensitive to both strain and

surface interactions, so choosing an appropriate substrate is vital [78]. Stanene is metallic

on many substrates, including Ag(111) [79, 80], Au(111) [81, 82], Sb(111) [83], and

Bi2Te3(111) [84, 85, 86]. Ultraflat stanene grown on Cu(111) shows evidence of nontrivial

edge states but is metallic overall [87], while buckled stanene on PbTe(111) is gapped

but is topologically trivial (i.e., non-topological) due to in-plane compressive strain [88].

InSb(111) is a promising substrate for globally gapped topological stanene, though reported

results remain somewhat inconclusive [89, 90]. A larger suite of potential stanene substrates

is important to enable robust continued work.

Alumina (Al2O3) is a wide-gap insulator whose growth is well-characterized and com-

monly performed. Cleaved along its (0001) surface, alumina has a surface lattice parameter

within a few percent of the free-standing stanene lattice parameter. Previous work has
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examined one possible structure for stanene on Al2O3 and elucidated basic aspects of the

resulting electronic bands [91, 92]. In this chapter, we describe several critical results re-

garding the structure, stability, and topological character of stanene on alumina: hexagonal

stanene (the assumed structure in the prior works) is indeed stabilized on stanene compared

to other structures that are favored as isolated 2D sheets, the strength of the binding of

stanene to the alumina surface turns out to be surprisingly large, the binding is strong

enough to create an epitaxial 2D layer of stanene on alumina, and the resulting electronic

bands of the heterostructure show a large gap as well as the desired topological character of

a quantum spin Hall insulator. We end with an outlook for the potential of stanene synthesis

on alumina.

3.2 Methods

We performed density functional theory (DFT) calculations using the Quantum Espresso

software package [93, 94]. We used fully relativistic projector augmented-wave (PAW)pseu-

dopotentials with spin–orbit interaction, along with the Perdew–Burke–Ernzerhof (PBE)

generalized gradient approximation to the exchange–correlation functional [20]. We used

a plane-wave basis set with a wavefunction energy cutoff of 680 eV and a charge density

plane wave cutoff of 6,800 eV, and we relaxed atomic positions until all axial forces were

below 2.5×10−3 eV/Å.We performed additional calculations with the same parameters and

a hybrid exchange–correlation functional using the VASP software [95, 23, 24]. We per-

formed calculations at the theoretical relaxed lattice parameters of bulk alumina; however,

since the Quantum Espresso version we used does not perform automated variable-cell

relaxations with fully relativistic pseudopotentials, those lattice parameters were found by
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atomically relaxing bulk structures on a grid of lattice parameter values and fitting to find

the minimum in energy. We estimate that this is equivalent to performing an automated

variable-cell relaxation until all uniaxial stresses are below 5 kbar. Calculations used a

12 × 12 × 1 k-point mesh and 14 meV of Gaussian thermal broadening.

We carried out substrate-based calculations on an Al-terminated slab of Al2O3 cleaved

along the (0001) surface. In-plane lattice parameters were taken from a theoretical re-

laxation of bulk Al2O3, which yielded a lattice parameter of 4.792 Å. We included four

stoichiometric layers of the Al2O3 slab to ensure convergence in atomic positions and for-

mation energies. We placed monolayers of stanene on both surfaces of a symmetric alumina

slab to retain inversion symmetry and avoid the need for a dipole correction in the vacuum.

We used the Grimme DFT-D2, DFT-D3, and Becke–Johnson XDM semiempirical func-

tionals to investigate the robustness of our results against noncovalent interactions between

the substrate and the stanene overlayer [96, 97, 98, 99, 100].

For isolated 2D tin-based monolayers, we computed topological characters from occu-

pied band parities at time-reversal invariant momenta using the method of Fu and Kane

[101]. To compute the topological invariant for bound stanene, we removed one stanene

monolayer from one side of the alumina slab and used the Wannier charge center method

of Soluyanov and Vanderbilt [28], as implemented in the WannierTools package [34] using

maximally localized Wannier functions from the Wannier90 package [33]. This approach

breaks the inversion symmetry that was present before, but the resulting electric dipole is

quite small and does not affect the states near the Fermi energy.
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Table 3.1: Structural data for free-standing stanene in its bare, hydrogenated, and fluori-
nated forms.

Bare stanene Hydrogenated stanene Fluorinated stanene
Lattice parameter 0 (Å) 4.68 4.72 5.02
Sn–Sn buckling 1 (Å) 0.85 0.82 0.53
Sn–Sn bond length 3 (Å) 2.83 2.85 2.95
Band gap (eV) 0.069 0.214 0.306
Topological insulator? YES NO YES

3.3 Results

3.3.1 Free-standing stanene monolayers

We performed variable-cell structural relaxations for free-standing monolayers of bare

stanene, as well as fully functionalized fluorinated stanene (SnF) and hydrogenated stanene

(SnH). In each calculation, both the lattice parameter and the atomic positions were relaxed

to minimize stresses and forces. Each structure is “low-buckled,” with a unit cell containing

two vertically-displaced Sn atoms. The optimal structural parameters and DFT-PBE band

gap, shown in Table 3.1, are in good agreement with previous results [6]. According to

the Fu–Kane method [101], bare and fluorinated stanene are topological insulators, while

hydrogenated stanene is a trivial insulator. The topological properties of each of these

freestanding materials are examined in greater detail in Section 3.3.6 below.

3.3.2 Bound low-buckled structure

For our substrate-bound calculations, we focused on undecorated stanene. When bound

epitaxially to alumina, low-buckled stanene retains its basic structure but is under ∼2.4%

tensile strain. We found that the most stable structures are obtained when Sn atoms are
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Figure 3.1: (a,d) Top (a) and side (d) views of the bare Al2O3(0001) slab used as a
substrate. The three inequivalent exposed Al atoms are labeled A, B, and C. The blue arrow
in (a) indicates the viewing direction of panels (d-f). (b,e) Top (b) and side (e) views of
second-most-stable registry choice A/B for stanene on Al2O3, placing the upper and lower
Sn atoms in positions A and B, respectively. Black arrows in (e) label the bond length 3,
the buckling 1, and the vertical binding distances ℎ1 and ℎ2, whose values are found in
Table 3.2. (c,f) Top (c) and side (f) views of the most stable registry choice A/C for stanene
on Al2O3, placing the upper and lower Sn atoms in positions A and C, respectively.
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Table 3.2: Structural and energetic information for the two most favorable registries of
stanene on Al2O3. See Figure 3.1 for definitions of 1, 3, ℎ1 and ℎ2.

A/B structure A/C structure
Buckling 1 (Å) 1.03 1.18
Bond length 3 (Å) 2.95 3.01
Binding distance ℎ1 (Å) 3.06 2.90
Binding distance ℎ2 (Å) 3.43 3.47
Binding energy �1 per unit cell (eV):

no van der Waals functional 0.31 0.50
Grimme DFT-D2 functional [96] 1.02 1.23
Grimme DFT-D3 functional [98] 0.84
XDM functional [99, 100] 1.16

Band gap (eV) 0.247 0.263

placed atop Al atoms.

The Al-terminated alumina slab has three exposed aluminum atoms per unit cell, which

are labeled A, B, and C in Figure 3.1(a). Atom A terminates the slab, while atoms B and C

are roughly coplanar (∼0.2 Å vertical separation) and located under a layer of oxygen atoms.

We examined a 3×3 grid of possibly registry alignments for stanene within the alumina unit

cell, each of which permits two structures that are obtained by swapping the up-buckled and

down-buckled Sn atoms. We relaxed the atomic positions in each of these 18 inequivalent

stanene-on-alumina registries. The two most favorable registries, shown in Figures 3.1(b)

and 3.1(c), place the upper tin atom directly over atom A and the lower tin atom directly

over either atom B or C. The structural parameters, binding energies, and DFT-PBE band

gaps of the two favorable structures are found in Table 3.2. The A/C structure is the most

energetically favored by a margin of at least 0.24 eV per two-atom stanene unit cell. This

structure, which was predicted by similar previous work [91, 92], will be taken as the ground

state structure.
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3.3.3 Binding energy and van der Waals functionals

The binding energy �1 equals the total energy of the bound stanene-substrate complex

�bound, minus the sum of the energies of the free-standing stanene layer �stanene and the bare

alumina slab �Al2O3:

�1 = �bound −
(
�stanene + �Al2O3

)
. (3.1)

To assess the importance of noncovalent interactions in the binding, we calculated �1 both

with and without van der Waals dispersion corrections. We checked three van der Waals

functionals implemented in Quantum Espresso: the common Grimme DFT-D2 functional

[96]; its DFT-D3 revision, which incorporates three-body interactions [98]; and the Becke–

Johnson exchange-hole dipole-moment (XDM) model [99, 100]. We found that including

a van der Waals functional modifies the interatomic distances listed in Table 3.2 by less

than 0.5%, indicating that the physical structure is determined largely by chemical rather

than van der Waals interactions. However, the binding energy, which is 0.50 eV per stanene

unit cell without dispersion effects, increase to 0.84–1.23 eV per unit cell depending on the

dispersion functional used. The largest binding occurs with the DFT-D2 functional, which

is known to overbind solids [98], so we expect that the true binding energy lies within the

range between the bare and DFT-D2 calculations. A previous study using the optB86b-vdW

functional found a binding energy of 1.11 eV per unit cell, which is well within this range

[91]. This suggests that both noncovalent and covalent interactions are needed to fully

describe the absolute magnitude of the binding energy of stanene to alumina.

The fact that the chemical binding is quite substantial at 0.50 eV/unit cell requires some

explanation: naively, one might expect a wide-gap material such as alumina to be relatively

inert. To identify the chemical interaction that drives the binding, we plotted the density
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Figure 3.2: (a,c) Side view of free-standing stanene layer and stanene bound to the
Al2O3(0001) slab, respectively. (b) Side view of bare alumina slab. The yellow features
are an isosurface of the local density of states (LDOS) integrated from the Fermi level
(��) to 1.0 eV above �� . (d-f) Density of states (DOS) plots for free-standing stanene,
bare alumina, and bound stanene on alumina, respectively. In the plot for the full system,
the DOS is also projected onto the Löwdin orbitals of the tin atoms (stanene) and the
aluminum/oxygen atoms (Al2O3).

of states (DOS) of the free-standing stanene layer, the bare alumina slab, and the stanene-

substrate complex (Figures 3.2(d-f)). The bare alumina slab displays a peak in the DOS just

above the Fermi level, which represents a surface state localized to “dangling” orbitals on

the top layer of exposed Al atoms (left panel of Figure 3.2(b)). This state vanishes upon the

binding of stanene—as can be seen from Figure 3.2(f), the states of the full complex near

the Fermi level are dominated by Sn orbitals. The unoccupied alumina orbital hybridizes

with various Sn orbitals, spreading out in energy over the former alumina gap. In particular,

a portion of this orbital forms a new bonding orbital between −2 and 0 eV in Figure 3.2(f).

We confirmed that the originally empty “dangling” states of the alumina slab remain

localized to the vicinity of the exposed Al atom by examining the redistribution of electron

density shown in Figure 3.3. During binding, electron density redistributes from the cyan
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Figure 3.3: Side view of stanene on alumina showing positive (yellow) and negative (cyan)
isosurfaces for electron redistribution. For regions in yellow, the electron density of stanene
on alumina is greater than the sum of the electron density of the bare slab and that of the
free-standing stanene monolayer, indicating an increase in electron density during binding.
For regions in cyan, the reverse is true.

regions to the yellow regions, including a large f-like region between the surface Al atom

and the Sn atom above it. This indicates that the formerly-vacant Al orbital becomes filled

as it moves lower in energy and hybridizes with nearby Sn orbitals: a heteropolar covalent

bond has formed, explaining the substantial binding energy of 0.50 eV even without van der

Waals interactions.

3.3.4 Commensurate versus incommensurate binding

Since stanenemust be placed under 2.4% tensile strain to bind epitaxially to theAl2O3(0001)

surface, we checked for the possibility of incommensurate rather than epitaxial binding. In

a case of incommensurate binding at the free-standing lattice parameter, the Sn monolayer

will be unstrained, but most of the monolayer’s area will not attain its preferred registry

with respect to the alumina substrate. Therefore, the competition between epitaxial and

incommensurate binding depends on a comparison of the strain energy of the stanene
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monolayer to the energy penalty for placing the monolayer on a non-optimal registry.

The energy to strain a free-standing stanene monolayer from its equilibrium lattice

parameter of 0 = 4.68 Å to the theoretical Al2O3 lattice parameter of 0 = 4.792 Å is

25 meV per unit cell. For low strain, an incommensurate overlayer on a substrate can be

treated as a long-wavelength superlattice, with each unit cell of the superlattice sampling a

different registry. If we label the in-plane position of the lower Sn atom (Sn atoms B or C

in Figure 3.1) by x = D1a1 + D2a2, then the average energy of a single unit cell in such an

incommensurate overlayer is approximately

�incomm =

∫ 1

0

∫ 1

0
� (D1a1 + D2a2) 3D1 3D2, (3.2)

where � (x) is the energy of a single commensurate unit cell with a lower Sn atom placed at

x. We estimate this integral using the registry calculations performed earlier, considering

only the 3 × 3 grid of structures that are lateral shifts of the optimal A/C structure. The

incommensurate energy penalty is 333 meV per unit cell with no van der Waals functional

employed, 458 meV per unit cell with the Grimme DFT-D2 functional, and 339 meV per

unit cell with the GrimmeDFT-D3 functional. In all cases, the incommensurate energy is an

order of magnitude greater than the strain energy, so we conclude that the incommensurate

structure is irrelevant and that stanene will bind epitaxially on the alumina substrate.

3.3.5 Dumbbell stanene

We considered the “dumbbell” stanene structure proposed by Tang et al., which contains

10 Sn atoms in a multilayered analogue of a 2 × 2 stanene supercell [102]. In an isolated

monolayer, out-of-plane B?3 hybridization renders dumbbell stanene lower in energy than
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low-buckled stanene by 0.18 eV per Sn atom [102]. However, we find that dumbbell stanene

binds only weakly to Al2O3, collapsing into a disorderly structure that is 0.46 eV per Sn

atom higher in energy than the bound low-buckled configuration. This occurs because the

highly buckled dumbbell structure prevents a close wetting interaction between Sn atoms

and the substrate. Therefore, dumbbell stanene is not a relevant phase when considering

epitaxial stanene on alumina.

3.3.6 Free-standing and bound stanene band structures

Next, we performed a thorough investigation of the band structures and topological indices

of free-standing stanene and its derivatives. Figure 3.4(a) shows the evolution of the band

gaps of free-standing bare stanene, fluorinated stanene, and hydrogenated stanene as a

function of lattice parameter, highlighting regimes in which each material is a topological

insulator, a topological material with negative gap (defined below), and a trivial metal. For

metallic stanene layers, the band structures exhibit a semimetallic negative gap since the

conduction band minimum drops below the valence band maximum compared to nearby

insulating structures, and for themwe compute the topological index that we would obtain if

the valence and conduction bandswere pulled apart far enough to create a global gapwithout

further modification of the electronic structure. Figures 3.4(b-d) show the equilibrium band

structures of free-standing stanene, fluorinated stanene SnF, and hydrogenated stanene SnH

(also called stanane [6]).

The band structure plots in Figure 3.5 illustrate how the bands of each material evolve

under strain. In the case of bare stanene (top row), the valence band at Γ sits well above the

Dirac cone at K when compressive strain is applied (0 = 4.50 Å), resulting in a negative-gap

semimetal. As the lattice parameter increases (0 = 4.68 Å), the gaps at Γ and K line up,
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Figure 3.4: (a) Evolution of the band gap of bare stanene (green), fluorinated stanene
SnF (magenta), and hydrogenated stanene SnH (black) as a function of lattice parameter.
The band gap is defined as the signed energy difference between the conduction band (CB)
minimum and the valence band (VB) maximum, meaning that it is negative for semimetallic
materials. The theoretical equilibrium lattice parameter of Al2O3 is indicated with a vertical
black line. For each structure, a dashed line indicates a trivial material with a topological
index of /2 = 0, while a solid line indicates a topological material with /2 = 1. Each
material’s equilibrium lattice parameter is marked with a large open circle, while the band
structures plotted in Figure 3.5 correspond to the points marked with small filled circles.
(b-d) Band structures of bare stanene, fluorinated stanene SnF, and hydrogenated stanene
SnH at their equilibrium lattice parameters. Bands are colored by their B-orbital (red)
and ?-orbital (blue) characters, and labeled with their parities at time-reversal invariant
momenta (TRIMs). On the G-axis, each TRIM is labeled with the product of all of its band
parities, the quantity called X8 in the Fu–Kane treatment [101]. The zero of band energy is
the Fermi level �� .
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Figure 3.5: Band structure plots showing the change of topological character via band
inversions in bare stanene (top row), fluorinated stanene SnF (middle row), and hydrogenated
stanene SnH (bottom row). The zero of energy in each plot is the Fermi level �� . In each
case, a negative-parity B-band crosses down from the conduction band into the valence band
as the lattice parameter increases. Due to their different equilibrium lattice parameters, free-
standing stanene (0 = 4.68 Å) and SnF (0 = 5.02 Å) are topological insulators, while SnH
(0 = 4.72 Å) is a trivial insulator, but each material can be tuned to the other regime using
strain.
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forming a globally gapped topological insulator. For small tensile strain (0 = 4.79 Å), the

gap at Γ is pushed below the Dirac cone at K: this is the regime of strain relevant for stanene

on Al2O3, so the substrate is necessary to open the global band gap (we will see that is

also sufficient below). Finally, for tensile strain somewhat larger than that applied by Al2O3

(0 = 5.00 Å), the gap closes between the negative-parity B-type conduction band at Γ and

the positive-parity ?-type valence band (i.e., a band inversion occurs at Γ). The resulting

parity exchange renders free-standing stanene non-topological above a lattice parameter of

roughly 4.83 Å.

The story is slightly different for SnF and SnH. At their equilibrium lattice parameters,

SnF is a topological insulator while SnH is a trivial insulator. However, the two materials

are actually quite similar electronically: both materials are trivial insulators under sufficient

compressive strain and topological insulators under sufficient tensile strain. The difference

between them at equilibrium is simply due to the relative ordering of the lattice parameter of

the topological transition and the equilibrium lattice parameter. This can be seen clearly in

the middle-row and bottom-row band structures of Figure 3.5, which depict the topological

phase transitions in the two materials. In each case, a negative-parity antibonding band

constructed from Sn B orbitals moves down through the conduction band, and crosses over

to the valence band at Γ, inducing a band inversion and leading to a nontrivial topological

index.

Since each topological phase transition is controlled by a band inversion across the gap

at Γ, it is reasonable to ask whether our results break down in a treatment that accounts better

for electron–electron interactions which typically renormalize the band gap substantially.

To check this, we calculated the band structure of relaxed stanene and SnF with VASP [95]

using the HSE06 hybrid functional [23, 24]. Our results, available in the Appendix, are
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Figure 3.6: Band structure plot for epitaxial stanene on alumina. Bands are colored by
their Sn B-orbital (red) and Sn ?-orbital (blue) characters. The DFT band gap is calculated
to be 0.263 eV.

qualitatively very similar to the results obtained with the PBE functional.

Figure 3.6 shows the the band structure of the full stanene-on-alumina system. It differs

from the bare-stanene band structure (Figure 3.4(b)) in several important ways. First, the

presence of the substrate breaks inversion symmetry, which, when combined with the spin-

orbit interaction, leads to a Rashba splitting of the conduction bands away from the Γ point.

We computed the band structures for stanene on alumina slabs of different thickness and

confirmed that the :-dependent energy splitting of bands away from the Γ point is due to

inversion symmetry breaking (rather than evanescent coupling between the two surfaces of

the alumina slab). This data is available in the Appendix.
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In addition, the Dirac cone at K has vanished due to the partial saturation of the stanene

?I orbitals by the alumina surface, and the ordering of B-type and ?-type orbitals at Γ has

become inverted, yielding a band structure remarkably similar to the free-standing SnF band

structure. These features are necessary for the existence of topological behavior in stanene

on a substrate [6]. Indeed, we confirmed that stanene on alumina is topological using the

Wannier charge center method.

3.4 Discussion and outlook

The combination of strong epitaxial binding with band inversion at Γ and ?I-orbital satura-

tion at K indicates that alumina is a promising substrate for the synthesis of bare monolayer

stanene. Such a material offers an opportunity for experimental observation of the quan-

tum spin Hall effect [6, 74] as well as a substrate for a variety of technological applications

[69, 70, 71, 72, 73]. In addition, the spin separation in the conduction band due to the Rasbha

splitting can be harnessed for applications in spintronics and topological superconductivity

[103].

