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1 Setup

Here we work systematically in matrix notation for a Hermitian problem doing perturbation
theory. The Hamiltonian is

H = H0 +H1

where the perturbation is H1 is of first order and there is no higher orders. The eigenvectors
V and eigenenergies E have series expansions

V = V0 + V1 + V2 + . . . , E = E0 + E1 + E2 + . . .

The eigenvalue problem is
HV = V E

where the eigenvectors are columns of V , V is unitary V †V = V V † = I, and E is a diagonal
matrix with eigenvalues on the diagonals. Plugging in the series expansions and collecting
like orders to second order gives

H0V0 = V0E0

H1V0 +H0V1 = V0E1 + V1E0

H1V1 +H0V2 = V0E2 + V1E1 + V2E0

Now we analyze this order by order and worry about degenerate subspaces in particular.

2 Zeroth order

This seems silly but there is something to be said. Let us group degenerate states into
degenerate subspaces labeled by D. All states in D have the same energy E0D. We can write

(E0)D,D′ = δD,D′E0DID
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where ID is the identity operator in the D subspace.

The main point is that we can’t decide about unitary mixing of states in degenerate subspaces
at all to zeroth order. So if we have some fixed set of eigenvector V̄0, then an equally good
set is gotten by making arbitrary unitary rotations UD in each subspace separately:

V0 = V̄0


UD1 0 0 · · ·

0 UD2 0 · · ·
0 0 UD3 · · ·
...


and V0 is just as good as V̄0.

3 First order

We project the first order equation above onto the zeroth order vectors by left multiplying
the equation by V †

0 — and using H0V0 = V0E0 — to get

V †
0 H1V0 + E0V

†
0 V1 = E1 + V †

0 V1E0

Computing the D,D′ component gives

(V †
0 H1V0)D,D′ = δD,D′(E1)D + (V †

0 V1)D,D′(E0D′ − E0D)

The diagonal components in a subspace simplify to

(V †
0 H1V0)D,D = (E1)D

This is a constraint: it says that the left matrix must be diagonal! Putting in the unitary
matrices, we have in more detail

U †
D(V̄ †

0 H1V̄0)UD = (E1)D (1)

This equation says that if the matrix H1 in the subspace is not trivially zero or a multiple
or identity, then UD must be chosen so that they diagonalize H1 in the subspace and the
eigenvalues are the first order energy changes E1 in that subspace. We have recovered first
order perturbation theory for the energy and wave functions in a degenerate subspace.

The off-diagonal elements for D 6= D′ give the equation

(V †
0 V1)D,D′ =

(V †
0 H1V0)D,D′

E0D′ − E0D

for D 6= D′

which is the just first order shift of wave functions from standard textbooks but generalized
for the degenerate case. Since the UD have been fixed by the condition to get E1, this
equation is also definite and has no degrees of freedom.
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Before going to second order, we must worry about two things. First of all, there is nothing
we can say about the first order shift of wave functions in the degenerate subspace itself
(V †

0 V1)D,D. It drops out of the diagonal equation due to equal energies. All we are left with

is the unitary condition V †V = I which just translates into (V †
0 V1)D,D being anti-Hermitian

or i times a Hermitian operator, i.e. generator of a unitary rotation. The traditional textbook
choice is to set this to zero which we do below as well.

Second, if for some reason (V̄ †
0 H1V̄0)D,D is zero or multiple of identity, we are not able to

decide on the unitary rotations UD and thus V0 are still somewhat arbitrary; here (E1)D is
either zero or just a multiple of identity (constant shift of all eigenvalues in D to first order).

4 Second order

Left multiplying the second order equation by V †
0 gives

V †
0 H1V1 + E0V

†
0 V2 = E2 + V †

0 V1E1 + V †
0 V2E0

The D,D′ element is

(V †
0 H1V1)D,D′ − (V †

0 V1)D,D′(E1)D′ = δD,D′(E2)D + (V †
0 V2)D,D′(E0D′ − E0D)

We can eliminate (E1)D′ using the first order result for it to get

(V †
0 H1V1)D,D′ − (V †

0 V1)D,D′(V †
0 H1V0)D′,D′ = δD,D′(E2)D + (V †

0 V2)D,D′(E0D′ − E0D)

Looking at the diagonal D = D′ leads to

(V †
0 H1V1)D,D − (V †

0 V1)D,D(V †
0 H1V0)D,D = (E2)D

We now insert V0V
†
0 between H1 and V1 and break that into a sum over states D′′:∑

D′′

(V †
0 H1V0)D,D′′(V †

0 V1)D′′,D − (V †
0 V1)D,D(V †

0 H1V0)D,D = (E2)D

Assuming that (V †
0 V1)D,D = 0 so the D = D′′ part goes away, we get the simpler∑

D′′ 6=D

(V †
0 H1V0)D,D′′(V †

0 V1)D′′,D = (E2)D

Plugging in for (V †
0 V1) between subspaces gives us

∑
D′′ 6=D

(V †
0 H1V0)D,D′′(V †

0 H1V0)D′′,D

E0D − E0D′′
= (E2)D
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Putting the unitary matrices in gives

(E2)D = U †
D

{ ∑
D′ 6=D

(V̄ †
0 H1V̄0)D,D′(V̄ †

0 H1V̄0)D′,D

E0D − E0D′

}
UD (2)

This equation is again a condition on UD: they must make the right hand side diagonal, and
then we can find the second order energy shifts. The expression in the braces looks very
much like a generalization of the standard textbook second order expression.

The above expression is also the right thing to in the case that (V †
0 H1V0)D,D vanishes so we

must go to second order to get any energy shift. It tells us the eigenvalue problem we must
solve to get the second order energy shifts in a degenerate subspace correctly.
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