Controlled functionalization, e.g., by hydrogen or fluorine, is also an important avenue

of stanene research, since functionalization both enhances the band gap and protects against

unwanted environmental interactions with Sn ?I orbitals [6]. Generally speaking, two-

dimensional materials can be synthesized either by epitaxial deposition or by the exfoliation

of multilayered van der Waals materials [65]. The latter method is attractive since it is

flexible and modular, but is impractical for materials like bare stanene whose 3D bulk phase

(U-tin) is not intrinsically layered. However, the epitaxial growth of stanene on alumina

should kinetically trap the tin atoms in the 2D hexagonal stanene structure, perhaps making
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it possible to functionalize the monolayer in situ. The functionalized sheet, now weakly

bound to the alumina, could be exfoliated for use in heterostructure and device applications.

In summary, we have shown that monolayer stanene binds strongly and epitaxially to

the Al2O3(0001) surface, with a buckled structure and a sizable global band gap. We

have examined the chemical character of the binding and verified the topological nature of

stanene on alumina. With its wide surface band gap and relative inertness, alumina is a

promising substrate for future experimental fabrication and characterization.

3.5 Appendix: Additional calculations

Figure 3.7 shows the band structures of bare and fluorinated stanene computed using the

HSE06 hybrid functional. Bands are labeled by their B (red) and ? (blue) character to

demonstrate that the band ordering that ensures the topological character of each material

is preserved, even when better accounting for nonlocal electron–electron interactions.

Figure 3.8 compares the band structures of stanene on 4-, 6-, and 8-layer alumina slabs.

Below around −2 eV, an increasing density of bulk bands can be seen, but the near-��

states, localized to the tin overlayer, are unaffected by the thickness of the substrate.
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a b

Figure 3.7: Orbital-projected hybrid (HSE06) band structures of (a) stanene and (b) SnF;
the analogous non-hybrid calculations are shown in Figures 3.4(b-c). The zero of energy is
the Fermi level �� .

Figure 3.8: Substrate thickness dependence of the stanene-on-alumina band structure:
electronic bands for (a) 4, (b) 6, and (c) 8 layers of Al2O3.
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Chapter 4

Identifying chemical reactions at the in-
terface of stanene on Bi2Te3(0001)

This chapter is adapted from an article entitled “Identifying crystal structures and chemical
reactions at the interface of stanene onBi2Te3”by StephenD.Albright, Ke Zou, Claudia Lau,
Stephen Eltinge, Hawoong Hong, Sohrab Ismail-Beigi, Frederick J. Walker, and Charles H.
Ahn that was published in the Journal of Applied Physics [104]. Additional experimental
data in support of this chapter can be found in the Supplementary Information of that article,
and is referenced where appropriate. SA, KZ, CL, and HH did the experimental work, I did
the theoretical work, and SIB, FW, and CA provided guidance.

Synthesizing monolayers and heterostructures is an enabling approach to extract new phys-

ical phenomena from bulk materials. Among the structures amenable to this approach is

stanene, which is a monolayer of tin, similar to graphene, and has been predicted to host

one-dimensional topological states at its edges. Stanene can be tuned by decorating with

different adatoms, which makes it a promising platform on which to engineer topological

devices. In this chapter, we report on a collaboration with experimentalist colleagues who

deposited Sn on Bi2Te3 and characterized the growth using anomalous synchrotron x-ray

scattering and x-ray photoelectron spectroscopy (XPS). We include their experimental re-

sults for background; the discussion of our theoretical calculations begins in Section 4.5.

Their x-ray diffraction data reveal the formation of epitaxial Sn-based structures, along
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with penetration of Sn into the Bi2Te3, with Sn intercalating between the upper 10 Bi2Te3

quintuple layers. Additionally, XPS data show deposited Sn reacting to form SnTe and Bi at

the Bi2Te3 surface. We computed the phase diagram for thin-film structures of Sn, Bi, and

Te, at the level of density functional theory, confirming this reaction in the compositional

regime probed by the experiment. Using thermodynamic calculations as a guide, we iden-

tify several candidate substrates that can stabilize the stanene phase, including the Al2O3

substrate discussed in the previous chapter.

4.1 Introduction

The strong interfacial interactions and confinement effects that arise when monolayers or

heterostructures of layered materials are synthesized provide a platform to access a wide

range of novel physical phenomena [105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,

116, 117]. With the high degree of control in contemporary synthesis methods, the field of

monolayer materials is rapidly expanding and has produced a number of important develop-

ments, such as high-mobility semiconductors [105, 106, 107], enhanced)2 superconductors

[108, 109, 110, 111, 112, 113], and switchable topological insulators and quantum spin Hall

materials [114, 115, 116, 117]. There are evenmore possibilities in engineering interfaces of

materials from multiple classes, to potential build topological transistors [118, 119, 120] or

observe Majorana fermions in topological insulator–superconductor heterostructures [121].

There has been a surge of interest in heterostructures based on chalcogenides or pnictides

due to the many novel behaviors in these classes of materials [107, 109, 110, 111, 112, 113,

114, 115, 116, 117, 118, 119, 120, 121, 122]. With the expanding chemical landscape, an

important consideration, in addition to crystalline compatibility (i.e., crystal orientation and
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Figure 4.1: (a) Honeycomb crystal structure from above (upper) and the side (lower),
as seen for C atoms (graphene)—an unbuckled lattice—and for Sn atoms (stanene)—a
buckled lattice. RHEED images measured along the <10> Bi2Te3 direction for Bi2Te3 (b)
after decapping and (c) after deposition of 1 monolayer stanene.

lattice parameter), is the chemical compatibility between substrate and deposited materials

when designing a system for a particular functionality.

Here, our colleagues characterize the growth process for stanene on Bi2Te3 substrates.

Stanene, a monolayer of buckled hexagonal tin, similar to graphene (Figure 4.1(a)), is

predicted to have a wider band gap than other topological materials and host topological

edge states [6, 78, 102]. The properties of stanene are also predicted to be tunable by strain,

substrate bonding, and decoration with halides or hydroxide, making stanene a promising

system for topological devices [6, 78, 123].

Multiple theoretical and experimental attempts to understand the conditions necessary to

achieve stanene have revealed the difficulty in synthesizing a continuous stanene monolayer

[84, 124, 91, 125, 77, 67]. A few substrates have been show to host uniform and topological
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stanene monolayers, most notably on Ag(111), where stanene sits atop a reacted Ag2Sn

interface [79], and on PbTe/Bi2Te3/Si(111) heterostructures, where bi- and tri-layer stanene

have been observed to be superconducting, making possible the observation of Majorana

particles [126, 127]. These examples highlight the need to understand the crystal structure,

chemical conditions, and growth process for stanene deposited on substrates selected for

different applications.

4.2 Experimental methods

Bi2Te3 is hexagonal with a stable (0001) surface and an in-plane lattice parameter (4.38 Å)

closely matched to stanene (4.68 Å). The unit cell of Bi2Te3 consists of hexagonal quintuple

layers (QLs), each bonded by van der Waals forces along the <0001> direction. In this

work, thick Bi2Te3 films were grown by molecular beam epitaxy (MBE) on Si(111)-7×7

and Ge(111)-c(2×8) reconstructions, the most stable atomic reconstructions for the Si and

Ge(111) surfaces [128, 129, 130, 131, 132]. The reconstructions can be observed by

reflection high-energy electron diffraction (RHEED), seen in Supplementary Figure S1 in

[104].

Once the reconstruction is achieved in RHEED, 20 QL Bi2Te3 films were grown by

co-depositing molecular Bi and Te, with a ∼10× overpressure of Te. RHEED confirmed

high-quality crystal growth (Figure 4.1(b) and Supplementary Figure S1 in [104]) of strain-

relaxed Bi2Te3 on both Ge (4.00 Å in-plane lattice parameter, 9.5% mismatch with Bi2Te3)

and Si (3.86 Å lattice parameter, 13.5%mismatch) substrates. Following deposition, Bi2Te3

was capped with an amorphous layer of Te or Sn at a substrate temperature below 50 ◦C

to protect the Bi2Te3 from oxidation while transferring to external chambers for stanene
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growth and measurement.

The procedure for stanene growth is based on that used previously [84] and optimized

in the same MBE deposition chamber used for Bi2Te3 growth. Our colleagues explored the

growth process for substrate temperatures between 25 and 200 ◦C and found that RHEED

patterns of stanene films grown with the substrate at 100 ◦C (Figure 4.1(c)) produce the

highest intensity diffraction. All the data reported here are for Sn grown on Bi2Te3 at a

substrate temperature of 100 ◦C.

To understand the growth process of stanene on Bi2Te3, Sn growth was performed in a

custom x-ray photoelectron spectroscopy (XPS) chamber that allows in situ measurements

during Sn deposition. The deposition rate was calculated by depositing Sn on a quartz disc

and measuring absorption of a laser (_ = 633 nm) before and after growth. The coverage of

Sn on Bi2Te3 corresponding to 1 monolayer is 1.2 × 1015 atom/cm2. Bi2Te3 films used for

XPSmeasurements were capped with Te and subsequently decapped in the XPS chamber by

annealing to 350 ◦C. To verify the cap has been removed, XPS was measured during heating

and the sample was cooled once the Bi and Te core level intensities stop changing. XPS

spectra before and after anneal (Supplementary Figure S2 in [104]) show the emergence of

Bi3+ peaks following the anneal.

To extract the crystal structure of Sn deposited on Bi2Te3, the same growth process was

performed in an MBE growth chamber mounted for in situ synchrotron x-ray diffraction

(XRD) at the 33ID-E beamline at the Advanced Photon Source, Argonne National Lab-

oratory. The deposition rate was measured using a quartz crystal microbalance. Bi2Te3

substrates prepared for XRD measurements were capped with Sn, then decapped by argon

sputtering in the XRD chamber. Following sputtering, Bi2Te3 was annealed at 250 ◦C to

recover an atomically smooth surface, indicated by a strong RHEED pattern (Figure 4.1(b)).
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Figure 4.2: (a) XPS surveys for bare Bi2Te3 and following 1.6 monolayers Sn growth.
Spectra (grey) with fits (individual peak fits in red and blue, total in orange) of (b) Sn 33
and (c) Bi 4 5 peaks at 0.8 monolayer Sn show multiple Sn and Bi valences.

Sn, which has a lower vapor pressure than Te, was chosen as a cap for XRD measurements

due to the extended time necessary to transport the samples to the beamline.

4.3 X-ray photoelectron spectroscopy

Our colleagues grew Sn at 0.5 monolayers/min and measure XPS continuously during

growth so that spectra of all constituent elements are measured each 0.4 monolayers. In

addition, they paused growth at 1.6, 3.2, and 16monolayers to perform longermeasurements

to improve the signal to noise ratio. The energy of each scan was calibrated to the valence
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Figure 4.3: Integrated intensity of (a) Sn0 and Sn2+ 335/2 and (b) Bi3+ and Bi0 4 57/2
transitions as a function of stanene deposited. Inset of panel (a) displays ratio of Sn2+ to
Sn0 intensity as a function of film thickness. In the inset of panel (a), the data point at
Film Thickness = 0 is excluded; there is initially no XPS peak for Sn0 and Sn2+.

band edge. The spectra for bare Bi2Te3 and 1.6 monolayers deposited Sn are shown in

Figure 4.2(a), with a clear appearance of Sn peaks following growth.

Beginning at 0.4 monolayer coverage, the spectra for Bi and Sn show multiple peaks

(Bi 4 5 and Sn 33 transitions at 0.8 monolayer shown in Figures 4.2(b-c)), which is a sign

of multiple valences in the Bi and Sn atoms. Our colleagues identified Bi3+ 4 57/2 and

Sn0 335/2, at 157.3 and 485.1 eV, respectively, which correspond to the binding energies

expected for Bi2Te3 and elemental Sn [133, 134]. They also identified binding energies

corresponding to Bi0 4 57/2 and Sn2+ 335/2, at 156.3 and 486.4 eV, respectively, which

suggests the reaction of Bi2Te3 and stanene to Bi and SnTe [134, 135]. Other recent work

to recreate stanene on Bi2Te3 showed similar evidence of this reaction in XPS [85].

To understand the chemical reaction during growth, our colleagues extracted the inte-

grated intensity of each transition as a function of film thickness (Figure 4.3). Immediately

upon depositing Sn, 335/2 peaks corresponding to both Sn0 and Sn2+ appear, with the Sn0

peak becoming increasingly dominant as growth continues (Figure 4.3(a)). The ratio of
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Figure 4.4: Ratios of integrated intensities of Bi3+ to (a) Sn0 and (b) Sn2+, and Sn2+ to
(c) Sn0 and (d) Bi0 at take-off angles of 90◦ and 45◦. Intensities of Sn 335/2 and Bi 4 57/2
transitions are used to calculate ratios. (e,f) Film profile for (e) ≤ 1.6 monolayers deposited
Sn and (f) ≥ 3.2 monolayers deposited Sn, deduced from XPS measurements.

Sn2+/Sn0, plotted in the inset of Figure 4.3(a), shows that as Sn is initially deposited, ap-

proximately half as much Sn2+ forms as Sn0. This suggests that half as much SnTe forms as

elemental Sn at the beginning of growth. This chemical reaction is reflected in the intensity

of Bi as well (Figure 4.3(b)). Initially, Bi3+ from the bulk Bi2Te3 dominates the Bi 4 57/2

signal, and as growth proceeds, Bi0 grows in intensity as Sn and Bi2Te3 react into SnTe and

Bi.

Considering the reaction that occurs when Sn is deposited on Bi2Te3, a uniform stanene

layer may not form at this interface. XPS results suggest an inhomogeneous film profile,

consisting of Bi2Te3, Sn, Bi, and SnTe. To better understand the structure that develops, our

colleagues performed XPS at different take-off angles (TOAs) from the film plane, which

varies the depths probed by the electron analyzer. They measured spectra with TOA = 45◦

(more surface sensitive) and 90◦ (more bulk sensitive), and computed the ratios of relevant

elemental transitions to extract their layering order (Figure 4.4).
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Beginning at 1.6 monolayers Sn, the ratio of Bi3+ to Sn0 is greater at 45◦, suggesting

more Bi2Te3 is located at the surface than elemental Sn (Figure 4.4(a)). Considering

also that the Bi3+ to Sn2+ ratio is approximately equal at both angles for 1.6 monolayers

(Figure 4.4(b)), these results suggests that Sn initially reactswith subsurfaceBi2Te3, creating

an upper layer of Bi2Te3, SnTe and Bi. The Sn2+/Sn0 and Sn2+/Bi0 ratios further indicate

that SnTe is located above the deposited Sn, and Bi above the SnTe at 1.6 monolayers

(Figures 4.4(c-d)). This profile for films ≤ 1.6 monolayers thick is shown in Figure 4.4(e).

For films ≥ 3.2 monolayers thick, the upper Bi2Te3 layer has fully reacted. The profile

consists of the following layers: intermixed SnTe and Bi, elemental Sn, and the Bi2Te3

substrate (Figures 4.4(a-d), profile in Figure 4.4(f)). At an atomic level, multiple compounds

intermixed in the same layer may manifest in a variety of ways—separate lateral domains

or alternating layering, for example—but techniques beyond XPS and XRD are necessary

to go beyond our identification of the layer order of atomic valences. This ordering is likely

due to compounds of low surface energy, i.e., Bi and Bi2Te3, migrating towards the surface,

effectively wetting the other compounds with higher surface energies. Bi is a well-known

surfactant [132, 136] and Bi2Te3(0001) should have low surface energy because of the

dominant van der Waals bonding between QLs.

4.4 Synchrotron x-ray diffraction

While the Sn/Bi2Te3 interface consists of several intermixed materials, it is possible to

examine stanene on the surface, as has been done with STM studies of hexagonal stanene

[84]. To quantitatively study stanene on the surface, our colleagues performed in situ

synchrotron x-ray diffraction at the Advanced Photon Source. Previous studies suggest
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Figure 4.5: Bi2Te3 (a) (0 1 L) and (b) (1 1 L) CTRs before and after Sn deposition. (c)
Energy dependent Sn atomic form factor components 5 ′ and 5 ′′ across the Sn K-edge. (d-e)
Spectra measured at (1 1 8.58) and (1 1 7.92), respectively, with fits (red) to Equation 4.1,
demonstrating interference between 5 ′ and 5 ′′.

stanene is strained coherently to the Bi2Te3 substrate, and thus they examined stanene

signals along the Bi2Te3 crystal truncation rods (CTRs).

Our colleagues observed clear differences between Bi2Te3 CTRs measured before and

after deposition of 1 monolayer Sn (grown at 0.2 monolayers/min), shown in Figures 4.5(a-

b), indicating that the deposition of Sn has created a film structure coherently strained to the

Bi2Te3 lattice. However, from XPS we know that SnTe and Bi are both present in addition

to Sn, and both may possess hexagonal structures that may grow coherently strained to

Bi2Te3. Any difference they observed along Bi2Te3 CTRs could be due to stanene, SnTe,

or Bi, meaning one cannot distinguish between deposited stanene, SnTe, and Bi with scans

along &I alone.

To elucidate more structural information of the stanene film, our colleagues perform

anomalous x-ray scattering at the Sn K-edge to extract the diffraction of Sn atoms from
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the entire system, allowing one to probe for only stanene. As the energy of the incoming

photons crosses an absorption edge, the atomic form factor has a significant complex energy

dependent term, 5 ′(�) + 8 5 ′′(�), where 5 ′′ is the absorption and 5 ′ is related to 5 ′′ by the

Kramers–Kronig relation. The values of 5 ′ and 5 ′′ for Sn, calculated by measuring the

absorption of x-rays through a 58 `m Sn foil, are shown in Figure 4.5(c).

Using anomalous scattering to extract the Sn signal of the stanene films, our colleagues

moved along Bi2Te3 CTRs and scanned the beam energy across the Sn K-edge (29.3 keV).

They fit the resulting spectra to an expression for the scattered intensity taking into account

the energy dependent terms 5 ′ and 5 ′′:

� (q, �) =
���Sn(q) ( 5Sn(q) + 5 ′(�) + 8 5 ′′(�)) + �BT(q)4−8i

��2 (4.1)

where �Sn(q) ( 5Sn(q) + 5 ′(�) + 8 5 ′′(�)) is the structure factor for Sn, �BT is the structure

factor for all forms of Bi and Te (Bi2Te3, Bi, and Te in SnTe), 5Sn is the energy-independent

atomic form factor for Sn, and i is the phase difference between the Sn and Bi2Te3 structure

factors. We refer to �Sn as the Sn scattering strength.

Following the deposition of 1 monolayer Sn, our colleagues observed a strong energy

dependence along the (1 1 L) Bi2Te3 CTR (Figures 4.5(d-e)), which they fit to Equation 4.1

to extract the Sn scattering strength. Performing these fits along the CTR extracts diffraction

from only Sn, shown in Figure 4.6(a). The extracted scattering strength of Sn along the

(1 1 L) CTR, which consists of two features: a broad peak centered at &I = 8 and a

sharper, more intense peak centered at &I = 8.7, can be analyzed to extract the structure

of the coherently strained Sn. Simulations of 1 monolayer buckled and unbuckled stanene

(structure in Figure 4.1(a)) do not exhibit peaks in this range of&I (Figure 4.6(b)). However,
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Figure 4.6: (a) Sn scattering strength, �Sn, extracted from spectra measured along the
Bi2Te3 (1 1 L) CTR. (b) Simulated Sn scattering strength for 1 and 2 monolayers of
unbuckled and buckled stanene. (c) Simulated Sn scattering strength for Sn intercalated
between the top 10 QL along the <0001> direction. Data are normalized to the maximum
peak intensity and simulations are normalized to match the intensity of the respective
features.
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assuming an AB graphene-like stacking, both an unbuckled stanene bilayer with a gap

between layers of 3.81 Å and a buckled stanene bilayer with a buckling distance of 0.93 Å

and layer gap of 3.51 Å, which is similar to the structure of (111) U-Sn, can reproduce

the broad peak centered at &I = 8 (Figure 4.6(b)).This bilayer stacking is consistent with

previous STM measurements of stanene, which observe an AB-stacked second stanene

layer forming before achieving full coverage of a single monolayer [84]. Considering the

documented favorability for buckled stanene in previous work [6, 78, 84], the buckled

bilayer stanene is the likely source for the peak centered at &I = 8, though measurement

over more of reciprocal space is needed to confirm the presence of buckled monolayer

stanene. Furthermore, since the analysis of anomalous scattering extracts all Sn diffraction

signal, this CTR may still contain contributions from SnTe. XRD of stanene grown on a

less reactive substrate should yield a more conclusive stanene structure.

The narrow peak width of the second feature at &I = 8.7, which corresponds to a film

feature 10 nm thick, cannot be accounted for by the deposited film of stanene or Sn reacted

to SnTe, and thus another structure, in addition to the stanene bilayer, must be present. The

source of this peak is intercalation into the Bi2Te3 substrate, which would give a similarly

wide peak at &I = 9. Assuming a structure where Sn atoms intercalate between Bi2Te3

QLs, fitting the measured peak width indicates Sn is intercalated into the upper 10 QLs.

The shift in &I to 8.7 Bi2Te3 r.l.u. indicates a 3% expansion along the 2-axis of the Bi2Te3.

A random in-plane intercalation structure would give Bragg peaks every integer in&I, so

the presence of an intercalation peak near &I = 9 but absence near &I = 8 suggests a high-

symmetry in-plane structure. Our colleagues deduced an intercalated Sn structure consisting

of a single Sn atom per unit cell between each QL at locations shown in Supplementary

Figure S3 in [104], similar to structures observed in previousworks studying the intercalation
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of Sn [137, 138]. Simulating this intercalation with the 2-axis expansion generates a close

match to the sharp peak observed in the extracted scattering strength (Figure 4.6(c)).

By comparing the extracted Sn scattering strength at the intercalation peak to the

intensity of strong Bi2Te3 Bragg peaks at (0 1 20) and (0 1 23), normalized to their respective

structure factors, our colleagues estimate that the upper 10 QLs of Bi2Te3 contain 10-17%

of a stanene monolayer intercalated between each QL, which is more total Sn than deposited

during stanene growth. This indicates that the intercalation mostly occurs as a result of the

sputter removal of the Sn cap, as opposed to deposition. This process of deposition followed

by sputtering and annealing may provide a novel method for intercalating Sn into thin films

of Bi2Te3 or other materials, contrasting the solid state crystal growth or penetration through

crystal steps observed in previous work [137, 138].

4.5 Theoretical results and discussion

Our observations that Sn deposited on Bi2Te3 forms a mix of SnTe, Bi, and Sn instead

of pure stanene reveals that Bi2Te3 induces inhomogeneity during stanene growth. The

favorability of this reaction is consistent with a calculation of the heat of reaction, Δ�rxn,

from the bulk literature values of reactant and product heats of formation:

Bi2Te3 + 3 Sn→ 2 Bi + 3 SnTe, Δ�rxn = −30.9 kJ/mol Sn.

This sign of Δ�rxn indicates this reaction is exothermic. We also performed first principles

calculations of the bulk formation energies that are consistent with this thermodynamic

observation.
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Figure 4.7: Ternary phase diagram for thin-film structures of Sn, Bi, and Te. Structures
on the convex hull (i.e., those that are thermodynamically stable) are marked with filled
circles, while other structures included in the calculation set are marked with open circles.
All unstable structures in the calculation set lie on or within the portion of the hull bounded
by Bi, SnTe, and Bi2Te3, and would be expected to decompose into those three structures.

While this heat of reaction is similar inmagnitude to those of Cu orNi formingCu3Si and

NiSi with Si (−11.6 kJ and −42.4 kJ, respectively), both of which occur at low temperatures

when those elements are deposited on Si [139, 140], bulk thermodynamic calculations may

not always predict the surface structure. There are examples of stable monolayer films on

substrates where a reaction should take place, such as Sr on Si(001) [141]. The layered

nature of Bi2Te3 suggests that the surface and interface energies could prevent a bulk-like

reaction, though our colleagues’ experiments suggest the low surface energy of Bi may

dominate.

To verify this, we perform additional first principles calculations considering a variety

of possible surface structures of Sn, Bi, and Te on a Bi2Te3 substrate. We used fully

relativistic projector augmented-wave (PAW) pseudopotentials with spin–orbit interaction,

and for polar surface structures, we applied a self-consistent dipole correction in the vacuum
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to avoid unphysical electric fields arising from periodic boundary conditions [142]. We

fixed the surface lattice parameter to the bulk Bi2Te3 value of 4.383 Å and allowed atomic

positions to relax until all axial forces were less than 1.0× 10−4 Ry/00. We used a 3× 3× 1

k-point mesh, and confirmed our results by spot-checking against a denser 6×6×1 k-mesh.

We investigated the stability of each of the following surface structures by placing them

on 2 QLs of Bi2Te3:

• 4 bulk-like atomic layers of each of Bi, Sn, and Te,

• an additional QL of Bi2Te3,

• 4 bulk-like atomic layers of SnTe(111) in both the Sn-interfacial and Te-interfacial

and configurations,

• a single-layer triangular lattice of Sn,

• a buckled hexagonal lattice of stanene, equivalent to two layers of a triangular lattice,

• and several structures intercalating one or two atomic layers of Sn0 into the substrate,

either between two Bi2Te3 QLs or within a single QL.

We computed the energy of each surface structure and then constructed the convex hull for

ternary mixtures of Bi, Sn, and Te (Figure 4.7). Compounds that appear at a vertex on the

convex hull are stable, while those in the interior of a triangle are energetically unstable

against decomposing into the three compounds on its triangle’s corners. Adding a small

amount of Sn to a Bi2Te3 substrate corresponds to moving along the dashed red line in

Figure 4.7; all such systems have a thermodynamic tendency to decompose into bulk Bi,

Bi2Te3, and SnTe. These results are consistent with most elements of the picture presented

in Figures 4.4(e-f). They do not address the possibility of Sn0 buried deep within the Bi2Te3
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Table 4.1: Bulk heats of reaction for Sn deposited on various substrates. All potential
substrates have a hexagonal (0001) surface and provide a close lattice match to stanene.

Substrate Products of reaction with Sn Δ�rxn (kJ/mol Sn)
Bi2Te3 2 Bi + 3 SnTe −30.9
BaTe Ba + SnTe −68.4
CdTe Cd + SnTe 33.4
PbTe Pb + SnTe 11.6
InSb In + SnSb 43.1

Sn + InSn2 1.9
Cu Cu3Sn −7.5
Au AuSn −15.8
Ag Ag3Sn −4.1
Al2O3 2 Al + 3 SnO2 534.5
AlN 2 Al + Sn3N2 211.2
BN 2 B + Sn3N2 166.5
GaN 2 Ga + Sn3N2 228.0

substrate. However, we do note that of all the intermixed structures, the most stable was a

single Sn layer intercalated between two intact Bi2Te3 QLs, lying only 0.12 eV per atom

above the convex hull.

The agreement between our observation of mixed growth and the unfavorable bulk heat

of reaction provides an efficientmethod for checking the suitability of potential substrates for

stanene growth with criteria that extend beyond favorable lattice constants and topological

properties. To evaluate alternative substrates for stanene, we calculate the Δ�rxn for other

potential substrates that have been identified in the literature (Table I) [84, 124, 91, 125,

79, 126, 85, 143, 87, 144, 145, 146, 81, 82, 86, 90]. In addition to deposition attempts

on Bi2Te3, recent work depositing Sn on Au and Ag also presented evidence of substrate

alloying with Sn, in agreement with the calculated heat of reaction [79, 82]. There are a few

substrates that offer a more favorable energy landscape, such as InSb and PbTe, consistent

with previous results [126]. Table 4.1 points to Al2O3 or (Al,B,Ga)N as being particularly

chemically stable for stanene growth. First principles calculations also confirm the stability
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of Al2O3 as a substrate for stanene [64]. Considering monolayer stanene has rarely been

synthesized on scales larger than hundreds of nanometers [84, 79, 87, 81, 82, 90], this work

may provide important guidance to finding more appropriate substrates for large area, thin

film deposition of this material.

4.6 Conclusions

In summary, we find that bulk thermodynamics promotes a reaction of Sn with Bi2Te3. We

also find that Sn can intercalate in Bi2Te3 up to 10-17% stanene monolayers per quintuple

layer, which may have interesting properties in the topological insulator Bi2Te3. We predict

other hexagonal materials that may serve as suitable, inert substrates for stanene growth.
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Chapter 5

Structure and binding of large-area
borophene sheets on Cu(111) surfaces

This chapter is adapted from an article entitled “Large-area single-crystal sheets of
borophene on Cu(111) surfaces” by Rongting Wu, Ilya K. Drozdov, Stephen Eltinge, Percy
Zahl, Sohrab Ismail-Beigi, Ivan Božović, and Adrian Gozar that was published in Nature
Nanotechnology [147]. Additional experimental data in support of this chapter can be
found in the Supplementary Information of that article, and is referenced where appropri-
ate. RW, ID, PZ, and AG did the experimental work, I did the theoretical work, and SIB and
IB provided guidance.

Borophene, a theoretically proposed two-dimensional boron allotrope [11, 148, 12], has

attracted much attention [149, 150] as a candidate material platform for high-speed, trans-

parent, and flexible electronics [151, 13, 152, 153]. It has been recently synthesized on

Ag(111) substrates [154, 155] and studied by tunneling and electron spectroscopy [156].

However, the exact crystal structure is still controversial, the nanometer-size single-crystal

domains produced so far are too small for device fabrication, and the structural tunability

via substrate-dependent epitaxy is yet to be proven. In this chapter, we report on a synthesis

of borophene by experimentalist colleagues, monitored in situ by low-energy electron mi-

croscopy, diffraction, and scanning tunneling microscopy, and modeled by us using ab initio

calculations. Our colleagues resolve the crystal structure and phase diagram of borophene
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on Ag(111) but find that the domains remain nanoscale for all growth conditions. However,

by growing borophene on Cu(111) surfaces, our colleagues obtained large single-crystal

domains, up to 100 `m2 in size. The crystal structure is a novel triangular network with

[ = 1/5 concentration of hexagonal vacancies. Our colleagues’ experimental data and our

first principles calculations indicate charge-transfer coupling to the substrate without sig-

nificant covalent bonding. Our work sets the stage for fabricating borophene-based devices

and substantiates the idea of borophene as a model for artificial 2D materials development.

5.1 Introduction

Metallic sheets of atomically thin borophene are expected to enable new functionalities

of two-dimensional (2D) materials and open applications in flexible electronics and near-

visible plasmonics [150, 15]. The polymorphism of borophene also opens up concrete paths

for engineering structural and electronic properties of anisotropic 2D metallic sheets [11,

150, 151, 13], by choosing different substrates or growth conditions. Atomic boron planes

isostructural to graphene already stand out by providing a high critical superconducting

temperature ()2 ≈ 40 K) in MgB2, making the prospect of discovering other boron-based

2D superconducting compounds promising [7].

Using Ag(111) substrates and molecular beam epitaxy, a pioneering work demonstrated

successful synthesis of atomically thin 2D boron layers organized in islands tens of nanome-

ters in size [154, 155]. Indications for persistingDirac fermions are present in photoemission

data [156, 9] of this boron sheet and their existence is supported by theoretical calculations

in several polymorphs [7]. To the extent that simple tight binding approximations provide a

good parametrization for ab initio band structure calculations in borophene, it is notable that
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within nearest-neighbor interaction the degeneracy at graphene K points and the presence

of associated Dirac cones are preserved for an arbitrary distribution of “impurity” atoms

filling the hexagonal centers of any type of super-cell of a honeycomb lattice. This remains

true in higher order hopping for several of the theoretically stable sheets of borophene,

with the concomitant appearance of flat or weakly dispersive bands arising from localized

orbitals of the center atoms. This peculiarity of the honeycomb lattice is interesting be-

cause flat bands can engender strange, non-Fermi-liquid metals, and perhaps open a path to

room-temperature superconductivity [157]. In order to realize this potential, it is pressing to

explore synthesis of borophene on other substrates and study the ensuing crystal structures.

Notwithstanding the promises for unique electronic and mechanical properties, the lat-

eral extent of borophene domains produced so far makes them amenable to study by only few

techniques and is far below the limits required for device fabrication. This is an impediment

for gaining access to key properties, such as resistivity, Hall effect, magnetoresistance, etc.,

because micron-sized single-crystal flakes are needed for such measurements. Here, our

colleagues solved this challenge by growing borophene on a different substrate (copper),

producing single-crystal domains 10–100 `m2 in size. Elemental borophene may now be

used as a material platform to make devices and study fundamental physics.

The interest in borophene encounters substantial theoretical and experimental chal-

lenges. The prediction and targeted synthesis of borophene is a delicate affair because of

the existence of many states with energies very close to the overall minimum [11, 148,

12, 13, 152]. Furthermore, it has been predicted that the already-rich phase space for 2D

borophene sheets in vacuum can be easily modified by the interaction with the substrate of

choice [15]. 2D phases are found to be stabilized by the existence of boron vacancies in a

triangular lattice but theory predicts a disconnect between the stable patterns of vacancies
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in free-standing and metal-supported borophene [15]. This is important for the transfer of

sheets from metallic to device-compatible substrates.

5.2 Methods

Growth of borophene on single crystal Cu(111) andAg(111) substrateswere performed in an

ultrahigh-vacuumLEEMsystemaugmentedwithmolecular beamepitaxy (MBE) capability.

Real-timemonitoring of in-situ growth and of the atomic deposition ratewere used to achieve

synthesis of high-quality single crystals and precise control of coverage. Single-crystal

Cu(111) and Ag(111) were cleaned by repeated cycles of argon ion sputtering and post-

annealing, until a clean and broad terraced structure, with corresponding bright and sharp

LEEDpattern, was observed. Boronwas evaporated by an electron-beamevaporator focused

onto a pure boron rod. The growth was further characterized using x-ray photoemission

(XPS) and atomic forcemicroscopy (AFM)measurements, the details of which are available

in the published paper [147].

Scanning tunneling microscopy (STM) data were acquired with a customized Createc

scanning tunneling and non-contact atomic force microscope (NC-AFM/STM) system op-

erating in ultra-high vacuum and at a nominal temperature of ) = 5 K. The Pt/Ir tip was

mounted on a qPlus sensor [158] operating at 32 kHz that was used for detection of NC-AFM

signals. Pt/Ir tips were prepared by in-situ field emission on clean Au or Cu single crystal

surfaces. In-situ boron deposition on sputtered/annealed Cu(111) surfaces at ) ∼ 600 ◦C

was done in a preparation chamber equipped with a LN2 cooled manipulator and a LEED

system. Enhanced spatial resolution was achieved by metal tip functionalization, which

was realized by in-situ dosing of carbon-monoxide (CO) molecules and subsequent vertical
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manipulation. The measurements were performed using an open-source GXSM SPM con-

trol system (P. Zahl, T. Wagner “GXSM - Smart & Customizable SPM Control” Imaging

& Microscopy (GIT), Jan. 26, 2015. http://gxsm.sourceforge.net/).

Ab initio density functional theory calculations were performed using the Quantum

Espresso package [93, 94], using pseudopotentials generated with the Perdew–Zunger local

density approximation to the exchange–correlation functional [18]. A plane-wave basis set

with an energy cutoff of 476 eV was used. For structural relaxations, the Brillouin zone was

sampled at the Γ point, and for DOS calculations a 9 × 9 × 1 Monkhorst–Pack k-point grid

was used [159]. Boron atoms were relaxed until forces were less than 2.5× 10−3 eV/Å. For

calculations on a copper surface, the borophene sheet was relaxed on a two-layer slab of

copper at its experimental bulk lattice parameter. STM calculations were performed using

the Tersoff–Hamann formalism, with ?-type orbitals described using the derivative rule of

Chen [37, 40].

5.3 Experimental results

In this work our colleagues utilized the capabilities of low-energy electron microscopy

(LEEM) for simultaneous real-time monitoring of dynamics of borophene nucleation and

growth, as well as :-space structural characterization by low-energy electron diffraction

(LEED) [160, 161, 162, 163]. A setup employing a customized electron-beam evaporation

source alongwith other sample preparation capabilities enables precise control of deposition

rates, which is essential for producing crystalline 2D sheets. In order to determine the

structure of borophene on Cu(111), our colleagues performed high-resolution scanning

tunneling microscopy (STM) measurements [158] using functionalized tips [41, 164] in
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Figure 5.1: Structure of borophene grown on Ag(111) surfaces. (a) The top, real-space
image, shows the terraced surface of the pristine Ag substrate revealed by LEEM phase
contrast. The corresponding LEED pattern is shown at the bottom. (b) LEEM image of
surface morphology (top) for 1 ML coverage and the corresponding LEED pattern (bottom)
showing that borophene growth at ) = 570 K yields primarily the V12 structure (blue
rectangles) with a weak contribution from j3 domains (green triangle). (c) LEEM and
LEED images as in panel (b) for borophene growth at ) = 720 K which yields only the
j3 structure. The diffraction pattern (green triangle in the bottom panel) shows that the j3
UC corresponds to a 3 × 3 reconstruction of the Ag(111) surface. (d) LEEM and LEED
images for borophene growth at) = 750 Kwhich generates both V12 and j3 structures. Two
additional UC orientations rotated by 30◦ with respect to LEED images in panels (b) and
(c) appear at this temperature. The rotated structures, denoted by V12-R30 and j3-R30, are
shown as yellow rectangles and purple triangles, respectively. (e) Temperature-dependent
intensity of the diffraction peaks across the white shaded line profile at the bottom of panel
(b). The data show the evolution of borophene structures during heating from ) = 570 K to
840 K. (f) Temperature-dependent diffraction peak intensities along the white lines in the
bottom of panel (d). The data show the evolution with heating from ) = 760 K to 910 K.
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conjunctionwith our own ab initio density functional theory (DFT) calculations [93, 37, 40].

Our colleagues first studied the growth and stability of borophene on Ag(111) surfaces

in detail. Previous work used STM data in combination with DFT to infer the crystal

structure [154, 155]. For a given 2D borophene sheet, the parameter [ is defined [11] as

the ratio of vacant hexagon-center sites to the number of triangular lattice sites in a unit

cell (UC). An “empty” honeycomb (graphene-like) lattice has [ = 1/3, and a putative

all-boron triangular lattice has [ = 0. For borophene on Ag(111), two structures denoted

V12 and j3 have been proposed, corresponding to [ = 1/6 and [ = 1/5, respectively. Our

colleagues have synthesized borophene layers on Ag(111) at various substrate temperatures

(Figure 5.1). Both V12 and j3 phases were indeed identified by LEED, and they confirmed

that the former is favored at lower growth temperatures, 550 K . ) . 600 K. Nevertheless,

weak diffraction peaks corresponding to the j3 phase are also present, indicating phase

coexistence in this temperature range. Growth at an elevated temperature, 650 K .

) . 720 K, renders only the j3 phase (Figure 5.1(c)). Further increasing the substrate

temperature generates additional orientations for j3 domains, rotated by 30◦, as well as

a re-entrance of the V12 phase, also with domains rotated by 30◦ (see Figure 5.1(d) and

Supplementary Figures S1 and S2 in [147]). In-situ post-growth temperature ramps in the

550–850 K and 750–910 K ranges (Figure 5.1(e,f)) both show that the j3 phase is more

stable than the V12 counterpart.

Figures 5.1(b,c) show bright-field LEEM and LEED images of borophene on Ag(111).

The size of single-crystal domains is only in the range of tens of nm. The domains do not

coalesce and the average size does not change even at complete monolayer (ML) coverage.

These results are further confirmed by atomic force microscopy (AFM) (Supplementary

Figure S3 in [147]). The higher nucleating density on Ag surfaces along with a tendency for
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Figure 5.2: Growth dynamics of borophene on Cu(111) surface. (a) Sequence of
bright-field LEEM images at ) = 770 K reveal that borophene islands prefer to nucleate
from the down-step edge of Cu terraces (i.e., the direction marked by the arrow in the first,
C = 0 s, panel) and that growth proceeds faster along the step-edge direction: ∼97 Å/s
compared to ∼20 Å/s for the perpendicular direction (see also Supplementary Figure S5 in
[147]). Snapshots taken at 75 s and 228 s illustrate that at this stage of growth borophene
flakes display sharp edges along low-index directions of the substrate, as shown by the
white arrows (see also Supplementary Movie “B-Cu111 Triangular Islands” in [147]).
These two panels along with the snapshot at 468 s also show that down-step nucleation
is followed by borophene growth across the upper step edge. In contrast to the down-
step growth, up-step growth generates arc-shaped islands, indicating more isotropic growth
kinetics; see the white arrow in the 468 s panel. A continuous monolayer (ML) emerges,
reproducing faithfully the Cu(111) terrace structure. The growth rate was ∼0.05 ML/min
(see also Supplementary Movie “B-Cu111 Film Growth” in [147]). (b) Topographic atomic
force microscopy (AFM) image around 0.1 ML coverage. The surface RMS is 0.24 Å on
Cu(111) terraces and 0.43 Å on borophene islands (green arrows), respectively. (c) Line
profile corresponding to the black line in panel (b) showing a 2.8 Å tall atomic step of the
Cu substrate. (d) Line profile corresponding to the blue line in panel (b) showing that the
thickness of the borophene sheet in ambient conditions is around 3.0 Å. (e) Ex-situ x-ray
photoemission (XPS) spectra from a B/Cu(111) sample. The data indicate that after one
hour exposure to air about 80% of borophene has been oxidized; see also Supplementary
Figure S9 in [147].
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boron clustering could be a limiting factor for the average domain size. Indeed, continuing

deposition beyond one full ML coverage leads to a reduction of crystallinity (dark areas in

Figure 5.1(d)). The bright areas in the same panel correspond to regions where nanosized

V12-30◦, j3-30◦ and j3 domains are found to coexist and, occasionally, even overlap with

each other spatially (dark-field images in Supplementary Figure S4 in [147]).

In order to produce larger domains, we have explored candidate substrates less inert

than Ag, i.e., potentially able to promote growth of larger domains, but not so reactive as to

form metal boride compounds. Our data support the notion that Cu substrates achieve this

balance. Figure 5.2 illustrates nucleation and growth of a large area ML film of borophene

on a single-crystal Cu(111) substrate, at ) = 770 K and at the rate of 0.05 ML/min (see the

SupplementaryMovie “B-Cu(111) FilmGrowth” in [147]). The growth on lower terraces of

Cu step edges is anisotropic and proceeds at a rate that is about five times faster along the step

edge than in the perpendicular direction (Supplementary Figure S5 in [147]). Nucleation on

upper terraces follows subsequently and displays more isotropic growth kinetics. Growth

of single crystals ensues once the density of nucleation sites reaches a saturation value

observed to be around 0.75/`m2. Ambient AFM data (Figure 5.2(b-d)) corroborate the

growth of one-atom-thick borophene islands.

LEED and dark-field LEEM images in Figure 5.3 show that the borophene sheets are

composed of large single-crystal domains. The domain length along the terrace directions

can exceed 10 `m. Domain widths in the perpendicular direction can be limited by the

terrace width, typically 1–3 `m and determined by the angle of surface miscut with respect

to the Cu(111) plane. Nevertheless, boundaries of borophene domains do not always follow

the Cu terraces, and it is common to find borophene flakes that cross many steps edges

(Supplementary Figure S6 in [147]). In spite of the large number of Bragg peaks in the
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Figure 5.3: Domain structure of borophene on Cu(111) revealed by selected area
diffraction. (a) Bright-field LEEM image for borophene on Cu(111) at about 0.4 ML
surface coverage. Borophene appears in yellow color. (b-d) Selected area LEED patterns
taken from single-crystal domains of borophene using an electron beam focused to 1.5 `m.
The three different LEED patterns orientations correspond to three domain orientations
which can be connected by the 120◦ rotations. The large white rhombus corresponds to
the Cu(111) substrate unit cell (UC) while smaller yellow rhomboid defines the borophene
UC. (e-g) Selected-area LEED patterns for the three remaining domains which are mirror-
symmetric with respect to those depicted in panels (b-d). The reciprocal UC of borophene
is shown in green. The six domains in panels (b-g) share the same structure and exhaust
the observed domain orientation variety for borophene on Cu(111). (h) The two mirror
symmetric UCs of borophene correspond to a (

√
73 ×

√
39)R ± 5.8◦ superstructure on

Cu(111). Yellow and green rhomboids are the real-space correspondents of the reciprocal
UCs shown in (b-d) and (e-g), respectively. (i) Combined dark-field images of a multi-
domain flake of borophene. The color coding from panels (b-g) is carried through in
panel (i). (j) A large-area Scanning Tunneling Microscope (STM) image at about 0.5 ML
borophene coverage. The boundary of a single domain (dark blue) is marked by a green
dashed line. Other areas in this panel correspond to terraces of uncovered Cu(111). The
inset shows a Fourier transform of the STM signal from the area marked by white rectangle
inside the borophene domain. The reciprocal space information obtained in this way is in
agreement with electron diffraction data.
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LEED data, our colleagues observe that many of them “light up” the same domain struc-

ture. Our colleagues elucidate this domain structure by performing `LEED. Figure 5.3 and

Supplementary Figure S6 in [147] demonstrate that the entire ML is made out of six domain

types. They are obtained by 120◦ rotations of two types of UCs with different chiralities

(Figure 5.3(i)), and correspond to a single structural phase. The UC of our structure is

21.84 Å × 15.96 Å in size, larger than those corresponding to V12 and j3 sheets, and is

rotated by a small angle (± 5.8◦) with respect to the [100] direction of the Cu(111) surface

(Figure 5.3(h)). While domain sizes are generally correlated with substrate step edges,

large individual Cu terraces also allow faceted island growth (Supplementary Figure S7

and Supplementary Movie “B-Cu111 Faceted Islands” in [147]). Important and delicate

questions involving possible boride formation, B–Cu solubility or the role of evaporation

and sub-surface dissolution are also elegantly solved using LEEM capabilities: our col-

leagues are able to induce subsurface dissolution and resurfacing of crystalline borophene

sheets by thermal cycling the Cu(111) substrate covered by a full ML of borophene (see

Supplementary Figure S8 and Supplementary Movie “B-Cu(111) Miscibility” in [147]).

5.4 Theoretical structure search

To decipher the internal structure of the UC, we performed STMmeasurements and ab initio

density functional theory (DFT) calculations. Figure 5.3(j) and Figures 5.4(a,b) show large

area topographic STM images of a borophene domain onCu terraces. The Fourier transform

of the topographic signal is in very good agreement with LEED results indicating that the

same borophene structure is preserved at ) = 5 K. STM tip functionalization with carbon

monoxide molecules [158, 41] dramatically improves the spatial resolution compared to
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Figure 5.4: Structure of borophene on Cu(111) as revealed by STM data and DFT
simulations. (a) Large area STM topographic image of a borophene-Cu step edge (setpoint
parameters: �B = 10 pA and +1 = +100 mV). Color coding: borophene appears in yellow
(higher I-values) and is identified by the UC motif, displayed as a small blue rhomboid; Cu
appears in dark blue (lower I-values). The top drawing illustrates this layering sequence.
(b) Same as panel (a) but for a different I-stacking: here the scanning captures a borophene
domain whichmost likely nucleated from a down step edge of a Cu terrace; see discussion in
Figure 5.2. (c,d) Profiles across the blue and red lines in panels (a) and (b), respectively. The
height difference between borophene and the top Cu layer is 1.4 Å in panel (a) and −0.6 Å
in panel (b), indicating a reduced density of states (DOS) in borophene with respect to
Cu. (e) Ultra-high resolution STM data of borophene (setpoint parameters: �B = 50 pA and
+1 = +20mV). The rhomboid corresponds to the borophene UC and the red dashed lines are
guides along the zig-zag pattern characteristic of all STM data, see Supplementary Figure
S10 in [147]. (f) DFT-simulated constant tunneling current isosurface of the proposed
borophene structure, assuming a ?I tunneling state for the tip [40]. (g) Pictorial view of
the borophene structure with B atoms and bonds shown in green. The red dashed lines
continue the basic zig-zag motif from panel (e) through the DFT simulations (panel (f)) and
the proposed balls-and-sticks structure (panel (g)).
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Figure 5.5: Atomic positions for a relaxedborophene structurewith hexagonal vacancy
concentration [ = 2/15. Large empty circles represent the top layer of the Cu(111) surface.
Filled red dots are B atoms and red lines are bonds between them. The black solid line
represents the borophene unit cell (UC), depicted also in Figure 5.4. The blue dashed line
is the UC of the [ = 2/15 structure as obtained by DFT and is half the size of the one
determined by electron diffraction because of centering (note also that the center of the
UC determined by DFT is also an inversion symmetry point). We found that none of the
starting [ = 2/15 arrangements used in simulations was able to break the symmetry of the
smaller (dashed blue) UC. Although the energy differences between the initial and relaxed
structures were relatively small (∼0.03 eV/atom), they would always converge towards the
centered lattice. This robust result allowed us to rule out the [ = 2/15 structure as a possible
candidate.

what is typically achievedwith baremetallic tips (Supplementary Figure S10 in [147]). Such

ultra-resolved STM data allow us to propose an array of potential planar borophene sheets,

whose stabilities are subsequently found by DFT calculations and relaxations [93, 37].

Figure 5.4(e-g) summarizes this procedure and display our proposed structure of borophene

on Cu(111) substrates, which is also the one with the largest binding energy of all the

sheets investigated. The good agreement between the experimental (Figure 5.4(e)) and

DFT simulated structure using tunneling states with ?I character [40] for the functionalized

STM tip (Figure 5.4(f)) supports this assignment. The proposed structure has a boron

vacancy density of [ = 1/5 (the same as the j3 structure).

Our search for borophene structures compatible with both LEED (Figure 5.3) and high
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resolution STM data (Figure 5.4) was guided by the constraints of preserving average B–B

distances within a 1.7±0.1 Å window as well as by matching the zig-zag pattern seen in the

STM data (see Figure 5.4(e)) to low index azimuths of the underlying honeycomb lattice,

i.e., along B–B directions and 30◦ away from them. We generated a library of potential

structures and, after applying these constraints, narrowed them down to eight candidates.

We analyzed all of them in detail by performing full atomic relaxations on Cu(111). The

one with the largest binding energy is the one shown in Figure 5.4(g).

In addition to these eight structures, we investigated the vacuum and on Cu(111) stability

of more than a dozen of various other types of borophene layers that could be, in principle,

compatible with either the CO-functionalized data or lower-resolution STM data obtained

with metallic Pt/Ir tip. All candidates were found to be stable as sheets in vacuum, but many

were found to be unstable on our specific substrate. An example of an [ = 2/15 structure

that is stable both in vacuum and on Cu(111) but was rejected on account of being at odds

with electron diffraction data is shown in Figure 5.5. This structure was stable on Cu(111),

but invariably preserved the symmetry of the smaller unit cell indicated in dashed blue

lines, rather than the larger black experimental unit cell. As a result, it could not replicate

the high-resolution STM data, so we ruled it out.

Another example is shown in Figure 5.6. In this case, a honeycomb “backbone” is

preserved in the free-standing sheet but disrupted once the borophene layer is bound to the

substrate, It is interesting to note that stable 2D B/Cu(111) structures can accommodate

relatively large amount of (typically anisotropic) strain, up to almost 10% compared to B–B

bond lengths of relaxed sheets in vacuum. The proposed structure in Fig. 4 is under ∼6.5%

and ∼2% anisotropic strain in the directions of its long and short axes, respectively. This

suggests that charge transfer and potential chemical interactions with the substrates have a
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Figure 5.6: Atomic positions for proposed and alternative borophene structures on
Cu(111). This figure provides an illustration of other types of structures we considered.
Symbols have the same meaning as in Figure 5.5. The upper two images shows a schematic
of the proposed structure (also shown in Figures 5.4(e-f)), while the lower two images show
an alternative structure that was considered and rejected as unstable on Cu(111). In each
pair, the left-hand image shows the free-standing borophene layer, with both its unit cell and
its atomic positions relaxed in vacuum. The right-hand image shows the borophene layer
strained to the experimentally determined unit cell and bound to the Cu(111) surface. The
proposed structure (top panels) is stable upon binding to the substrate, while the alternative
structure (lower panels) is stable in vacuum but becomes substantially deformed upon
binding to Cu(111).
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Figure 5.7: Charge-transfer interaction between borophene and Cu(111) surface. (a)
Electronic DOS for the relaxed borophene sheet on Cu (green solid curve), for the same
structure relaxed in vacuum (“free” borophene – green dotted curve) and for Cu (pink
curve). Shaded area corresponds to the occupied states for the undoped free borophene.
DFT calculations show that relaxed B/Cu(111) is electron doped by 0.23 e/B atom. The
vertical dashed marks the Fermi level (��) in B/Cu(111) as well as that of the isolated
borophene if it were electron doped by 0.23 e/atom (this doping amount shifts �� of the
isolated borophene by 1.18 eV). The high similarity between the green curves indicates
that the interaction between borophene and Cu is of a charge-transfer type with a minor
degree of covalence. (b) Isosurface plot of charge redistribution between Cu planes (pink
atoms) and relaxed borophene (green atoms) along the (100) direction of the underlying
honeycomb lattice. Electron depletion is shown in purple and accumulation in yellow:
electrons move from Cu 3I2- into B ?I-like orbitals. This real-space image further confirms
the charge-transfer scenario and the lack of significant covalent bonding between borophene
and Cu.

more prominent role in determining the actual structure [154].

Our ab initio calculations reveal a rather flat sheet of relaxed borophene with a I-

corrugation of only 0.43 Å, consistent with prior theoretically investigated structures on

Cu(111) with smaller UCs [15, 165]. The average boron-boron bond length is 1.72 Å, with

a spread < 0.2 Å, which indicates that the sheet on Cu(111) is under anisotropic, ≈ 4%

on the average, tensile strain compared to the corresponding structure relaxed in vacuum.

More details on other borophene structures we investigated can be found in Section 4 of
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the Supplementary Information in [147]. We investigated the film-substrate interaction, a

relevant parameter for prospective sheet transfer and device fabrication (Figure 5.7). The

calculations show that our borophene structure in Figure 5.4 is electron doped via charge

transfer with no significant covalent bonding. The value of [ = 1/5 can be understood if

one takes into account that the self-doping mechanism [12, 166] in conjunction with the

electron transfer from Cu to B is expected to increase [ above [ ≈ 1/9 (maximum stability

for isolated sheets). Our findings are generally in agreement with the predicted behavior of

2D boron on Cu(111) surfaces [15, 165] and confirm the predictive power and capabilities

of ab initio calculations for guiding future choices of material substrates for structural and

electronic engineering of 2D sheets of borophene.

5.5 Conclusion

Data on both Cu and Ag substrates indicate that the formation of atomically thin 2D boron

sheets is a self-limiting process; this is advantageous for synthesis of heterostructures based

on atomically thin layers. Indeed, beyond 1 ML coverage, the growth rate on Cu and Ag

decreases dramatically, even if the boron flux is substantially increased. Next, our study

illustrates several other differences brought about by the material choice for the substrate.

Growth dynamics, the influence of incoming atomic flux or substrate temperature on the

structure, film adhesion and rippling [154, 155, 167, 168] are shown to be very different on

the two substrates. This is crucial from the device fabrication perspective, because synthesis

of large-size domains is required for engineering heterostructures. Our results underscore

the importance of borophene-substrate interactions and the choice of substrate materials.

Simultaneous real- and :-space mapping is shown to be very useful for controlled synthesis
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and characterization of new 2D phases, and in conjunction with several elemental sources

can also be used to visualize heterostructure growth.
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Chapter 6

Long-wavelength modulation of
borophene sheets on Cu(100) surfaces

This chapter is adapted from an article entitled “Borophene on Cu(100) surface” by Rongt-
ing Wu, Stephen Eltinge, Ilya K. Drozdov, Adrian Gozar, Percy Zahl, Jerzy T. Sadowski,
Sohrab Ismail-Beigi, and Ivan Božović that has been accepted for publication in Nature
Chemistry. Additional experimental data in support of this chapter can be found in the
Supplementary Information of that article when it becomes available, and is referenced
where appropriate. RW, ID, AG, PZ, and JS did the experimental work, I did the theoretical
work, and SIB and IB provided guidance.

In the previous chapter, we discussed a project in which we characterized the physical and

electronic structure of two-dimensional borophene on the Cu(111) surface. In this chapter,

we report on a followup study with the same collaborators concerning borophene on the

Cu(100) surface. On this surface, borophene takes on a new crystal structure, with ten boron

atoms and two hexagonal vacancies in the unit cell. First-principles calculations indicate

that charge transfer rather than covalent bonding binds 2D boron to the copper surface.

Intriguingly, the electronic band structure features multiple anisotropic tilted Dirac cones,

indicating the potential co-existence of type-I and type-II Dirac and Weyl fermions.
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6.1 Introduction

The electronic band structure of graphene features isotropic gapless Dirac cones that host

massless fermionic quasiparticles [1, 169]. This has triggered an intense search for new

quantum 2D materials to realize other exotic quasiparticles, such as the analogs of massless

Dirac, Majorana, and Weyl fermions. Honeycomb-lattice 2D sheets have been synthesized

of various group-IV elements: silicene [170, 171], germanene [172, 173], and stanene

[84, 87]. They were shown to feature exotic properties absent in their 3D counterparts,

promising new applications.

Borophene can be realized by periodically adding extra boron atoms at the centers of

hexagons in a honeycomb-like boron lattice, or equivalently, as a triangular boron lattice

with some sites vacant. By choosing different vacancy patterns, borophene with different

in-plane structures can be envisaged. Many of these structures are predicted to have

similar energies, giving rise to intrinsic polymorphism [11, 12, 13]. This suggests that by

choosing the substrate and the synthesis recipe, one can engineer various borophene atomic

structures, thus tailoring the electronic properties. Of particular interest is the potential

for 2D superconductivity, given the small atomic mass of boron in conjunction with the

predicted strong electron-phonon coupling [174, 7]. Experimentally, MgB2—a stack of

2D honeycomb boron sheets separated by magnesium atoms—is indeed a superconducting

compound with a relatively high critical temperature ()2 ≈ 40 K). Borophene has also been

predicted to support massless Dirac fermions [10, 9, 175] and to find applications in flexible

electronics [153], energy storage [176] and sensors [177].

Unlike carbon, boron by itself does not form layered structures in nature—the 3D boron

structure is more stable than any of the conjectured 2D boron polymorphs [151, 178].
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However, it was predicted that 2D boron sheets may be epitaxially stabilized on appropriate

substrates that have low boron solubility and do not form borides [154], e.g., gold, silver

and copper.

Following these suggestions, borophene was successfully synthesized on Ag(111) sur-

faces, with an island size on the scale of tens of nanometers [154, 155]. Two borophene

structures were identified: the V12 phasewith vacancy fraction [ = 1/6 (the ratio of vacant to

total number of sites in the triangular boron lattice), and the j3 phase with [ = 1/5, respec-

tively. Dirac-cone dispersion was predicted from theory [10] and observed experimentally

by angle-resolved photoemission spectroscopy (ARPES) [9, 175]. Anticipating borophene

integration in nanoelectronics, self-assembly of line defects [168] and borophene-based

heterostructures [179, 180] has been pioneered. However, nanoscale flakes of borophene

on Ag(111) surfaces are too small for transport measurements. This motivated us to un-

dertake synthesis of borophene on the “stickier” Cu(111) surface [147, 181]. In this way,

the lateral extent of borophene islands was increased by two orders of magnitude; single-

crystal domains up to 100 `m2-sized were reproducibly obtained. In the pioneering work

[154, 155, 147], (111) substrates were initially chosen because these surfaces have the same

symmetry as that of the boron lattice; however, the emerging borophene sheets contain va-

cancies that are ordered in patterns that often display lower symmetry. This, in turn, gives

rise to the formation of domains and domain boundaries, which are typically unwanted since

they could affect the material’s transport properties and degrade the device’s performance.

In principle, substrates with lower symmetry could favor energetically and select one over

the other of domain orientations, thus suppressing the formation of domain boundaries.

Moreover, by creating incommensurate coordination between borophene and the substrate,

borophene-substrate interactions could be reduced. This is somewhat analogous to the ven-
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erated case of twisted bilayer graphene and twisted bilayers of other quantum 2D materials.

These have been found to display moiré patterns, flat bands, strongly-correlated electron

properties including Mott insulator state, electronic nematicity, emergent magnetism and

superconductivity, and much more. In the present chapter, we have chosen the Cu(100)

substrate, because it has a flat surface with a square lattice that could incommensurately

modulate the adsorbed hexagonal boron lattice and alter the vacancy patterns in novel and

surprising ways. The Cu(100) substrate thus appeared to be a promising candidate to ex-

amine the influence of the substrate symmetry on the resulting borophene structure, clarify

the corresponding structure-property relations, and search for novel emergent physics. The

challenge was to find the proper balance between the two competing requirements—we

wish the substrate–borophene interaction to be weak enough to sustain incommensurate

structures of interest, yet strong enough to stabilize borophene by sufficient charge transfer

needed to alleviate the electron deficiency.

In the work on which this chapter is based, our colleagues utilized molecular beam

epitaxy (MBE) synthesis enlightened bymonitoring of the growingfilm surface usingLEEM

and LEED in real time. They developed a process to fabricate large-scale, high-quality

borophene sheets on Cu(100) surface. By controlling deposition of boron and substrate

topography, they can choose to synthesize isolated faceted micrometer-size borophene

islands or to achieve full monolayer coverage. Using micro-LEED and dark-field LEEM

techniques, they identified the occurrence of four rotational borophene domains and imaged

their distribution. They have used in-situ X-ray photoemission spectroscopy to discern the

chemical signatures of copper and boron before and after borophene growth. Combining

LEED, high-resolution STM measurements with CO-functionalized tips [41, 164], and ab

initio density functional theory (DFT) calculations [93, 94], we have determined the atomic
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structure of borophene on the Cu(100) surface. We have found that this new borophene

phase has a small (roughly 5 × 6 Å2) rectangular unit cell that contains ten boron atoms

and two hexagonal vacancies. DFT calculations reveal four different Dirac cones in its

electronic band structures. Some of these cones are anisotropic and tilted, indicating the

possibility to host type-II Dirac and Weyl fermions.

6.2 Methods

As described in the previous chapter, borophene was synthesized on a single-crystal copper

substrate using anMBE coupled to an Elmitec LEEM-III system. Thematerial’s growth and

final state were characterized using x-ray photoemission (XPS), atomic force microscopy

(AFM), and scanning tunneling microscopy (STM) measurements. The experimental pro-

cedure is broadly outlined in Section 5.2. Further details are available in the published

versions of the previous chapter [147] and in the forthcoming paper corresponding to this

chapter.

Ab initio DFT calculations were performed using the Quantum Espresso package [93,

94] with pseudopotentials generated with the Perdew–Zunger local-density approximation

to the exchange-correlation functional [18]. A plane-wave basis set with an energy cutoff

of 476 eV was used. For relaxations, the Brillouin zone was sampled at the Γ point,

and a Monkhorst–Pack grid with a spacing of 0.1 Å−1 between points was used for DOS

calculations [159]. Boron atom positions were relaxed until the forces were less than

2.5 × 10−3 eV Å−1. For calculations on a copper surface, the borophene sheet was relaxed

on a three-layer slab of copper, assuming its experimental bulk lattice parameter. STM

calculations were performed using the Tersoff–Hamann formalism, with B-type or ?-type

114



orbitals described using the derivative rule of Chen [37, 40]. 2D Gaussian filtering of the

calculated STM image with a standard deviation f = 1.0 Å was performed to simulate a

resolution comparable to that in the experimental STM image.

6.3 Experimental results

Borophene was synthesized by slowly depositing boron atoms onto a hot Cu(100) sur-

face, with the growing process illustrated by a sequence of bright-field LEEM images in

Figures 6.1(a-h). The initial nucleation of borophene islands happens at the down-step

edges of the Cu(100) terraces, as highlighted by the green arrows in Figure 6.1(b). The

nucleus density is around 1.25 `m−2. As more boron is deposited, borophene islands start

to grow, first along the step edges, and then covering a single terrace without nucleation of

new islands (Figure 6.1(c,d)). Subsequently, borophene islands keep growing continuously

across multiple terraces (Figure 6.1(e,f)), eventually reaching up to several micrometers

in size. Finally, all borophene islands merge together, forming a continuous monolayer

film covering the entire surface, as shown in Figure 6.1(g,h). Our colleagues found that

at ) = 753 K, borophene growth on the Cu(100) surface is self-limiting; once the full

monolayer is deposited, subsequent boron atoms do not stick and a second borophene layer

does not form.

X-ray photoemission spectroscopy data, with a focus on copper 3? and boron 1B core

levels, were taken before and after borophene growth, and are shown in Figures 6.1(i-k). In

Figure 6.1(i), upper panel, the two peaks at binding energies of � = 75.1 eV and � = 77.3 eV

correspond to the 3?3/2 and 3?1/2 orbitals, respectively, of the pristine copper substrate.

After borophene growth (Figure 6.1(i), lower panel), no new peaks appear, attesting that
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Figure 6.1: Growth dynamics of borophene on the Cu(100) surface. (a,b) The sequence
of bright-field LEEM images, recorded at ) = 753 K, reveals that borophene islands prefer
to nucleate from the down-step edges of Cu terraces (highlighted by the green arrows in
the second panel, C = 1 min). The growth rate was ∼0.013 ML min−1. (c,d) The grow th
proceeds initially along the step-edge direction, and then covers the whole terrace. (e-g)
Borophene growth on a single terrace is followed by growth across the step edges. (The
yellow and white triangles in different panels mark two reference points on the surface.)
(h) A continuous monolayer forms and covers most of the Cu(100) surface. (i) In-situ
XPS of copper, taken before and after borophene growth. The peak at energy � = 75.1 eV
corresponds to copper Cu 3?3/2, and the � = 77.3 eV peak to Cu 3?1/2 orbitals, respectively.
(j)Continuous XPS data showing that a sharp single new boron 1B peak related to borophene
emerges during boron deposition. (k) Top panel: XPS of boron 1B core level, after
borophene growth at ) = 753 K, showing the borophene-related peak at � = 186.6 eV.
Bottom panel: XPS data of the same sample after more boron was deposited at the room
temperature, showing a new peak at � = 187.2 eV due to formation of 3D boron clusters.
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there is no chemical reaction between the copper substrate and the deposited boron atoms.

Figure 6.1(j) shows the evolution in time of the X-ray photoemission spectra taken in situ

simultaneously with the borophene growth. One can see a continuously rising sharp boron

1B core level at binding energy of � = 186.6 eV. As seen in Figure 6.1(k) (upper panel),

once the full monolayer borophene coverage has been reached, this sharp boron 1B core

level remains unchanged while additional boron is supplied at ) = 753 K. However, when

the sample was cooled down to the room temperature and extra boron was deposited, a

new peak appeared at a slightly higher binding energy, � = 187.2 eV (the red peak in

Figure 6.1(k), lower panel). This new peak originates from boron clusters or 3D bulk

boron. (Analogously, the B?3 orbital in 3D carbon produces a peak at a slightly higher

binding energy than the B?2 orbital in graphene [182].)

LEED patterns and dark-field LEEM images (in Figure 6.2) reveal that the borophene

sheet on Cu(100) consists of single-crystal domains with different orientations. By choosing

different LEED spots (indicated by different colors in Figure 6.2(b)) and taking respective

dark-field LEEM images, our colleagues established that there are four different borophene

domain orientations (highlighted by different colors in Figures 6.2(a), (c), (d), and (e)). The

shapes of borophene flakes largely conform to the contours of the copper terraces. The

long axis of a single-crystal flake is typically oriented along a step edge in the substrate and

reaches up to 5–10 `m. The width of the domains is typically 1–3 `m, perpendicular to the

step edges, and for the most part limited by the width of substrate terraces.

In Figure 6.2(b), we show a LEED pattern composed by superposing four patterns taken

with the electron energies of � = 2.5 eV, 6 eV, 10.5 eV and 25 eV, respectively (individual

images available in Supplementary Figure S1 of the forthcoming paper). In this way, we can

display simultaneously the diffraction spots from the relatively small borophene unit cells
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Figure 6.2: Single-crystal domains of borophene revealed by dark-field LEEM images.
(a)A dark-field LEEM image of borophene taken from the non-specular Bragg spot marked
by the green circle in panel (b). The green color highlights the domains contributing to
this specific LEED spot. (b) Superposition of the four borophene/Cu(100) LEED patterns
taken at the energy of 2.5 eV, 6 eV, 10.5 eV, and 25 eV. The four dashed red circles in the
corner highlight the first-order diffraction spots of the Cu(100) substrate itself. The LEED
reflections corresponding to different borophene domains are highlighted by differently-
colored dashed lines. (c-e) Dark-field LEEM images reveal the distribution of different
borophene domains taken from the non-specular Bragg reflection spots marked by blue,
pink, and yellow color, respectively. (f)Micrometer-sized, faceted single-crystal borophene
islands on a wide Cu(100) terrace. Different orientations are indicated by different colors,
and the faceted island edges are highlighted by the white and black arrows. The labels
inside select islands specify the angles (counterclockwise) from Cu(011) direction (the
yellow arrow) to the direction of the faceted island edge.
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(colored dashed lines) and from some large-length-scale super-modulations (yellow arrows

near the center). The overall composite LEED pattern is rich and complicated because of

the presence of four rotational domains. The rhomboidal reciprocal lattices for different

domains are highlighted by different colors. The unit cell size is roughly 5 Å × 6 Å in

real space, with the angle of ∼83◦ between the two neighboring edges. By rotating 90◦ or

mirror-flipping the unit cells, one can generate the four epitaxially inequivalent rhomboidal

lattices, as observed.

On broad terraces, micrometer-sized faceted borophene islands can be created, as seen

in dark-field LEEM images (Figure 6.2(f)). Borophene islands with the same orientation

exhibit parallel straight edges (highlighted by the white and black arrows). In contrast

to the triangular borophene flakes on Cu(111), the facets of the single-crystal islands of

borophene on Cu(100) are not oriented along the high-symmetry directions of the substrate.

A detailed analysis reveals that these facets mainly follow the zig-zag edges of borophene

flakes (Supplementary Figures S6 & S7 of the forthcoming paper), which indicates that here

the B–B rather than the B–Cu interactions are playing the dominant role in determining the

island shapes.

Our colleagues also investigated the stability of this new borophene phase against

heating and oxidization, which is critical for prospective borophene applications. They

have established that borophene dissolves when the temperature exceeds 873 K, and that

boron atoms resurface forming borophene again once the sample is cooled back down.

They also found that this borophene phase can survive for several hours under 10−6 Torr

partial pressure of oxygen. All of this attests that this new borophene structure is the

thermodynamic ground state and not kinetically trapped.
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6.4 Structural identification and theoretical analysis

To decipher the atomic structure of this new borophene sheet, we have performed STM

measurements and ab initio DFT calculations. Figure 6.3(a) shows the large-area STM

topography of borophene islands on three broad terraces on the Cu(100) surface. In

Figure 6.3(b), we show the line profile measured along the green line in Figure 6.3(a). The

height of the borophene edges A and C is the same, 1.1 Å, while the height of the copper

step edge B is 2.0 Å. This indicates that this boron sheet is an atomic monolayer, and its

density of states (DOS) is lower than that of the Cu(100) surface. In Figure 6.3(c), we show

an enlarged STM image of the white rectangle area in Figure 6.3(a). On borophene islands,

some linear stripes (highlighted in red and blue) with different orientations become visible.

A high-resolution STM image of the area of junction between two borophene mono-

domains is shown in Figure 6.3(d). Between the linear stripes (blue and red arrows),

isolated yellow dots are arranged in a rectangular lattice, with repeat periods of about

5.3 Å and 6.0 Å. Notably, when these rectangular unit cells cross the stripes, they undergo

a dislocation (highlighted by the green and pink dashed lines). Figure 6.3(e) shows the

fast Fourier transform (FFT) of the high-resolution STM image of a single borophene

domain. It coincides with the LEED pattern (Figure 6.3(f)) taken on a single borophene

flake, confirming that the two are capturing the same structure. The effect of the periodic

striped modulations and the lattice dislocations in STM topography is to generate a small

distortion in the basic borophene reciprocal lattice: the basic borophene reciprocal lattice

(the green rectangle in Figure 6.3(f)) is shifted by a small wave vector (the yellow arrows in

Figure 6.3(f)). In this way, we can reproduce well the final deformed rhomboid reciprocal

lattice in the FFT and LEED patterns. (More details are provided in Supplementary Figure
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Figure 6.3: Topography of borophene islands revealed by STM. (a) A large scale STM
image shows borophene islands grown on the surface of a single-crystal Cu(100) substrate.
(b) The cross-section height profile (measured along the green line in the panel (a)) of
islands of borophene on Cu(100). (c) The enlarged STM image shows the two borophene
islands located within the white rectangle in panel (a). Some straight stripes with different
orientations (highlighted by the red and blue arrows) appear in these two islands. (d) A
high-resolution STM image shows the junction area where two borophene domains meet.
The blue and red arrows indicate the direction of the stripes. Some dots, highlighted by
the white and black rectangles, arranged in a rectangular lattice appear between the stripes.
The pink and green dashed lines indicate the dislocation of the rectangular unit cells across
the stripes. The scanning parameters for STM images are: bias voltage +1 = +400 mV,
tunneling current �C = 30 pA for (a); +1 = +400 mV, �C = 30 pA for (c); +1 = +500 mV,
�C = 200 pA for (d). (e) Fast Fourier transform (FFT) pattern of a high-resolution STM
image of a single-crystal borophene island on Cu(100) surface. (f)ALEEDpattern obtained
from a single borophene domain. The dashed red lines indicate the reciprocal unit cells.
The green rectangle indicates the reciprocal lattice of the real-space unit cells (the black and
white rectangles in (d)). The yellow arrow corresponds to the miniature reciprocal lattice
generated by the superstructure modulation with a large period in real space.
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Figure 6.4: Atomic structure of V13 borophene as revealed by STM measurements
and ab initio DFT calculations. (a) An ultrahigh-resolution STM image of the borophene
surface topography. (The scanning parameters: �B = 50 pA and +1 = +200 mV). (b) A
pictorial representation of the basic structure of V13 borophene, with boron atoms and bonds
shown in green. The unit cell contains 10 boron atoms and two vacant sites compared to
the ideal triangular lattice. (c) The DFT-simulated, constant-tunneling-current iso-surface
of the proposed V13 borophene structure on Cu(100). (d) A larger-scale atomistic model
that captures the observed superstructure of borophene on Cu(100) surface. The small
blue, black and red rectangles correspond to the basic small unit cells, while the big pink
rhomboid indicates the large cell of the super-modulation. (e)A schematic of V13 borophene
lattice with dislocations (highlighted by the blue, black and red rectangles). A continuous
dislocation occurs in the middle of two black rectangles.

S5 of the forthcoming paper.)

With higher spatial resolution, our colleagues were able to capture more details of the

rectangular unit cell and striped features in the STM topography (see Figure 6.4(a)). The

borophene sheet appears as a continuous film with isolated dark spots (“holes”) arranged

in a rectangular lattice. In the regular regions away from the white stripes, we typically see

that each unit cell contains one dark spot at the corner (the dashed blue rectangle). In the

striped areas, a second dark spot appears inside the unit cell, which coincides with the one
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at the corner of the neighboring unit cell (the dashed black rectangle) that belongs to the

regular area on the other side. In this way, this new borophene phase, with a rectangular

unit cell that contains one vacancy at the corner and another one inside, can continuously

cross the striped area.

In Figure 6.4(b), we present the atomistic structural model of a new borophene phase,

V13, that accounts well for all of our data. It has ten boron atoms and two vacancies, i.e., the

vacancy ratio is [ = 1/6. Utilizing DFT calculations, we explored all possible borophene

models hosting two boron vacancies in the unit cell of the shape and size close to what

is seen in the experiment. As a free-standing sheet, this V13 structure is the most stable

among such sheets. The optimized unit cell size is 5.04 Å × 5.82 Å, as highlighted by the

black rectangle. On Cu(100), this unit cell can take four inequivalent orientations; hence,

simultaneous nucleation of borophene islands at different locations on the substrate should

lead to the formation of domains and domain walls.

A simulated STM image using V13 borophene mono-domains as the building blocks on

the Cu(100) surface is displayed in Figure 6.4(c). This image is fully consistent with both

the real-space STM topography (Figure 6.4(a)) and the atomic model (Figure 6.4(d)). It

captures well both the occurrence of single holes in the regular regions and double holes

in the striped transition areas. Notably, the dark spots in the STM topography are located

halfway between two nearest boron vacancies, as highlighted by the yellow circles. In our ab

initio calculations and STM simulations for borophene on Cu(100), we have used the large

unit cells defined by the super-modulation, highlighted by the pink rhomboids in Figure 6.4.

The meaning and the role of the small unit cell are that it is the most stable “local” building

block of borophene on the Cu(100) surface. However, it does not fit perfectly on the Cu(100)

surface, so some distortion is necessary. But because this small unit cell is so stable, rather
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Figure 6.5: Electronic bands of V13 borophene on the Cu(100) surface. (a) The elec-
tronic band structure of free-standing V13 borophene, inferred by ab initioDFT calculations,
along high-symmetry directions, as indicated in the inset (the red dots correspond to the
reciprocal lattice). The orbital character is indicated by color: red for ?G and ?H, and blue
for ?I. Dirac cones are highlighted by the red dashed circles. (b)Electronic DOS for Cu (the
red line), the free borophene relaxed in vacuum (the dotted green line) and for the relaxed
borophene sheet on Cu(100) substrate (the solid green line). The shaded area corresponds
to the occupied states in the undoped free borophene. The relaxed borophene on Cu(100) is
doped by 0.21 electrons per boron atom. The vertical dashed linemarks the Fermi level (��)
in borophene on Cu(100), as well as the Fermi level in isolated borophene if it were doped by
0.21 electrons per atom. (This doping would shift �� of the isolated borophene upwards by
1.57 eV.) The similarity between the two green curves indicates that the interaction between
borophene and Cu is mainly of the charge-transfer type. (c) Constant-density surface plot
of the charge redistribution between Cu planes (the pink atoms) and relaxed borophene (the
green atoms). Electron depletion is shown in purple and accumulation in yellow. Electrons
mainly (∼2/3) move from the Cu orbitals with 4B-like character into ?I-like B orbitals. The
out-of-plane 3 orbitals account for most of the rest of the electron loss and modulate the
shape of the electron depletion around each Cu atom. This real-space image reinforces the
charge-transfer scenario and the absence of covalent bonding between Cu and B.
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than distorting locally, large-scale incommensurate modulations are formed to further lower

the total energy. In Figure 6.4(e), we show a model of continuous and nondestructive

dislocation around the striped area, as highlighted by the blue, red, and black rectangles.

A DFT calculation of the electronic band structure of free-standing V13 borophene along

several high-symmetry directions is shown in Figure 6.5(a). The electronic bands from ?I

and (?G , ?H) orbitals are highlighted by blue and red colors, respectively. We have also

studied V13 borophene on the Cu(100) surface. Our calculations indicate that it is rather flat,

with I-axis fluctuations of only 0.31 Å, smaller than in borophene on the Cu(111) surface

[147]. Compared to the free-standing V13 sheet, borophene on the Cu(100) surface is under

substantial anisotropic tension, ∼5% on average, with an average boron–boron bond length

of 1.74Å. (More details are provided in Supplementary Figure S6 of the forthcoming paper.)

For the possibility of borophene lift-off, transfer and subsequent device fabrication, it

is important to have information on borophene–substrate interactions. Rather than Cu–B

covalent bond formation, we have found that V13 borophene undergoes considerable electron

doping (0.21 electrons per boron atom), coming mainly from the copper 4B orbitals and

going to the boron ?I orbital. This is slightly less than the value of 0.23 electrons per

boron that we calculated on Cu(111). Combined with the flatter shape of borophene on

Cu(100), this indicates that in the latter case the B–Cu interaction is somewhat weaker,

promising easier exfoliation. In Figure 6.5(b), we show the electron density of states (DOS)

of the free-standing borophene (the dotted green line), borophene on Cu(100) surface (the

solid green line), and the pristine copper substrate (the red line), respectively. As seen in

Figure 6.5(b), the charge transfer from copper substrate to borophene lifts the Fermi level

(��) upwards by about 1.57 eV while essentially preserving the DOS of the free-standing

borophene. We have reinforced this conclusion by plotting the surfaces of constant electron
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Figure 6.6: Dirac cones of V13 borophene on the Cu(100) surface. 2D energy surfaces
of three Dirac cones, located on the (a) ΓX, (b) XM, and (c) ΓY lines, in free standing V13
borophene, as determined by ab initio DFT calculations. A fourth Dirac cone, labeled kk,
lies in the interior of the Brillouin zone and is discussed in the Supplementary Material of
the forthcoming paper.
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density and studying electron redistribution between the Cu planes (the pink atoms) and

the relaxed borophene (the green atoms). As shown in Figure 6.5(c), electrons are depleted

(purple color) mainly from 4B-like Cu orbitals and accumulated (yellow) in the ?I-like B

orbitals, without any obvious signature of covalent Cu–B bonding.

The electronic band structure (Figure 6.5(a)) features three Dirac cones (marked by the

dashed red circles), where the upper and the lower bands touch at a single point. Given

their locations in the Brillouin zone, we refer to them as Dirac cones ΓX, XM, and ΓY,

respectively. The energy surfaces of these Dirac cones are plotted in Figure 6.6. Dirac cone

ΓX (Figure 6.6(a)) mainly originates from the honeycomb (graphene-like) boron lattice.

Dirac cone ΓY (Figure 6.6(c)), which primarily stems from the zig-zag chains of boron

atoms, is both anisotropic and tilted. Near such an exotic point, massless type-II Dirac/Weyl

fermions could emerge, giving rise to some exotic physics [183, 184, 185, 186]. Dirac cone

XM (Figure 6.6(b)) largely derives from armchair-shaped chains of boron atoms and is also

highly anisotropic. If these Dirac cones could be accessed by doping and without altering

the band structure qualitatively, this could open exciting new fields of study.

6.5 Band unfolding

To take into account the stripe modulation, we performed band unfolding calculations

using the Wannier function method described in Section 2.1.4. We constructed maximally

localizedWannier functions [27] for the free-standing borophene sheet using theWannier90

package [33]. We used ?I-type orbitals centered at the boron atom positions as initial

guesses for the Wannier functions. We used a frozen energy window ranging from 0.2 to

2.4 eV above the Fermi level to aid in disentangling ?I-type orbitals from the full manifold
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Figure 6.7: Wannier functions and the supercell–primitive cell relationship in the
borophene sheet. (a) Isosurfaces of a typical Wannier function constructed from boron-
centered ?I orbitals. Yellow and blue isosurfaces represent lobes with opposite phase,
demonstrating how the ?I character of the Wannier functions is preserved. Moving from
the central boron atom to its neighbors, the Wannier function changes in sign and decreases
in weight. (b) Relationship between the primitive (small) cell and supercell for the boron
sheet. Boron atoms are marked with filled green circles, while the underlying copper lattice
is marked with open gray circles. One copy of the supercell is marked as the large black
parallelogram, while a possible choice for the primitive cell is marked with solid brown
rectangles. Another primitive cell, relevant in the region along the short supercell axis, is
marked with dashed brown rectangles on the right-hand side of the figure.
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of bands. A typical Wannier function is shown in Figure 6.7(a). It has a node in the plane

of the borophene sheet and spreads over a small number of neighboring boron atoms.

To illustrate the band unfolding task, we plot both the primitive cell and supercell of the

borophene sheet in Figure 6.7(b). The primitive cell is rectangular, while the supercell is a

parallelogram, with a short axis parallel to the vertical Cu(100) lattice direction and a long

diagonal axis rotated 9.5◦ from the horizontal. In terms of area, the supercell is an integer

multiple of the primitive cell, containing 200 boron atoms and 40 vacancies to the primitive

cell’s 10 and 2, respectively. However, the supercell is not commensurate to the primitive

cell in the sense of Equation 2.44: the two supercell corners on the left coincide with the

corner vacancy of the primitive cell, while the supercell corners on the right coincide with

the interior vacancy. The structural result of this fact is that, along the short supercell axis,

boron vacancies occur three in a row, unlike the zig-zag pattern observed in the supercell

interior.

This fact complicates our use of the band unfolding procedure described in Section 2.1.4.

Papers like [43] contemplate perturbations in which a supercell is constructed from copies

of a primitive cell, and the atomic structure within one or more of those copies is perturbed.

The mapping of orbitals in the supercell to their unperturbed versions in the primitive cell

is unambiguous, even if the supercell orbitals experience a variety of environments. In this

work, we must choose how to assign supercell orbitals to primitive cell orbitals; effectively,

we choose whether to treat points along the short supercell axis as belonging to the primitive

cells marked with solid lines in Figure 6.7(b) or the shifted cells marked with dashed lines.

In the language of Section 2.1.4, this amounts to selecting the maps r′ and =′ from supercell

to primitive cell Wannier functions that are used in Equations 2.39 and 2.43.

In this work, we map all supercell atoms to primitive cell sites using the solid-line
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primitive cells of Figure 6.7(b). Because this choice only affects ∼10 of the 200 atoms

in the supercell, we expect that it has a minimal effect on the unfolded band structure,

which is plotted in Figure 6.8(a) and compared to the primitive cell band structure in

Figure 6.8(b). Several salient ?I-dominated features, such as the bright dispersive bands

along the M–Γ line and near Y, are well-preserved after band unfolding. Dirac cone ΓX

appears to be gapped, but in fact has been shifted off the :2 = 0 axis (Figures 6.8(c,d)).

The tilted ΓY Dirac cone is also shifted (Figures 6.8(i,j)). Meanwhile, at the XM point,

the formerly degenerate bands cross over, and their intersection produces a Dirac nodal line

(Figures 6.8(e,f)). These features, which have been predicted in other borophene sheets

[10], are associated with topologically protected edge states and other features indicative of

interesting new physics.

6.6 Conclusion

The synthesis of micrometer-sized single-crystal flakes of V13 borophene monolayers in

this work showcases an avenue to engineer in-plane borophene structure by the choice of

substrate and its facets. Real-time monitoring of the film topography, diffraction patterns,

and chemical composition is shown to be an efficient strategy to pioneer novel high-

quality 2D boron sheets and attain comprehensive insights. V13 borophene single crystals

offer a new platform to explore anisotropic massless Dirac or Weyl fermions and simulate

exotic black-hole related physics [185, 186]. We hope that this work will stimulate further

experiments on the V13 borophene, such as tuning of the chemical potential, photoemission

and transport measurements, and study of various potentially exotic quasiparticles.
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Figure 6.8: Electronic band structure of the modulated V13 borophene sheet ac-
counting for the stripe modulation. (a) Electronic band structure of the modulated V13
borophene sheet, computed by unfolding the spectral function of the modulated supercell
onto the Brillouin zone of the 10-atom small unit cell. The band structure follows the same
high-symmetry directions as that in Figure 6.5(a). (b) Superposition of the free-standing
(red lines) and modulated V13 borophene electronic band structures along high-symmetry
directions, as indicated in the inset (the red dots correspond to the reciprocal lattice). (c,d)
Crosscut of Dirac cone ΓX along directions parallel to the primitive reciprocal lattice vec-
tors. This Dirac cone is preserved under the striped modulation, and it shifts slightly in
energy–momentum space. (e,f) Crosscut of original Dirac cone XM. This Dirac cone
evolves into a Dirac nodal line due to the vertical replicas of the two bands at different en-
ergies. Moreover, flat band features emerge in the vicinity in the �–: space, as highlighted
by the red and yellow dashed lines. (g,h) Crosscut of Dirac cone kk. This Dirac cone is pre-
served under the striped modulation, and it shifts slightly in energy–momentum space. (i,j)
Crosscut of Dirac cone ΓY. This Dirac cone is preserved under the striped modulation, and
it shifts slightly in �–: space. Overall, by breaking the translation symmetry of the small
unit cell, the striped features indeed have a substantial influence on the band structure of
the V13 boron sheet. Specifically, band shifts/replicas in �–: space produce gap openings,
flat bands, abundant degeneracy points and lines, and make this system a good candidate to
explore novel emergent physics.
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Chapter 7

Structural analysis of 2D inverse spinel
Mg2TiO4 on MgO(001) for hosting exci-
tons

This chapter is adapted from an article entitled “Polarity-driven atomic displacements at
2D Mg2TiO4/MgO(001) oxide interface for hosting potential interlayer exciton states” by
Kidae Shin, Stephen Eltinge, Sangjae Lee, Hyungki Shin, Juan Jiang, Hawoong Hong,
Bruce Davidson, Ke Zou, Sohrab Ismail-Beigi, Charles H. Ahn, and Frederick J. Walker
that has been prepared for publication [187]. KS, SL, HS, JJ, HH, BD, and KZ did the
experimental work, I did the theoretical work, and SIB, CA, and FW provided guidance.

Interlayer excitons in solid-state systems have emerged as candidates for realizing novel

physics, ranging from excitonic transistors and optical quantum bits (qubits) to exciton

condensates. Recent investigations of interlayer excitons have been centered around 2D

transition metal dichalcogenides (TMDs), owing to their large exciton binding energies and

their ability to form van derWaals (vdW) heterostructures. In this chapter, in a collaboration

with experimentalist colleagues, we propose that an oxide system consisting of inverse spinel

Mg2TiO4 on MgO(001) may also be used to host interlayer excitons. Using a combination

of density functional theory (DFT) calculations, molecular beam epitaxy (MBE) growth,

and in situ crystal truncation rod (CTR) measurements, we show that the Mg2TiO4/MgO
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interface can be precisely controlled to yield a band offset suitable for hosting interlayer

excitons. We observe that the atoms in the polar Mg2TiO4 layers are displaced to reduce the

polarity of the film. Such polarity-driven atomic displacements lead to structural differences

between the different layers of Mg2TiO4. We also verify with DFT calculations that the

band offset in this material may lead to the localization of photoexcited electrons in the

bottom layer and holes in the top layer, which may then bind to form interlayer excitons.

7.1 Introduction

An exciton is a bosonic quasiparticle composed of a bound electron–hole pair. Excitons that

can be manipulated electronically and optically are attractive for novel physics applications.

For example, optical qubits with ultrafast control and fast excitonic switches have been

demonstrated using excitons in InAs quantum dots (QDs), AlAs/GaAs coupled quantum

wells (CQWs), andMoS2–WSe2 van derWaals (vdW) heterostructures [188, 189, 190, 191].

Also, signatures of Bose–Einstein condensates of excitons have been reported in materials

such asMoSe2–WSe2 heterostructures and GaAs/AlGaAs CQWs, along with the prediction

of novel superconductivity in exciton condensates [192, 193, 194, 195]. For practical

applications, large exciton binding energies and long lifetimes must be achieved to ensure

the stability of the exciton states [188, 196]. To this end, interlayer excitons in transition

metal dichalcogenide (TMD) heterostructures have emerged as prominent candidates. 2D

TMDs that are a monolayer or bilayer thick can host strongly bound excitons with large

binding energies (> 100meV) [197, 198]. When 2DTMDs of differentmaterials are layered

to form heterostructures, photoexcited electrons and holes can be localized in distinct layers

that are spatially separated. These electrons and holes can bind to form interlayer excitons,
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which can have lifetimes an order of magnitude longer than conventional intralayer excitons

[199, 200, 201].

Recently, 2D transition metal oxides (TMOs) have been predicted to exhibit even larger

exciton binding energies, on the order of 1 eV [8]. Moreover, it has been reported that TMOs

such as anatase TiO2 can host strongly bound excitons even in the bulk form [202, 203, 204].

TMOs also have the advantages that they are (1) generally robust under ambient conditions,

(2) scalable using well established growth techniques, and (3) integrable with both existing

metal-oxide technologies and novel complex oxide devices [205, 206, 207, 208, 209]. Along

with the advantages, using oxides for hosting interlayer excitons poses unique challenges.

Unlike 2D TMDs, for which vdW epitaxy or exfoliation is readily achieved, oxide epitaxy

is often complicated by issues such as lattice mismatch and intermixing. Interaction of the

film with the substrate leads to atomic-scale structural distortions at the interface, which

can alter the electronic properties of the film.

Here, based on density functional theory (DFT) calculations, we propose that a single

unit cell (uc) 2D Mg2TiO4 on an MgO(001) substrate can host interlayer excitons. Our

colleagues have grown and characterized theMg2TiO4/MgO structure usingmolecular beam

epitaxy (MBE) and in situ crystal truncation rod (CTR) measurements. DFT calculations

predict that the photoexcited electrons and holes should localize to the bottom and the top

Mg2TiO4 layers, respectively, and thus potentially form interlayer excitons. This binding

is favored by a polarization within the film that is predicted theoretically and inferred

experimentally from the displacement of Mg tetrahedral sites at the interface. Through in

situ CTR measurements, our colleagues confirm such displacements at the interface and

resolve the Mg2TiO4/MgO structure at the atomic level.
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7.2 Design considerations for oxides with interlayer exci-

ton states

The main challenge in creating oxides that can host interlayer excitons is finding a material

that has both suitable band alignment and feasible growth conditions. In order to confine

the exciton states to the 2D film region, the substrate band gap must be larger than the film

band gap. Within the film, different layers must have a type-II band alignment in order to

ensure localization of photoexcited electrons and holes to opposite sides [210, 211, 212].

On top of these restrictions, one has to find a latticed-matched substrate and film.

TheMg2TiO4/MgO system satisfies all of these conditions. MgO has a large band gap of

about 7.9 eV, while Mg2TiO4 is reported to have a band gap of about 3.7 eV [213, 214, 215].

In its inverse spinel structure, Mg2TiO4 is polar when cleaved along the (001) direction,

with alternating positively- and negatively-charged atomic layers. Thus, one can expect that

when interfaced with a non-polar material such as MgO(001), polar layers in the Mg2TiO4

will be displaced to reduce the polar discontinuity (i.e., dielectric screening) but the polarity

will remain and induce an asymmetric band structure for the different layers of Mg2TiO4.

MgO and Mg2TiO4 also have a good lattice match, with the lattice constant of Mg2TiO4

(8.4400 Å) being almost exactly twice that of MgO (4.2127 Å) [216, 217].

Figure 7.1(a) shows the structures of an ordered and disordered inverse spinel Mg2TiO4.

In the ordered inverse spinel, 1/8th of the tetrahedral voids are occupied byMg atoms (known

as Mg-tet sites), 1/4th of octahedral voids by Mg atoms (known as Mg-oct sites), and 1/4th

of octahedral voids by Ti atoms (known as Ti-oct sites), while the oxygen sublattice remains

similar to that in MgO. In the disordered case, the Mg-oct and Ti-oct sites are mixed. For
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Figure 7.1: (a) Crystal structures of the ordered (left) and disordered (right) Mg2TiO4.
(b) Examples of different types of Mg/Ti-oct site orderings possible for ordered Mg2TiO4.
(c) Schematics of oxygen sublattice matched registry (red arrows) and oxygen sublattice
mismatched registry (blue arrows). (d) Structure of bulk-like (left) and 1 uc Mg2TiO4
on MgO(001) relaxed to form the tetrahedral interface (right), as obtained from DFT
calculations. The first layer of Mg-tet sites is displaced to fill nearby vacant Mg-oct sites
(red arrow). (e) Structure of bulk-like (left) and 1 uc Mg2TiO4 on MgO(001) relaxed to
form the octahedral interface (right), as obtained from DFT calculations. The last layer of
Mg-tet sites is displaced to fill nearby vacant Mg-oct sites (red arrow).
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the ordered inverse spinel structure, different cation orderings are possible at the octahedral

sites. Type I and II orderings in Figure 7.1(b) are examples of structures in which there are

equal number of Mg-oct and Ti-oct atoms for each monolayer of Mg2TiO4. For type III

ordering, only two monolayers in a unit cell have equal number of Mg-oct and Ti-oct atoms.

In type IV ordered case, the Mg-oct and Ti-oct atoms are all segregated into different layers.

We note that the disordered and the type I, II ordered Mg2TiO4 have the same in-plane

averaged electron density profile along the 2-axis, and thus cannot be distinguished from

each other through integer-order X-ray diffraction measurements along &I. However, type

III and IV structures in which the Mg-oct and Ti-oct sites are distributed inhomogeneously

along 2-axis can be distinguished from disordered or type I, II ordered Mg2TiO4. The CTR

analysis presented in latter parts of the chapter confirms that the Mg2TiO4 structure is of

type I, II ordered or disordered. Thus, we choose the type I ordered structure as the basis

for DFT calculations, based on the assumption that there is no preferential alignment of

Mg-oct and Ti-oct sites either in-plane or out-of-plane. Also, we choose the type I structure

over the disordered structure to reduce the computational load.

7.3 Electronic structure of Mg2TiO4/MgO from DFT cal-

culations

Using DFT calculations, we confirm that Mg2TiO4/MgO indeed has a band offset favorable

for hosting interlayer excitons. We first consider different waysMg2TiO4 might grow epitax-

ially on theMgO(001) surface. Mg2TiO4 can stabilize onMgOwith either cation octahedral

sites on MgO oxygen sites, or Mg-tet sites on MgO oxygen sites. The oxygen sublattices of

Mg2TiO4 and MgO are matched for the former registry (red arrows in Figure 7.1(c)), while
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Figure 7.2: (a) Schematic of the band offset in 1 uc Mg2TiO4 (MTO)/MgO. Upon
photoexcitation, electrons are localized to the bottom layer and the holes are localized to the
top layer; they can bind to form interlayer excitons. (b) Projected density of states (PDOS)
for the MTO top, MTO bottom, and MgO interface layers from DFT+HSE06 calculations.

they are mismatched for the latter (blue arrows in Figure 7.1(c)). Preliminary analysis of the

CTR data showed a better fit to the oxygen-sublattice-matched registry. Thus, the following

DFT calculations are based on the oxygen-sublattice-matched registry only.

Figures 7.1(d) and (e) show the DFT-calculated structures of the relaxed 1 uc Mg2TiO4

on MgO. The results show that two types of interfaces are possible. The first starting layer

of Mg2TiO4 at the interface is the Mg-tet layer for the tetrahedral interface (Figure 7.1(d)),

while it is the Mg-oct/Ti-oct layer for the octahedral interface (Figure 7.1(e)). For both

the tetrahedral and octahedral interfaces, Mg-tet atoms are displaced during the course of

stabilizing the structure. In case of the tetrahedral interface, the Mg-tet atoms in the first

layer of Mg2TiO4 are displaced to fill nearby octahedral vacancies (Figure 7.1(d)). For the

octahedral interface, Mg-tet atoms in the last layer are displaced to fill the nearby octahedral

vacancies (Figure 7.1(e)).
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Figure 7.3: (a) PDOS of all layers considered in the DFT+HSE06 calculations for the
tetrahedral interface (top) and octahedral interface (bottom). For the tetrahedral interface,
the valence band maximum (VBM) is in the Mg2TiO4 (MTO) top layer, and the conduction
bandminimum (CBM) is in theMTO bottom layer. For the octahedral interface, the valence
band maximum (VBM) is in the MgO substrate layer, and the conduction band minimum
(CBM) is in the MTO top and interior layers. (b) Band structure of tetrahedrally-interfaced
1 uc MTO/MgO from DFT+HSE06 calculations. The VBM is at the Y point (star) and the
CBM is at the Γ point (circle) in the Brillouin zone. The inset shows that the valence band
is mostly flat between the Γ and Y points. (c) Isosurfaces displaying the Bloch functions for
the band-edge states computed in DFT. Electron density is localized mostly to O 2? orbitals
in the MTO top layer for the VBM (bottom). For the CBM, electron density is localized
mostly to Ti 33 orbitals in the MTO bottom layer (top).
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To confirmwhether Mg2TiO4/MgO exhibits the type-II band offset needed for interlayer

excitons, we calculate the projected density of states (PDOS) for each layer in the relaxed

Mg2TiO4 on MgO. We first consider the tetrahedral interface structure. We employ the

HSE06 hybrid functional in the DFT calculations to account for some of the effects of

electron–electron interactions neglected by standard DFT, and we obtain a band gap of

3.88 eV, which is slightly larger than the reported bulk Mg2TiO4 band gap. Figure 7.2(b)

shows the PDOS associated with the Mg2TiO4 top and bottom layers, as well as the MgO

interface layer. The PDOS plot shows a band offset between the top and bottom layers of

the tetrahedral interface Mg2TiO4. Such a band offset is expected to lead to localization

of photoexcited holes in the top layer and electrons in the bottom layer, possibly forming

interlayer exciton states (Figure 7.2(a)).

A PDOS plot for all 4 layers of Mg2TiO4 and 4 layers of MgO substrate considered in

the DFT calculation clearly shows that the valence band maximum (VBM) of the system

is in the top Mg2TiO4 layer, while the conduction band minimum (CBM) is in the bottom

Mg2TiO4 layer (Figure 7.3(a) top). The VBM states are localized to oxygen 2? orbitals in

the top layer, and the CBM states are localized to titanium 33 orbitals in the bottom layer

(Figure 7.3(c)). Also, from the calculated band structure, we determine the band gap to be

indirect. The VBM is located at the Y point of the Brillouin zone, whereas the CBM is

located at the Γ point (Figure 7.3(b)). This implies that a band-edge electronic transition

will require momentum transfer. Thus, we expect optical excitation and recombination to be

weak. Essentially, a potential exciton consisting of the VBM and CBM states may not only

be an interlayer exciton but also an indirect exciton, with the electron and hole separated in

both real space and momentum space. We also note that the VBM of the Mg2TiO4 bottom

and the MgO interface layers are very close in energy. This is attributed to the Mg-tet sites
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in the bottom Mg2TiO4 layer filling nearby Mg-oct sites and bringing the net charge of the

bottom Mg2TiO4 layer close to that of MgO interface. At the same time, the CBM of the

Mg2TiO4 bottom layer is at significantly lower energy compared to the MgO interface. This

is due to the presence of Ti atoms in the Mg2TiO4 layer, and is confirmed by the calculated

Bloch functions for the CBM states (Figure 7.3(c)).

It is important to note that the above band structure is unique to the tetrahedral interface.

DFT+HSE06 calculations show that the octahedral interface structure has a direct band gap

of 3.53 eV, with VBM and CBM both at the Γ point. Also, a PDOS plot for the octahedral

interface shows that theVBM is in theMgO substrate, with theCBM in theMg2TiO4 interior

and top layers (Figure 7.3(a) bottom). Such a band structure is not desirable for hosting

long-lived excitons, since the excitons cannot be confined to the film layer. This illustrates

the importance of precisely controlling and characterizing the oxide interface. According

to our DFT calculations, the relaxed tetrahedral interface structure is about 0.24 eV/uc more

stable than the relaxed octahedral interface structure. In the following parts of this chapter,

our colleagues confirm experimentally that the tetrahedral interface is indeed achieved.

7.4 Mg2TiO4 growth using reactive MBE

Our colleagues successfully grew a single unit cell Mg2TiO4 on MgO(001) using a reactive

MBE process [187]. The growth was carried out in the oxide MBE chamber at beamline

33-ID-E at Advanced Photon Source (APS) to allow for in situ CTR measurements before

and after growth. Our colleagues deposited TiO2 on MgO using Ti flux from an effusion

cell and molecular oxygen. Prior to growth, the MgO substrates were annealed at over

700 ◦C at an oxygen partial pressure of about 6 × 10−9 Torr to obtain a clean surface. The
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Figure 7.4: Reflection high-energy electron diffraction images along [100] and [110]
direction for (a,b) oxygen-annealed MgO substrate at 700°C, (c,d) 1 uc Mg2TiO4 grown on
MgO at 600°C, and (e,f) 1 uc Mg2TiO4 grown on MgO at 800°C. (g) Surface of Mg2TiO4
film viewed from the top. The surface unit cell of Mg2TiO4 (red) is a centered c(2 × 2)
reconstructed unit cell of MgO (dashed red).
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growth temperature was maintained at about 800 ◦C. Inter-diffusion of Mg and Ti atoms

at the MgO surface leads to formation of Mg2TiO4 at high temperatures. Reflection high-

energy electron diffraction (RHEED) images show epitaxial growth of the films on MgO

(Figure 7.4). Additional diffraction peaks appearing in the RHEED images (white arrows)

are attributed to the surface structure of ordered inverse spinel Mg2TiO4 (Figure 7.4(e,f)).

TheMg2TiO4 surface unit cell has a c(2×2) symmetry relative to the underlyingMgOsurface

unit mesh (Figure 7.4(g)). Extra half-order rods in RHEED along both the [100] and [110]

directions agree with such a surface reconstruction. We also note that the reconstruction

appears only when TiO2 is deposited at high temperatures above 700 ◦C, or when the

film is annealed at elevated temperatures following a lower temperature growth. This is

consistent with previously reported formation mechanisms of Mg2TiO4 [218, 219, 220].

Thus, based on the above observations, we conclude that the deposition of TiO2 on MgO

at high temperatures results in the epitaxial growth of thin Mg2TiO4 on MgO, down to the

single unit cell limit.

7.5 Structural characterization using CTRmeasurements

Our colleagues employed in situ CTR measurement to confirm the atomic-scale displace-

ments at the interface predicted by ab initio theory [187]. CTR measurements were done

immediately after growth in ultra-high vacuum (UHV) without exposing the films to the

atmosphere. The 3D electron density maps of the films were obtained using the coherent

Bragg peak analysis (COBRA) phase retrieval technique [221, 222, 223, 224]. Since our col-

leagues use the integer-order diffraction rods along the &I direction, information contained

in the CTR data is in-plane averaged electron density profile along the 2-axis. Therefore,
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Figure 7.5: (a) Reduced unit cell model of Mg2TiO4 used to fit the CTR data (top), and
2D cut of the electron density map along the (110) plane obtained from COBRA (bottom).
While 10 layers of MgO substrate was used for COBRA, we show only 6 layers of MgO
due to limited space. Red dashed line marks the first layer of Mg2TiO4. (b) Experimental
CTR data (sky blue circles) and best fits (red lines). (c) Integrated electron density profile
for each Mg/Ti-oct site (teal), oxygen site (blue), and Mg-tet site (light mint). Full and
empty circles represent 1 uc and 2 uc films respectively. Dashed black lines show nominal
electron densities of Mg, octahedral cation site, oxygen, and tetrahedral site.
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they used the reduced structure of Mg2TiO4 shown in Figure 7.5(a) to fit the CTR data.

The reduced structure has the same unit cell as MgO, but the occupancy of the Mg/Ti-oct

sites is 0.25 Ti + 0.25 Mg occupancy, and the Mg-tet sites have 0.125 Mg occupancy. Such

a structure has the same in-plane averaged electron density profile along the 2-axis as the

full type I, II ordered or disordered Mg2TiO4 structure. X-ray diffraction spectra calculated

using this model structure fits the experimental spectra well (Figure 7.5(b)).

The electron density maps of 1 uc and 2 uc Mg2TiO4 on MgO clearly show non-zero

electron density at the Mg-tet sites within the Mg2TiO4 layers, confirming the structure is

indeed Mg2TiO4. The integrated electron densities of these sites are close to 1/8th of the

Mg electron density, which agrees with the average electron density of the Mg-tet sites in

the Mg2TiO4 structure (Figure 7.5(c)). While the number of layers deposited are 4 and 8

for 1 uc and 2 uc films respectively, the electron density maps show 6 and 9 layers, with the

top two layers having drastically lower electron densities. Also, the electron densities of the

film layers decrease rapidly towards the film-vacuum surface. We attribute these non-ideal

features to disorder near the surface and roughness effects.

7.6 Polarity-driven displacements at the interface

A closer look at the electron densities of the Mg/Ti-oct sites at the MgO–Mg2TiO4 interface

confirms the displacement of Mg-tet atoms. If the Mg-tet atoms in the first layer are

displaced to fill nearby Mg/Ti-oct vacancies, the electron density of the first layer Mg/Ti-

oct sites will be increased by the amount corresponding to the electron density of the

Mg-tet sites. In such case, the electron density of the first layer Mg/Ti-oct sites will be

increased to 11.61 (0.5 Mg + 0.25 Ti electron densities) from the nominal value of 8.60
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Figure 7.6: (a) Valence of each Mg2TiO4 layer and displacements of the Mg-tet atoms.
Subscripts denote total number of atoms in each layer perMg2TiO4 unit cell and superscripts
denote the valence. Red dashed lines indicate the centers of the Mg/Ti-oct and oxygen sites,
and the midpoint between them. Red arrow indicates displaced position of Mg-tet atoms,
which is off-center by about 17 pm for the marked layer. (b) Plot of the Mg-tet atom
displacements from its nominal position for 1 uc (red filled circles) and 2 uc (red hollow
circles) samples, and the DFT calculated structure of 1 uc Mg2TiO4 (blue filled circles).

(0.25 Mg + 0.25 Ti electron densities). Also, one would observe no electron density for the

Mg-tet sites immediately above the last MgO oxygen layer. A COBRA electron density map

for 2 uc Mg2TiO4 indicates that the integrated electron density of the first Mg2TiO4 layer

Mg/Ti-oct sites is 11.27, in close agreement with the value expected for the DFT-calculated

structure of relaxed Mg2TiO4 on MgO(001) (Figure 7.5(c)). The above observation also

agrees with the DFT calculation that predicts the tetrahedral interface to be energetically

more favorable than the octahedral interface. In the case of the octahedral interface, one

would expect finite electron density for the Mg-tet sites immediately above the last MgO

oxygen layer and increased electron densities for the Mg/Ti-oct sites in the top Mg2TiO4

layer (Figure 7.1(e)), both of which disagree with the COBRA electron density map.

However, although the experiment confirms the tetrahedrally-interfacedMg2TiO4 struc-

ture from the theory, picoscale displacements of the Mg-tet sites extracted from the experi-
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ment are not consistent with the DFT structure. Our colleagues extracted the displacements

of Mg-tet sites from their bulk positions, which would be at a midpoint between the Mg/Ti-

oct and oxygen layers (Figure 7.6(a)). The DFT calculation predicts that the Mg-tet sites

are mostly displaced upwards from their bulk positions. In contrast, the experiment shows

the Mg-tet sites are mostly displaced downwards (Figure 7.6(b)). One possible reason for

such a discrepancy is the effect of roughness and disorder near the film surface. The root

mean squared (rms) roughness of the 2 uc Mg2TiO4 film is 0.752 nm over a 5 `m × 5 `m

area as measured by atomic force microscopy (AFM), which is about 90% of the Mg2TiO4

unit cell thickness. Another possible source of discrepancy is the growth technique. The

DFT calculation started with a bulk Mg2TiO4 structure on MgO, whereas the experiment

consisted of reactive MBE growth depositing only TiO2 on MgO. The growth process in

which all Mg atoms in the Mg2TiO4 film are sourced from the MgO substrate below may

have caused preferential downward displacements of the Mg-tet sites.

7.7 Conclusion

In conclusion, we propose that the single unit cell Mg2TiO4 on MgO(001) can serve as

an oxide platform for exploring interlayer excitons. We also argue that the Mg2TiO4/MgO

system has the potential to be used for hosting energy-tunable interlayer excitons. In the

few-unit-cell limit, Mg2TiO4 has a band offset between the top and the bottom layers. By

controlling the distance between the top and bottom layers of Mg2TiO4, one may be able to

control the spatial size of the interlayer exciton state, thereby controlling the binding energy.

This may be achieved simply by varying the thickness of the Mg2TiO4 film. See Section 8.7

and especially Figure 8.10 for further discussion.
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One area for potential improvement is growing Mg2TiO4 through co-deposition of Mg

and Ti on MgO. As mentioned in the previous section, reactive MBE growth may be

responsible for the observed surface roughness, which amounted to about 90% of the 1

uc Mg2TiO4 thickness. Co-deposition may reduce the surface roughness and result in

better-quality films. Since the binding energy of a potential interlayer exciton is expected

to be related to the thickness of the Mg2TiO4 film, large surface roughness can lead to large

variation in the binding energies of the observed excitons. Also, a rough surface with large

density of atomic steps can reduce the diffusion length of potential interlayer excitons, as

they recombine at the step edges where the top layer is abruptly terminated [188]. Thus,

it would be ideal to achieve large terraces with small surface roughness through improved

growth techniques.

A key enabling factor for potential interlayer excitons in Mg2TiO4/MgO is the band

offset created by the polarity of the film. A signature of that polarity, in the form of atomic

displacements at the inverse spinel interface, has been observed for the first time in this work.

We expect that similar band offsets may appear in other polar spinel materials grown on

non-polar host material interfaces. This implies that the above scheme for hosting interlayer

excitons in oxides can be generalized to other interesting spinel oxides, such as Mg2SnO4

and MgGa2O4, which show persistent luminescence [225, 226, 227]. Thus, the merit of

this work lies in identifying 2D spinel oxide interfaces as a new class of materials for which

exciton physics might be explored. To further confirm the potential of these materials, our

colleagues plan to perform optical measurements on these materials in the future.
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Chapter 8

Further study of excitons in Mg2TiO4 on
MgO via the �,-BSE method

In the previous chapter, we described the growth and structural characterization ofMg2TiO4

films on MgO. Our ab initio work in that chapter used the framework of density functional

theory, with nonlocal electron–electron interaction effects treated using hybrid functionals.

In this chapter, we apply the�,-BSE method to more accurately describe the quasiparticle

energies and absorption spectra of Mg2TiO4. We obtain both intralayer and interlayer

excitons with substantial binding energies. We conclude by assessing plausible mechanisms

to favor interlayer excitons in experiments.

8.1 Introduction

In Chapter 7, we established using density functional theory that Mg2TiO4 films on

MgO(001) have a favorable band alignment for hosting interlayer excitons. The valence

bandmaximum is localized to O 2? orbitals on the film’s surface, while the conduction band

minimum is localized to the Ti 33 orbitals of the film’s interfacial side. The band edges
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have a type I alignment with respect to the substrate, a necessary condition for excitons

to be isolated to the film. Our analysis in that chapter, while suggestive, is fundamentally

incomplete. DFT is not equipped to accurately describe excited electrons, or to treat the

dynamic binding interaction between excited electrons and the holes they leave behind in

the valence band. To quantitatively describe excitons in Mg2TiO4, we need a many-body

formalism.

Our tool of choice is the �,-BSE method, which we introduced in some detail in

Section 2.2. The reader may wish to refer back to that section for a refresher, but briefly,

the �, method computes the self-energy of a material’s quasiparticle excitations in terms

of the one-body Green’s function � and the screened Coulomb potential , . The self-

energy replaces the exchange–correlation functional in the quasiparticle energy eigenvalue

equation, providing a self-consistent correction to the single-particle energies obtained in

DFT. These quasiparticle energies can be fed into the Bethe–Salpeter equation (BSE),

which describes the energies and eigenstates of interacting electron–hole pairs (excitons).

The spectrum of exciton energies can then be used to compute the optical absorption

spectrum. In this chapter, we will describe the application of this workflow to Mg2TiO4

films on MgO.

8.2 Methods

To generate mean-field wavefunctions and energies, we performed density functional the-

ory (DFT) calculations using the Quantum Espresso software package [93, 94]. We used

norm-conserving pseudopotentials from the SG15 library generated with the ONCV code

[228, 229]. Our exchange–correlation functional was the Perdew–Burke–Ernzerhof (PBE)
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generalized gradient approximation [20]. We used a plane-wave basis set with a wave-

function energy cutoff of at least 80 Ry. SCF calculations used a Monkhorst–Pack k-grid

[159] with 14 meV of Gaussian thermal broadening, while PDOS plots were generated by

additional non-self-consistent calculations using the tetrahedron method of Blöchl et al.

[230].

Substrate-bound calculations used a slab geometry, with a surface lattice parameter

referenced to a theoretical relaxed bulk MgO parameter of 4.255 Å. Some calculations used

for convergence testing were carried out at slightly different lattice parameters. Each slab

calculation included vacuum spacing equal to at least the slab thickness—a requirement for

slab-geometry Coulomb truncation—plus a buffer of 4 Å to account for the evanescent tails

of surface-state wavefunctions. We used a 16 × 16 × 1 k-point grid. For all polar systems,

we used a self-consistent dipole correction in the vacuum to avoid unphysical electric fields

arising from periodic boundary conditions [142].

We used the BerkeleyGW software package [53, 47, 54] to carry out single-shot �0,0

and BSE calculations, in which the Green’s function and screened Coulomb interaction

were constructed from Kohn–Sham DFT states and energies. All �, calculations used

the generalized plasmon pole model [47] to describe the frequency-dependent dielectric

function and the static remainder term [60] to expedite convergence of the Coulomb hole

self-energy. All substrate-bound calculations used a slab Coulomb truncation scheme

[62]. All calculations with more than 10 atoms used simple approximate physical orbitals

(SAPOs) to account for high-energy unoccupied states [61].
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(a)

(b)

(c)

Figure 8.1: Convergence of �, quasiparticle band gap as a function of cutoff energy for
(a) bulk MgO, (b) bulk rutile TiO2, and (c) an MgO(001) slab. Convergence is plotted for
calculations with a smaller (blue line) and larger (green line) number of DFT bands—the
balance of the bands being provided by SAPOs—as well as for an all-DFT calculation (red
line).

Table 8.1: Number of bands required for �, calculations in materials treated in this
chapter.

Material Atoms / uc States to 15 Ry 30 Ry 40 Ry
Bulk MgO 2 142 357 543
Bulk TiO2 (rutile) 6 452 1187 1848
Bulk Mg2TiO4 28 2187 5881 9064
4 MgO layers 8 1016 2684 4252
3 Mg2TiO4 layers 21 3227 8895 -
4 MgO + 1 Mg2TiO4 layer(s) 39 4757 13005 19997
3 MgO + 3 Mg2TiO4 layers 45 6375 17405 -
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8.3 Convergence and scaling tests

To determine the parameters needed for our �, calculations, we performed convergence

tests on three small systems: bulkMgO, bulk TiO2 in its rutile form, and a slab ofMgO(001)

containing four atomic layers. The unit cells of these systems contain 2, 6, and 8 atoms,

respectively. For each material, we computed the quasiparticle band gap using both a full

set of DFT states and DFT states supplemented with SAPOs. In the calculation of both the

polarizability and the Coulomb hole self-energy term, we included all unoccupied states

with energy less than or equal to the kinetic energy G-vector cutoff for the dielectric matrix

nGG′ (q). The convergence of the quasiparticle band gaps with respect to this single energy

parameter is shown in Figure 8.1. From this data, we estimate that a cutoff of 40 Ry is

sufficient to converge the band gap of these materials to within 50 meV, while a cutoff of

30 Ry is sufficient for 100 meV accuracy.

Due to resource limitations, we chose a 30 Ry cutoff for our full-size Mg2TiO4 calcula-

tions. Table 8.1 lists the number of states needed to reach this cutoff for systems of interest.

For particles of mass < and quadratic dispersion � (:) = ℏ2:2/2< in a box with volume +

and periodic boundary conditions, the number of states less than a particular energy is

Ω(�) = +

3c2

(
2<�
ℏ2

)3/2
∝ + · �3/2. (8.1)

Thus, the number of states scales with the volume of the unit cell for bulk materials. For

slab materials, the volume includes a vacuum at least as large as the slab, so the number of

required states roughly doubles. Where necessary, we computed states up to a 15 Ry cutoff

explicitly in DFT and constructed the balance from SAPOs.
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Figure 8.2: Projected density of states (PDOS) for one layer of Mg2TiO4 on MgO(001).
The upper panel decomposes the density of states layer-by-layer; Mg2TiO4 film layers are
marked with solid lines and substrate layers are marked with dash-dotted lines. The lower
panel decomposes the DOS by atom. There are observable contributions from the interfacial
substrate layer to both band edges. The highly dispersive band from the first substrate layer
beginning ∼3.5 eV above the valence band maximum is an artifact discussed in the text.

8.4 Polarity and structural properties

Excitonic properties in Mg2TiO4 depend sensitively on several interrelated factors: the

physical proximity of band-edge states in real space, the presence and magnitude of a

potential difference across the system, and the band offset between the substrate and the

Mg2TiO4 film. Therefore, we began at the DFT level by tracking how these properties

evolve as the Mg2TiO4 film grows layer-by-layer. We relaxed 1, 2, 3, 4, and 6 atomic layers

of the tetrahedrally-interfaced Mg2TiO4 structure (discussed in the previous chapter) on 4

atomic layers ofMgO(001). The projected densities of states (PDOS) for these materials are

plotted in Figures 8.2–8.6. We show both the layer-by-layer decomposition of the density

of states and a projection onto atomic orbitals in order to explain both the physical location

154



Figure 8.3: PDOS for two layers of Mg2TiO4 on MgO(001). The panels and coloring are
the same as in Figure 8.1. There is no appreciable band offset in the valence band, and
substantial contributions from both Mg2TiO4 layers in the low-lying conduction bands.

Figure 8.4: PDOS for three layers of Mg2TiO4 on MgO(001). The panels and coloring
are the same as in Figure 8.1. There is a type-I band offset between the substrate and the
Mg2TiO4, with the valence band maximum dominated by the surface Mg2TiO4 layer and
the conduction band minimum dominated by the interfacial Mg2TiO4 layer.
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Figure 8.5: PDOS for four layers of Mg2TiO4 on MgO(001). The panels and coloring
are the same as in Figure 8.1. Roughly speaking, each of the lower two Mg2TiO4 layers
contributes a low-lying flat conduction band, with the exterior Mg2TiO4 layers contributing
in a more mixed fashion.

Figure 8.6: PDOS for six layers of Mg2TiO4 on MgO(001). The panels and coloring are
the same as in Figure 8.1. The conduction band features four clearly defined flat bands,
each originating from a different interior Mg2TiO4 layer. The polar nature of the film is
clearly illustrated by the dramatically reduced band gap.
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Table 8.2: Potential difference and DFT band gaps for MgO + Mg2TiO4 slabs of varying
thickness, all reported in eV. The bulk Mg2TiO4 band gap is also provided for comparison.
The “surface gap” is the energy difference between the valence band maximum and the
center of the first substantial peak in the surface-layer PDOS (see Figures 8.2–8.6). The
reported band gaps consider Mg2TiO4 film states only; the unphysical conduction band
feature in Figure 8.2 is ignored.

Number of layers Δq Δq / Mg2TiO4 layer Band gap Surface gap
Bulk Mg2TiO4 - - 3.52 -
3 MgO + 1 Mg2TiO4 0.53 0.53 - -
4 MgO + 1 Mg2TiO4 0.51 0.51 3.82 3.90
3 MgO + 2 Mg2TiO4 1.00 0.50 3.26 3.36
4 MgO + 2 Mg2TiO4 1.00 0.50 3.29 3.38
3 MgO + 3 Mg2TiO4 1.75 0.58 2.67 3.52
4 MgO + 3 Mg2TiO4 1.76 0.59 2.66 3.53
4 MgO + 4 Mg2TiO4 2.10 0.52 2.30 3.49
4 MgO + 6 Mg2TiO4 3.17 0.53 1.18 3.54

and chemical character of the band edges. For thin films (1–2 Mg2TiO4 layers), there is

substantial admixture between the band-edge states of the substrate and the film. Beginning

with the 3-layer film, both band edges are dominated by states within the Mg2TiO4 film.

The sharp onset of the PDOS in both the valence band and the conduction band indicates

textbook 2D band dispersion, and the energetic narrowness of the features signals the

presence of flat (i.e., non-dispersive) bands. In this case, the valence band maximum is

localized to O 2? states, while the conduction band minimum is localized to Ti 33 states.

As discussed in the previous chapter, the tetrahedrally-terminatedMg2TiO4 film is polar

and generates a potential difference that grows with film thickness. This is a promising

feature for the existence of interlayer excitons, since it tilts the band edges to localize the

valence bandmaximum to the outer surface and the conduction bandminimum to theMgO–

Mg2TiO4 interface. This tilting is accompanied by a reduction in the overall band gap, as

shown in Table 8.2. The potential difference cannot grow arbitrarily large without triggering

a polar catastrophe leading to a surface reconstruction, so we expect that this structure will
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break down for very thick films. This fate is hinted at in the six-layer PDOS presented in

Figure 8.6: the outermost Mg2TiO4 layer retains a bulk-like band gap of roughly 3.54 eV

(see the pale blue feature at that energy in the conduction band), but the global conduction

band minimum has marched down to 1.18 eV, with a sequence of flat bands from each

preceding layer above it.

There is a substrate feature in Figure 8.2 between 3.5 and 3.8 eV above the Fermi

energy that requires explanation. This highly dispersive unoccupied state is composed of

Mg 3B and O 2? states from the lower exposed surface of the MgO substrate slab. Such

a state is unphysical in the context of an actual MBE experiment, since the substrate is

not suspended in vacuum. In addition, we will find that the �, procedure shifts the

energy of this surface state upwards by less than those of the Mg2TiO4 film, leading to

anomalous values for the quasiparticle band gaps. In principle, this state could be removed

from our calculation, perhaps by decorating the bottom edge of the substrate with neutral,

electronically repulsive atoms such as He. However, due to its physical separation from

the Mg2TiO4 overlayer, we find that this state does not couple to the others in absorption

calculations, so its contributions can be readily ignored. Except where noted, quasiparticle

energies below are reported after removing this state from consideration.

8.5 Quasiparticle calculations

Based on the data in Figures 8.2–8.6, we performed quasiparticle energy calculations on

the smallest system that plausibly reflects the required band offset, a slab of three MgO

layers and three Mg2TiO4 layers. We call this the M3T3 structure. A discussion of how to

extrapolate our results to thicker slabs can be found in Section 8.7. We also performed tests
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Figure 8.7: Quasiparticle energies for Mg2TiO4-based materials. (a) Side view of the
atomic structure of the M3T3 slab (three MgO layers + three Mg2TiO4 layers). Mg are
large orange balls, O are small red balls, and Ti are blue balls. The layers outlined in
gray are frozen and isolated in vacuum to produce the M0T3 structure. (b) Quasiparticle
energies for M0T3, plotted as the DFT energies versus the quasiparticle energy correction.
Results are shown for two q-grids and two procedures for sampling the Brillouin zone. (c)
Quasiparticle energies for M3T3. Only one q-grid is used. (d) Quasiparticle energies for
bulk Mg2TiO4.
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Table 8.3: Comparison of DFT and �, band gaps for Mg2TiO4 materials, all reported in
eV. �, band gaps are labeled by the q-grid on which the dielectric matrix was calculated.

2 × 2 × 1 4 × 4 × 1
Material DFT Uniform NNS Uniform NNS
3 Mg2TiO4 layers 2.73 6.62 6.43 6.46 6.41
3 MgO + 3 Mg2TiO4 layers 2.67 7.00 6.50 - -

3 × 3 × 2 4 × 4 × 3
Bulk Mg2TiO4 3.52 6.02 6.02

on a smaller slab of three Mg2TiO4 layers frozen to their substrate-bound atomic positions

but with the substrate removed (see Figure 8.7(a)), whichwe denote asM0T3. The dielectric

matrix was calculated on a 2× 2× 1 coarse q-grid for both materials and also on a 4× 4× 1

q-grid for the M0T3 slab. In each case, we performed the calculation both on a uniform

q-grid and by subsampling the q = 0 Voronoi cell with #B = 6 radially distributed points

(see Section 2.2.6 and [63]). The subsampling direction was chosen to be halfway between

the principal polarization axes to maximally expedite convergence [63]. �, quasiparticle

energies were calculated on a 2 × 2 × 1 k-grid and then interpolated onto a 4 × 4 × 1 grid

using wavefunction projections [53]. The near-�� bands of this material are quite flat, so

we expect the error due to the interpolation procedure to be less than 100 meV even on this

coarse grid.

To identify features of our calculations that are unique to the Mg2TiO4 film, we also

investigated the quasiparticle energies of bulk Mg2TiO4. For this material, we calculated

the dielectric matrix on both 3× 3× 2 and 4× 4× 3 q-grids, and used each one to calculate

quasiparticle energies on an identically-sized k-grid.

Quasiparticle energies are plotted for each material in Figures 8.7(b-d). The horizontal

axis of each plot is the DFT energy referenced to the valence band maximum, while the

vertical axis is the difference in �, and DFT energies for each state. In general, the
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conduction band states are shifted up by a modest amount, while the valence band states

are pushed down more dramatically. We see in Figure 8.7(c) that the use of nonuniform

Brillouin zone sampling for M3T3 produces a substantial correction to both the band gap

(the conduction–valence energy difference) and the absolute quasiparticle energies. For

both slab materials, the energy shift is quite rigid, with much of the conduction band being

shifted up and much of the valence band being shifted down by roughly fixed amounts. The

exceptions are the surface states mentioned in the previous section, which exhibit reduced

quasiparticle energy shifts. As noted above, we do not include these unphysical states when

reporting �, band gaps.

The band gap is substantially enhanced in each material: the DFT and �, band gaps

calculated using various q/k-grids are compared in Table 8.3. For the M0T3 structure, the

band gap changes by only 0.02 eV between the 2× 2× 1 and 4× 4× 1 NNS calculations; we

thus expect the band gap in the 2 × 2 × 1 NNS M3T3 calculation to be converged to within

100 meV, if not better. The quasiparticle energy corrections preserve the spatial band offset,

but they slightly tilt the flat Γ–Y portion of the valence band seen in Figure 7.3(b). As a

result, the band gap is now direct, when it was previously nominally indirect.

8.6 Excitonic and absorption calculations

We performed BSE calculations on the three structures discussed in the previous section:

the M0T3 and M3T3 slabs and bulk Mg2TiO4. For both slabs, we included 19 valence

bands and 15 conduction bands in the calculation of the BSE kernel; this accounts for the

top 1.5 eV of the valence bands and bottom 2.0 eV of the conduction bands in M3T3. In

M0T3, the widths of the same energy windows are 2.1 eV and 2.5 eV, respectively. For bulk
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Figure 8.8: Absorption spectra for (a)M0T3, (b)M3T3, and (c) bulk Mg2TiO4 calculated
with both the RPA and the BSE. The lowest-energy exciton (for BSE) and lowest-energy
interband transition (for RPA) are marked with an asterisk; for the slabs, the lowest-energy
interlayer exciton is marked with an “x.”
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Figure 8.9: Intralayer (surface) and interlayer excitons for Mg2TiO4 on MgO. (a,c) Top (a)
and side (c) views of the electron distributionΨ(r4, rℎ) for the lowest exciton in M3T3. The
electron is primarily localized to the surface. (b,d) Top (b) and side (d) views of the lowest
interlayer exciton in M3T3. In all exciton electron distribution plots, the hole location is
marked by a white circle with a black border. (e) Isosurface of the marginal hole distribution
for the surface exciton. The maximum of the distribution occurs at the point marked by a
white circle with a black border, which is also the point chosen for the hole position in the
other plots.
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Table 8.4: Convergence of exciton binding energies (in eV) with coarse and fine grids for
Mg2TiO4 materials.

Binding energy
Material Coarse grid→ Fine grid Largest Interlayer

3 Mg2TiO4 layers (M0T3)

2 × 2 × 1→ 8 × 8 × 1 2.77 2.36
2 × 2 × 1→ 16 × 16 × 1 2.92 2.50
4 × 4 × 1→ 8 × 8 × 1 2.21 1.85
4 × 4 × 1→ 16 × 16 × 1 2.35 1.97

3 MgO + 3 Mg2TiO4 layers (M3T3) 2 × 2 × 1→ 8 × 8 × 1 2.46 2.04
2 × 2 × 1→ 16 × 16 × 1 2.60 2.18

Bulk Mg2TiO4

3 × 3 × 2→ 6 × 6 × 4 1.09 -
3 × 3 × 2→ 9 × 9 × 6 1.10 -
4 × 4 × 3→ 6 × 6 × 4 1.10 -

Mg2TiO4 we included 48 valence bands and 28 conduction bands, accounting for a 4.3 eV

valence window and a 5.3 eV conduction window. For solving the BSE and computing

absorption spectra, we used fine grids with sizes up to 16× 16× 1 for the slabs and 9× 9× 6

for bulk Mg2TiO4. On the fine grids, we included 14 valence bands and 12 conduction

bands for the slabs, and 25 valence bands and 13 conduction bands for bulk Mg2TiO4.

Figure 8.8 plots two absorption spectra for each of (a) M0T3, (b) M3T3, and (c) bulk

Mg2TiO4: the RPA spectrum computed from Equation 2.96 using the �, quasiparticle

energies, and the excitonic spectrum computed from Equation 2.97. The difference between

the smallest direct intraband transition energy and an exciton’s energy is that exciton’s

binding energy. Table 8.4 shows the largest binding energy in each material for various

coarse and fine k-grid sizes.

The M3T3 absorption spectrum has several features that are promising for engineering

long-lived excitons. Both the RPA and the BSE spectra have a range of at least 0.7 eV after

onset inwhich the absorption is quiteweak. For theRPA spectrum, the lowest-energy optical

transition matrix elements are suppressed by the spatial separation of the surface-localized

valence band states and the interfacial conduction band states. The lowest-energy BSE
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excitons are similarly “dark.” This is promising for ensuring a long exciton lifetime, since

electron–hole pairs that settle in the lowest-energy exciton states will not readily recombine

via optical processes. Furthermore, the first exciton involving the unphysical lower-edge

surface state appears at 5.40 eV, confirming that the main features of interest are localized to

the proper surface of the slab. The binding energy is very large. The cited value of 2.60 eV

is likely a substantial overestimate, as 2D BSE calculations converge slowly with respect

to k-grid size [63]. However, the bulk binding energy of 1.10 eV appears better-converged

with respect to k-grid size and is a plausible lower bound for the slab binding energy.

In Figures 8.9(a-d), we provide real-space plots of two M3T3 excitons of interest. The

quantity plotted is the real part of the exciton wavefunction Ψ(r4, rℎ), defined as

Ψ(r4, rℎ) =
∑
E2k

�(E2kk2k(r4)k
∗
Ek(rℎ). (8.2)

This quantity gives the joint probability amplitude to observe an electron at r4 and a hole at

rℎ. To produce plots in real space, we fix the hole at the location that maximizes themarginal

hole probability distribution, %ℎ (rℎ) =
∫
3r4 |Ψ(r4, rℎ) |2. For low-energy excitons, the

hole distribution is made up in large part of unequal contributions from the 2? orbitals of

surface O atoms, with the global maximum of the distribution being found immediately

adjacent to one such atom (Figure 8.9(e)). With the hole fixed at that location, the plotted

quantity then represents the spatial distribution of the electron.

The exciton in Figures 8.9(a) and (c) is the lowest-energyM3T3 exciton. It is localized to

the vicinity of the hole, which is marked by a white circle with a black border. This partially

helps to explain why the calculated binding energy is so large: the Coulomb interaction is

very strong, even in the presence of electric field screening. Figures 8.9(b) and (d) show the
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fourth-lowest exciton, which is localized much more strongly to the interfacial Mg2TiO4

layer. It is the most strongly-bound exciton that can properly be called “interlayer.” Both

excitons are localized to the Mg2TiO4 layer, and both are associated with dark regions of

the absorption spectrum in Figure 8.8(b). Nevertheless, it would be desirable to ensure that

the interlayer exciton is the most strongly bound exciton in the system. In the following

section, we investigate routes to accomplishing that goal.

8.7 Discussion

Our calculations suggest several routes to making the MgO–Mg2TiO4 structure more favor-

able for interlayer excitons. In general, this goal can be achieved either by weakening the

overall scale of the binding energy or by increasing the within-film band offset.

The simplest way to reduce the binding energy is to ensure that the material environment

screens electric fields more effectively, thus weakening the electron–hole interaction. One

way to do this is to add a dielectric capping layer on top of the Mg2TiO4 film, ensuring that

fringing fields from above the film are screened out more than in vacuum. Alternatively,

or in addition, the substrate could be replaced by another lattice-matched cubic material

with a larger optical dielectric constant n∞ and refractive index =. Options that compare

favorably to MgO (= = 1.7, 0 = 4.21 Å) might include NiO (= = 2.4, 0 = 4.18 Å), CoO

(= = 2.3, 0 = 4.26 Å), or MnO (= = 2.2, 0 = 4.45 Å) [231, 232]. A change in material

environment may be accompanied by a change in film structure or band alignment, so more

careful analysis is needed before pursuing any of these options.

A complementary approach is to increase the within-film band offset by adjusting

the polarity or size of the Mg2TiO4 film. We expect that interlayer excitons will become
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Mg2TiO4 
3 layer

MgO MgOMg2TiO4 
6 layer

Ex,surf

Eb,surf Eb,inter

Ex,inter

3 layers: Ex,surf < Ex,inter 6 layers: Ex,surf > Ex,inter

a b

Figure 8.10: Schematic picture of how band edges and exciton binding energies are
expected to evolve as Mg2TiO4 film thickness increases from (a) 3 layers to (b) 6 layers.
In each panel, the horizontal fuschia lines represent the exciton energies �G for prominent
surface (left) and interlayer (right) excitons, measured with respect to the VBM. The energy
difference between the CBM and the exciton energy is the binding energy �1, which will
weaken as the spatial separation between hole and electron increases. As discussed in the
text, the band offset due to the film polarity is expected to produce an interlayer exciton at
lower energy than the surface exciton for sufficiently thick films.
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competitive with surface excitons as theMg2TiO4 film becomes thicker, even as the electron

and hole become more separated in space (see Figure 8.10). To explain why, we make crude

predictions for exciton energies in the (4 + 6)-layer structure of Figure 8.6. We assume that

�, corrections shift the near-�� band energies by a fixed amount (as demonstrated for the

(3+ 3)-layer structure in Figure 8.7(c)), that the gap between valence and conduction bands

at the surface does not vary with Mg2TiO4 film thickness (as demonstrated in Table 8.2),

and that the binding energy of an interlayer exciton varies inversely with film thickness (as

the electron and hole interact across the thickness). We also assume that all near-onset

binding energies for the (3 + 3) structure are overestimated by a fixed amount Δ�1.

Let the energy of the conduction band minimum at the MgO–Mg2TiO4 interface be

�28, and let the energy of the surface conduction band PDOS peak be �2B. According to

Table 8.2, we have Δ� (3+3)2 ≡ � (3+3)2B − � (3+3)
28

= 0.85 eV in the (3 + 3) structure, compared

to an offset of Δ� (4+6)2 ≡ � (4+6)2B − � (4+6)
28

= 2.36 eV for the (4 + 6) structure. We take

the energies of the (3 + 3) surface and interlayer excitons with respect to the valence band

maximum to be � (3+3)
G,surf = 3.90 eV + Δ�1 and � (3+3)G,inter = 4.32 eV + Δ�1, respectively. In the

(4 + 6) structure, the environment of the surface exciton is essentially unchanged, so we

expect to have

�
(4+6)
G,surf = �

(3+3)
G,surf = 3.90 eV + Δ�1 . (8.3)

Now let us estimate the interlayer exciton energy � (4+6)
G,inter. In terms of our variables, the

interlayer exciton binding energy is given by �1,inter = �28 − �G,inter. For the (3 + 3)

structure we have � (3+3)
1,inter = 2.18 eV − Δ�1; we guess that in the (4 + 6) structure this

value is renormalized to � (4+6)
1,inter =

3
6 × �

(3+3)
1,inter = 1.09 eV − 1

2Δ�1. Since we assume that

�
(3+3)
2B = �

(4+6)
2B , we can estimate � (4+6)

28
from the DFT band offsets and the �, value of
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�
(3+3)
28

= 6.50 eV:

�
(4+6)
G,inter = �

(4+6)
28
− � (4+6)

1,inter

= �
(3+3)
28
+ Δ� (3+3)2 − Δ� (4+6)2 − � (4+6)

1,inter

= (6.50 + 0.85 − 2.36 − 1.09) eV + 1
2Δ�1

= 3.90 eV + 1
2Δ�1 .

(8.4)

The interlayer exciton should at least be competitivewith the surface exciton in a 6-layer film,

and may be the energetically favored state if the binding energy correction is substantial.

This argument is presented graphically in Figure 8.10.

Future work on refining the above rough estimates will help clarify the situation. In

particular, our analysis remains somewhat speculative until the binding energy can be more

precisely converged. The obvious next step would be to attempt �, calculations on a

denser uniform k-grid, but the memory needed to store the wavefunctions and dielectric

matrices for M3T3 make this not currently practical. However, alternative techniques such

as clustered subsampling interpolation (CSI) [63] allow the BSE kernel to be calculated on

a finer grid than the original �, calculation. This does not require increasing the �, grid

size, but does require computing nGG′ (q) at additional subsampled q ≈ 0 points, a task that

is feasible within our current resource constraints. We intend to test CSI on the M0T3 and

M3T3 slabs in the coming months.

8.8 Conclusion

In this chapter, we have continued and extended our study of Mg2TiO4 films on MgO(001).

We have provided more detail on the relation of atomic structure to band offset in Mg2TiO4
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films of various thickness, and computed the quasiparticle energies and absorption spectra

of a representative Mg2TiO4 film. We have investigated the competition between surface

and interlayer excitons, and discussed research directions to strengthen our conclusions.

Our work on this project is ongoing, and proceeds in parallel with continuation of the

experimental work described in Chapter 7.
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Chapter 9

Summary and outlook

In this dissertation, we have presented ab initio calculations of three 2D materials: stanene

(Chapters 3 and 4), borophene (Chapters 5 and 6), and a thin film of Mg2TiO4 (Chapters 7

and 8). Each of these projects suggests avenues for future research. In this chapter, we

summarize the state of affairs for each project and outline some possible future work.

9.1 Stanene

In Chapter 3, we showed that stanene on Al2O3 is a gapped, topologically nontrivial

insulator. We showed that stanene exhibits strong epitaxial binding, with a gap that is

widened by chemical interaction with a dangling unoccupied Al orbital. We studied more

broadly the effects of strain on both bare and decorated stanene, with an eye towards device

applications. In Chapter 4, we identified a competing mode of tin deposition on Bi2Te3.

Future work on stanene could explicitly consider decorated stanene sheets on substrates.

As we showed, decoration with fluorine produces a topological insulator that remains non-

trivial over a wide range of strains, while decoration with hydrogen produces a trivial
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insulator. Proposed device applications for stanene often envision helical edge states within

a single tin sheet at the boundary between two types of decoration [6]. We briefly dis-

cussed the potential for in situ decoration and exfoliation of stanene sheets in Section 3.4.

Future ab initio projects could include simulations of that process on Al2O3 and other

substrates. In addition, future work could consider the effect of half-functionalization, i.e.,

introducing one adatom per stanene formula unit. This is more immediately plausible than

full functionalization on substrates like Al2O3, since we showed that the substrate already

partially saturates the Sn ?I orbitals. Different decorations hybridize with stanene’s ?I

orbitals to produce different electronic properties; one could imagine an even greater range

of combinatorial possibilities that arise from examining hybridization with both substrates

and decorating groups.

9.2 Borophene

In Chapters 5 and 6, we identified the ground-state atomic structure of borophene on the

Cu(111) andCu(100) surfaces, respectively. We showed in each case that borophene binding

is mediated by charge transfer from the metallic copper substrate, and that the structure is

modulated by weak interactions with a supercell of the copper lattice. In Chapter 6, we

further demonstrated the existence of Dirac cones and nodal lines in the borophene-on-

Cu(100) band structure, even in the presence of the aforementioned structural modulation.

Future theoretical work could tackle the question of how to exfoliate borophene from a

growth substrate. Proposed device applications often involve enclosing borophene between

hexagonal boron nitride sheets to prevent oxygen exposure or combining it with other

materials in a van derWaals heterostructure [151]. Clearly, to build these devices, borophene
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must be peeled off of its metallic growth substrate, a task that requires overcoming the charge

transfer that binds the boron sheet in the first place. Potential avenues to accomplish this

task could include functionalizing the boron to weaken the boron–substrate interaction, or

picking it up with a transfer material that binds more strongly than the growth substrate. Ab

initio simulations of various binding and unbinding processes would be useful for devising

a practical borophene device fabrication scheme. Since the equilibrium borophene hole

fraction varies with the level of charge transfer from the surface [14, 15], ab initio studies

could also examine how the properties of a borophenemonolayer assembled on one substrate

change when it is transferred to a different substrate.

9.3 Mg2TiO4

In Chapter 7, we showed that the polarity of an inverse spinel Mg2TiO4 film on MgO(001)

produces band-edge states that are spatially separated but localized to theMg2TiO4 film, and

showed how this band alignment is favorable for hosting interlayer excitons. In Chapter 8, we

continued our analysis of Mg2TiO4, calculating the quasiparticle energies of the material’s

low-energy excitations and the binding energies of its excitons. We obtained both intralayer

and interlayer excitons, and analyzed physical conditions under which interlayer excitons

should dominate.

Our own future work will involve refining the calculations presented in Chapter 8 and

confirming their convergence. In Section 8.7, we briefly discussed methods for obtaining

a more carefully converged BSE kernel without dramatically increasing the computational

cost and memory requirements of the �, step; those methods should be examined and

tested in more detail. Interlayer excitons are believed to be more relevant in thicker (6+
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layers) Mg2TiO4 films, so future calculations should explicitly treat such systems. If the

size of such a system is computationally intractable, a reasonable first approximation could

be obtained by calculating an Mg2TiO4 film in vacuum, as we did for a 3-layer film in

Chapter 8. Future work could also assess the feasibility of encapsulating the Mg2TiO4

film with dielectric materials on both sides. In the limit of a thick cap, this calculation

is arguably simpler than the ones presented here, since the Mg2TiO4 film is embedded in

bulk-like MgO rather than resting on a finite-size slab. More broadly, future work could

consider alternative substrates and/or transition metal oxide materials, since the existence

of polar surfaces and 3-type conduction bands is certainly not unique to Mg2TiO4.
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